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LINEAR WEINGARTEN SPACELIKE HYPERSURFACES IN LORENTZ

SPACE FORMS WITH PRESCRIBED GAUSS MAP

Xiaoli Chao and Yusha Lv

Abstract

This paper address the geometry of complete linear Weingarten spacelike hyper-

surfaces in the Lorentz space forms. First, a divergence lemma concerning linear

Weingarten spacelike hypersurfaces is obtained. Then, with the aid of this lemma, by

supposing suitable restrictions on the Gauss map, we show that such hypersurfaces must

be totally umbilical, which are some extension of the recent results of Aquino, Bezerra

and Lima [7] and Aquino, Lima and Velásquez [11].

1. Introduction

Let Lnþ1
1 be an ðnþ 1Þ-dimensional Lorentz space, that is, a semi-

Riemannian manifold of index 1. When Lnþ1
1 is simply connected and has

constant sectional curvature, it is called a Lorentz space form. The Lorentz-
Minkowski space Lnþ1, the de Sitter space Snþ1

1 and the anti-de Sitter space
Hnþ1

1 are the standard Lorentz space forms of constant sectional curvature 0, 1
and �1, respectively. In order to simplify our notation, we will denote by
Lnþ1
1 ðcÞ � Rnþ1þjcj

q , q ¼ 1þ 1
2 ðjcj � cÞ the Lorentz-Minkowski space Lnþ1, de

Sitter space Snþ1
1 and anti-de Sitter space Hnþ1

1 according c ¼ 0, c ¼ 1 and
c ¼ �1, respectively.

A smooth immersion j : Mn ,! Lnþ1
1 ðcÞ of an n-dimensional connected mani-

fold M is said to be a spacelike hypersurface if the induced metric via j is a
Riemannian metric on M. As is usual, the spacelike hypersurface is said to be
complete if the Riemannian induced metric is a complete metric on M.

The interest in the study of rigidity of complete spacelike hypersurfaces in
Lorentz manifolds have been widely approached for many authors in recent
years, from both the physical and mathematical points of view. From a math-
ematical viewpoint, a basic question related to this topic is the Bernstein-type
properties. It was proved by Calabi [12] (for na 4) and by Cheng and Yau [21]
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(for all n) that a complete maximal spacelike hypersurface in Lnþ2 is totally
geodesic. In [29], Nishikawa obtained similar results for other Lorentzian mani-
folds. In particular, he proved that a complete maximal spacelike hypersurface
in Snþ1

1 is totally geodesic.
On the other hand, it is well known that the geometry of the Gauss map of

a spacelike hypersurface immersed into a Lorentz space form can impose several
restrictions on its own geometry. For the study of spacelike hypersurfaces with
constant mean curvature in Lorentz space forms Lnþ1

1 ðcÞ, Aiyama [1] and Xin
[38], simultaneous and independently, used the generalized maximum principle of
Omori-Yau [31, 41] in order to characterize the spacelike hyperplanes as the only
complete constant mean curvature spacelike hypersurfaces in Lnþ1 having the
image of its Gauss map contained in a geodesic ball of Hn (see also [33] for
a weaker first version of this result given by Palmer). Afterwards, Xin and Ye
[39] improved such previous results showing that if the image of the Gauss map
of a complete constant mean curvature spacelike hypersurface of Lnþ1 lies in a
horoball of Hn, then it must be a hyperplane. Also working in this context,
Aledo and Alı́as [2] showed that a complete constant mean curvature hyper-
surface in Snþ1

1 is a spacelike geodesic round sphere if the image of its hyperbolic
Gauss map contained in a geodesic ball of the hyperbolic space Hn. Besides,
working with a suitable warped product model of Hnþ1

1 , Camargo et al. [13]
showed that if M is a complete spacelike hypersurface with constant mean
curvature and bounded scalar curvature in anti-de Sitter space Hnþ1

1 , such that
the gradient of its height function with respect to a timelike vector has integrable
norm, then M must be totally umbilical. Later, Aquino and Lima [9] considered
the umbilicity of complete constant mean curvature spacelike hypersurfaces in de
Sitter space Snþ1

1 and anti-de Sitter space Hnþ1
1 by supposing suitable restrictions

on the Gauss map.
For the study of spacelike hypersurfaces with constant scalar curvature in

Lorentz space forms Lnþ1
1 ðcÞ, Aquino, Bezerra and Lima [7] studied the geometry

of complete spacelike hypersurfaces with constant scalar curvature immersed
into the de Sitter space Snþ1

1 , and showed that such hypersurfaces must be to-
tally umbilical, provided that its Gauss map has some suitable behavior. Mean-
while, by supposing suitable restrictions on the Gauss map, recently, Aquino, de
Lima and Velásquez [11] characterized totally umbilical hypersurfaces as the only
complete hypersurfaces immersed in Hnþ1

1 with constant scalar curvature.
As a natural generalization of hypersurfaces with constant scalar curvature

or with constant mean curvature, linear Weingarten hypersurfaces have been
studied by many authors in Riemannian space forms ([8, 10, 17, 19, 20, 25, 37])
and in Lorentz space forms ([15, 16, 23, 26, 27, 40]). Recall that a hypersurface
in Lorentz space forms Lnþ1

1 ðcÞ is said to be linear Weingarten if its normalized
scalar curvature R and mean curvature H satisfy R ¼ aH þ b for some constants
a; b A R. In case of Riemannian space forms, Li, Suh and Wei [25] studied linear
Weingarten hypersurfaces in unit sphere Snþ1 and proved the first rigidity result
under the assumption that hypersurfaces are compact. Later, this rigidity result
is extended to the case of complete linear Weingarten hypersurfaces with two
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distinct principal curvatures in real space forms by Shu [37]. Aquino, Lima
and Velásquez [10] established a new characterization theorem concerning com-
plete linear Weingarten hypersurfaces immersed in real space forms under the
assumption that the mean curvature attains its maximum along hypersurfaces
and an appropriated restriction on the norm of the traceless part of the second
fundamental form. The first author and Wang [19] also considered the rigidity
of linear Weingarten hypersurfaces in Riemannian space forms. Recently, the
authors [18] obtained a rigidity result for complete linear Weingarteen hyper-
surfaces in hyperbolic space by supposing suitable restrictions on the Gauss map
of such hypersurfaces which extended that ones in [6] without the assumption of
constant scalar curvature. In case of Lorentz space forms, Lima and Velásquez
[27] showed that a compact spacelike linear Weingarten hypersurface with R ¼
aH þ b immersed in de Sitter space Snþ1

1 is a totally umbilical spacelike hyper-
surface if ðn� 1Þa2 þ 4nð1� bÞb 0 and the second fundamental form is bounded.
The first author [15] also studied complete linear Weingarten submanifolds in
semi-Riemannian space forms Lnþp

p ðcÞ with parallel normalized mean curvature
vector.

In this paper, motivated by the works above described and the approaches
developed in [15, 16, 18], we deal with complete linear Weingarten spacelike
hypersurfaces immersed into the Lorentz space forms Lnþ1

1 ðcÞ. Using Lemma
3.4 below jointly with Generalized Maximum Principle due to Yau [42], a rigidity
result for complete linear Weingarten spacelike hypersurfaces immersed in
Lnþ1
1 ðcÞ is obtained by supposing suitable restrictions on its Gauss map, which

is an extension of the result in [7, 11] without the assumption of constant
normalized scalar curvature.

In what follow, we will state our main result. Let j : Mn ,! Lnþ1
1 ðcÞ be a

linear Weingarten spacelike hypersurface, given a vector v A Rnþ1þjcj
q , q ¼ 1þ

1
2 ðjcj � cÞ, let v> denote the orthogonal projection of v onto the tangent bundle
TM, that is

v> ¼ vþ fvN � clvj;

where lv ¼ hj; vi, fv ¼ hN; vi and N is the unit normal vector field of M.
Denote by L1ðMÞ the L1 space of integrable functions on M.

Theorem 1.1. Let j : Mn ,! Lnþ1
1 ðcÞ ðnb 3Þ be a complete linear Wein-

garten spacelike hypersurface with bounded mean curvature H and R ¼ aH þ b,
where a, b are constants and ab 0, b < c. Suppose that for some nonzero vector

v A Rnþ1þjcj
q , q ¼ 1þ 1

2 ðjcj � cÞ, we have jv>j A L1ðMÞ. Then we have the follow-
ing conclusions:

(1) When c ¼ 1, M is a totally umbilical spacelike hypersurface of Snþ1
1 if one

of the following conditions is satisfied:
(i) v is timelike;
(ii) v is null and the image of the hyperbolic Gauss map of M is contained in

the closure of a domain enclosed by a horosphere of Hnþ1 determined by v;
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(iii) v is spacelike and the image of the hyperbolic Gauss map of M is

contained in the closure of a hemisphere of Hnþ1 determined by v.
(2) When c ¼ �1, M is a totally umbilical spacelike hypersurface of Hnþ1

1 if v
is timelike and the image of the Gauss map of M is contained in a region bounded
by two totally umbilical spacelike hypersurfaces of Hnþ1

1 determined by v.

Remark 1.2. Choosing a ¼ 0 and R ¼ aH þ b ¼ b < c in Theorem 1.1, we
obtain the Theorem 4.1 in [7] and Theorem 3.5 in [11] for c ¼ 1 and c ¼ �1
respectively.

2. Preliminaries

In this section we will introduce some basic facts and notations which will
be used in this paper. Let j : Mn ,! Lnþ1

1 ðcÞ � Rnþ1þjcj
q , q ¼ 1þ 1

2 ðjcj � cÞ be

an immersed spacelike hypersurface in Lorentz space forms Lnþ1
1 ðcÞ with N its

Gauss map. Besides ‘0, ‘ and ‘ denote the Levi-Civita connections in Rnþ1þjcj
q ,

Lnþ1
1 ðcÞ and M respectively. Then the Gauss and Weingarten formulae for M in

Lnþ1
1 ðcÞ � Rnþ1þjcj

q are given, respectively, by

‘0
XY ¼ ‘XY � chX ;Yij ¼ ‘XY � hAX ;YiN � chX ;Yij;ð2:1Þ

and

AX ¼ �‘XN ¼ �‘0
XN;ð2:2Þ

for all tangent vector fields X ;Y A XðMÞ, where A : XðMÞ ! XðMÞ stands for the
shape operator of M with respect to a choice of timelike orientation N for M.

On the one hand, as in [32], the curvature tensor R of the spacelike hyper-
surface M is given by

RðX ;Y ÞZ ¼ ‘½X ;Y �Z � ½‘X ;‘Y �Z;

where ½ � denotes the Lie bracket and X ;Y ;Z A XðMÞ. A fact well known is
that the curvature tensor R of a spacelike hypersurface M immersed in Lnþ1

1 ðcÞ
can be described in terms of its shape operator A by the so-called Gauss equation
given by

RðX ;YÞZ ¼ cðhY ;ZiX � hX ;ZiYÞ � hAX ;ZiAY þ hAY ;ZiAX ;

for every tangent vector fields X ;Y ;Z A XðMÞ. From Gauss equation, we can
deduce that

jAj2 ¼ n2H 2 þ nðn� 1ÞðR� cÞ;ð2:3Þ
where R and jAj2 are the normalized scalar curvature and the norm square of the
second fundamental form of Mn respectively. On the other hand, the Codazzi
equation of Mn is given by

ð‘YAÞX ¼ ð‘XAÞY ;ð2:4Þ
where ‘XA denotes the covariant derivative of A.
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Denote by F the totally umbilical tensor of M, which is given by F ¼
AþHI , where I is the identity operator on TM. Then, by an easy computation,
we have trðFÞ ¼ 0 and

jFj2 ¼ jAj2 � nH 2
b 0;ð2:5Þ

where the equality jFj2 ¼ 0 holds if and only if M is totally umbilical. We
know that A is a self-adjoint linear operator on TM, and its eigenvalues
k1; k2; . . . ; kn are the principal curvatures of the hypersurface. Associated to
the shape operator A there are n algebraic invariants given by

Sr ¼ srðk1; k2; . . . ; knÞ; 1a ra n;ð2:6Þ

where sr : R
n ! R is the elementary symmetric function in Rn gievn by

srðk1; k2; . . . ; knÞ ¼
X

i1<���<ir

ki1ki2 � � � kir :

Observe that the characteristic polynomial of A can be written in terms of the
Sr as

detðtI � AÞ ¼
Xn
r¼0

ð�1Þ rSrt
n�r;

where S0 ¼ 1 by construction. The r-th ð0a ra nÞ mean curvature Hr of the
hypersurface is defined by

n

r

� �
Hr ¼ ð�1ÞrSr ¼ srð�k1;�k2; . . . ;�knÞ:

We observe that H0 ¼ 1, while

H1 ¼ � 1

n

Xn
i¼1

ki ¼ � 1

n
trðAÞ ¼ H

is the usual mean curvature of Mn. The choice of the sign ð�1Þr in the
definition of Hr is motivated by the fact that the mean curvature vector is given
by ~HH ¼ HN. Therefore, HðpÞ > 0 at a point p A M if and only if ~HHðpÞ is in the
same time-orientation as NðpÞ (in the sense that h~HH;Nip < 0).

According to our definition of the r-mean curvatures, the Newton transfor-
mation Pr on M are given by setting P0 ¼ I and, for 1a ra n,

Pr ¼ ð�1Þ rSrI þ APr�1 ¼
n

r

� �
HrI þ APr�1:

Let us recall that each Pr is also a self-adjoint linear operator on each tangent
plane TM which commutes with A. Indeed A and Pr can be simultaneously
diagonalized: if fe1; e2; . . . ; eng are the eigenvectors of A corresponding to the
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eigenvalues k1; k2; . . . ; kn respectively, then they are also the eigenvectors of Pr

with corresponding eigenvalues given by

mi; r ¼ ð�1Þr
X

1ai1<���<iran
i1;...; ir0i

ki1 � � � kir ¼
X

1ai1<���<iran
i1;...; ir0i

ð�ki1Þ � � � ð�kirÞ

for every 1a ia n:
On the other hand, given f A CyðMÞ, for each 0a ra n, the second-order

di¤erential operator Lr is defined as follows

Lr f ¼ trðPr‘
2f Þ;

where ‘2 stands for the hessian tensor and given by

‘2f ðX ;Y Þ ¼ h‘X ð‘f Þ;Yi; X ;Y A XðMÞ:

Let fe1; e2; . . . ; eng be a local orthonormal frame on M and observe that

divðPrð‘f ÞÞ ¼
Xn
i¼1

hð‘eiPrÞð‘f Þ; eiiþ
Xn
i¼1

hPrð‘ei‘f Þ; eiið2:7Þ

¼ hdiv Pr;‘f iþ Lrð f Þ;

where div denotes the divergence on M and

div Pr ¼ trð‘PrÞ ¼
Xn
i¼1

ð‘eiPrÞðeiÞ:

Since Lnþ1
1 ðcÞ has constant sectional curvature, the Newton transformations Pr

are divergence free, that is, div Pr ¼ 0 ([3]). Then we can rewrite Lr as

Lr f ¼ divðPr‘f Þ:ð2:8Þ
From equation (2.8), we conclude that the operator Lr is elliptic if, and only if,
Pr is positive definite. We observe that L0 ¼s is always elliptic. In particular,
when r ¼ 1 the operator L1 agrees (up to the sign) with the operator r, which
was introduced by Cheng and Yau [22].

For linear Weingarten spacelike hypersurfaces in Lorentz space forms
Lnþ1
1 ðcÞ with R ¼ aH þ b, combining (2.3) with (2.5), we have

jFj2 ¼ nðn� 1ÞðH 2 þ aHÞ þ nðn� 1Þðb� cÞ:ð2:9Þ

Let P : TM ! TM be the operator given by P ¼ nH þ n� 1

2
a

� �
I þ A. It is

not di‰cult to prove that P is self-adjoint. Now we define a operator L
associated with P acting on any function f A C2ðMÞ by

Lð f Þ ¼ divðPð‘f ÞÞ ¼ bþ n� 1

2
aD

� �
f ;ð2:10Þ
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where b is the Cheng-Yau’s operator in [22], i.e. bf ¼ divðP1ð‘f ÞÞ: Thus, L is
a second-order di¤erential operator and L is elliptic or parabolic if and only if P
is positive definite or non-negative definite.

3. Some Lemmas

Firstly, by fixing a vector v A Rnþ1þjcj
q , q ¼ 1þ 1

2 ðjcj � cÞ, we consider the
height and angle functions which are naturally attached to an immersion
j : Mn ,! Lnþ1

1 ðcÞ defined by

lv ¼ hj; vi and fv ¼ hN; vi:

By a straightforward computation, we conclude that ‘lv ¼ v> and ‘fv ¼ �Aðv>Þ,
where v> is the orthogonal projection of v onto the tangent bundle TM, that is

v> ¼ vþ fvN � clvj:

Using Gauss formula (2.1) and Weingarten formula (2.2), it is not di‰cult to
verify that

‘X‘lv ¼ ‘Xv
> ¼ �fvAX � clvX ;ð3:1Þ

for all x A XðMÞ. Now, we use (3.1) jointly with Codazzi equation (2.4) to
deduce

‘X‘fv ¼ fvA
2X þ clvAX � ð‘v>AÞX ;

for all x A XðMÞ. Moreover, based on the paper due to Reilly [35], it is possible
to obtain the following identities related with the action of Lr on these functions
[3, 5, 34]:

Lrlv ¼ ð�1Þrþ1½ðrþ 1ÞSrþ1 fv þ cðn� rÞSrlv�;ð3:2Þ
and

Lr fv ¼ ð�1Þrþ1f½ðrþ 2ÞSrþ2 � S1Srþ1� fv � cðrþ 1ÞSrþ1lv þ v>ðSrþ1Þg;ð3:3Þ

where cr ¼ ðn� rÞ n

r

� �
¼ ðrþ 1Þ n

rþ 1

� �
. In particular, letting r ¼ 0 and r ¼ 1

in above equations respectively, we get the following relations

slv ¼ nHfv � cnlv;ð3:4Þ

sfv ¼ jAj2fv � cnHlv þ nv>ðHÞ;ð3:5Þ
blv ¼ 2S2 fv þ cðn� 1ÞS1lv;ð3:6Þ

bfv ¼ ð3S3 � S1S2Þ fv � 2cS2lv þ v>ðS2Þ:ð3:7Þ

Now, we present the main analytical tools which will be used to prove our
results. First one is a classic algebraic lemma due to Okumura in [30] and the
equality case was proved by Alencar and do Carmo in [4].

104 xiaoli chao and yusha lv



Lemma 3.1. Let m1; m2; . . . ; mn be real numbers such that

Xn
i¼1

mi ¼ 0 and
Xn
i¼1

m2
i ¼ b2;

where bb 0. Then

� n� 2ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
nðn� 1Þ

p b3
a
Xn
i¼1

m3
i a

n� 2ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
nðn� 1Þ

p b3;ð3:8Þ

and equality holds if, and only if, either at least ðn� 1Þ of the numbers mi are
equal.

In what follows, we quote a suitable characterization of totally umbilical
hypersurfaces in a semi-Riemannian space form due to Kim et al. [24], which
corresponds to a converse for a theorem due to Sharma and Duggal in [36].

Lemma 3.2. Let Mn be a connected semi-Riemannian hypersurface of a semi-
Riemannian space form Qnþ1ðcÞ. Suppose that Qnþ1ðcÞ carries a conformal vector
field V whose tangential component V> on Mn becomes a conformal vector field.
Then, one of the following holds:

(i) Mn is a totally umbilical hypersurface;
(ii) the restriction of V to Mn reduces to a tangent vector field on Mn.

Next important lemma is based on Yau’s result ([42]) which was obtained by
Caminha in [14].

Lemma 3.3 ([14]). Let X be a smooth vector field on the n-dimensional
complete noncompact oriented Riemannian manifold M, such that div X does not
change sign on M. If jX j A L1ðMÞ, then div X ¼ 0.

To close this section, we will present the following key lemma which plays an
important role in the proof of Theorem 1.1.

Lemma 3.4. Let j : Mn ,! Lnþ1
1 ðcÞ be a complete linear Weingarten space-

like hypersurface immersed in Lorentz space forms Lnþ1
1 ðcÞ with R ¼ aH þ b,

where a, b are constants. Then we have

div Pð‘fvÞ þ ðn� 1Þðb� cÞ‘lv þ
a

2
P1ð‘lvÞ

� �
ð3:9Þ

¼
Xn
i¼1

ðki þHÞ3 þ ðn� 2Þ H þ a

2

� �
jFj2

" #
fv:

Proof. Let p A M and fe1; . . . ; eng be a local orthonormal frame on a
neighborhood U of p, geodesic at p and diagonalizing A at p, with Aei ¼ kiei,
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for 1a ia n. From Codazzi equation, we have that

div Að‘fvÞ ¼
Xn
i¼1

h‘eiAð‘fvÞ; eiið3:10Þ

¼
Xn
i¼1

hð‘eiAÞð‘fvÞ þ Að‘ei‘fvÞ; eii

¼
Xn
i¼1

hð‘‘fv
AÞðeiÞ; eiiþ

Xn
i¼1

hAð‘ei‘fvÞ; eii

¼ trð‘‘fvAÞ þ
Xn
i¼1

‘2fvðei;AeiÞ;

where ‘2 stands for the hessian tensor. Since

�h‘ðnHÞ;‘fvi ¼ �
X
j

hejðnHÞej ;‘fvi ¼
X
i; j

hejhAei; eiiej;‘fvi

¼
X
i; j

hð‘ejAÞei; eiihej;‘fvi ¼
X
i; j

hð‘eiAÞej ; eiihej;‘fvi

¼
X
i; j

hð‘eiAÞei; ejihej ;‘fvi ¼
X
i

hð‘eiAÞei;‘fvi

¼
X
i

hei; ð‘eiAÞ‘fvi ¼
X
i

hei; ð‘‘fvAÞeii ¼ trð‘‘fvAÞ;

then, we have

div nH þ n� 1

2
a

� �
‘fv

� �
ð3:11Þ

¼ ‘ nH þ n� 1

2
a

� �
;‘fv

� �
þ nH þ n� 1

2
a

� �
sfv

¼ h‘ðnHÞ;‘fviþ nH þ n� 1

2
a

� �
sfv

¼ �trð‘‘fvAÞ þ nH þ n� 1

2
a

� �
sfv:

Combining equations (3.10), (3.11) with (3.5), we obtain

Lð fvÞ ¼ div nH þ n� 1

2
a

� �
‘fv þ Að‘fvÞ

� �
ð3:12Þ

¼ nH þ n� 1

2
a

� �
sfv þ

Xn
i¼1

‘2fvðei;AeiÞ

¼ nH þ n� 1

2
a

� �
ðjAj2fv � cnHlv þ nv>ðHÞÞ þ

Xn
i¼1

‘2fvðei;AeiÞ:
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From Gauss equation and R ¼ aH þ b, we know that

n2H 2 � jAj2 þ nðn� 1ÞaH ¼ nðn� 1Þðc� bÞ

is a constant on M. Now observing that jAj2 ¼
Pn

i¼1 hAei;Aeii, ð‘ei ejÞðpÞ ¼ 0
for all i; j A 1; 2; . . . ; n and equation (3.1), we obtain

Xn
i¼1

‘2fvðei;AeiÞ ¼
X
i

h‘ei‘fv;Aeii ¼ �
X
i

h‘eiAðv>Þ;Aeiið3:13Þ

¼ �
X
i

hð‘eiAÞv>;Aeii�
X
i

hAð‘ei v
>Þ;Aeii

¼ �
X
i

kihð‘eiAÞv>; eii�
X
i

h‘ei v
>;A2eii

¼ �
X
i

kihv
>; ð‘eiAÞeii�

X
i

k2
i h‘ei v

>; eii

¼ �
X
i

kihv
>;‘eiðAeiÞiþ

X
i

k2
i h fvAei þ clvei; eii

¼ �
X
i

kihv
>; eiðkiÞeiiþ fv

X
i

k3
i þ clvjAj2

¼ � 1

2

X
i

hv>; eiðk2
i Þeiiþ fv

X
i

k3
i þ clvjAj2

¼ � 1

2
v>ðjAj2Þ þ fv

Xn
i¼1

k3
i þ cjAj2lv

¼ � 1

2
v>ðn2H 2 þ nðn� 1ÞðaH þ b� cÞÞ

þ fv
Xn
i¼1

k3
i þ cjAj2lv

¼ �n2Hv>ðHÞ � nðn� 1Þ
2

av>ðHÞ þ fv
Xn
i¼1

k3
i þ cjAj2lv:

Then, from (3.12) and (3.13), we infer that

Lð fvÞ ¼ nH þ n� 1

2
a

� �
ðjAj2fv � cnHlvÞ þ fv

Xn
i¼1

k3
i þ cjAj2lv:ð3:14Þ

A simple computation provides us the following equality

Xn
i¼1

k3
i ¼ �nH 3 � 3HjFj2 þ

Xn
i¼1

ðki þHÞ3:ð3:15Þ
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From (3.14), (3.15), we conclude that

Lð fvÞ ¼ nH þ n� 1

2
a

� �
ðjAj2fv � cnHlvÞð3:16Þ

þ �nH 3 � 3HjFj2 þ
Xn
i¼1

ðki þHÞ3
 !

fv þ cjAj2lv

¼ �nH 3 � 3HjFj2 þ
Xn
i¼1

ðki þHÞ3 þ nH þ n� 1

2
a

� �
jAj2

 !
fv

� c n2H 2 þ nðn� 1Þ
2

aH � jAj2
� �

lv

¼ �nH 3 � 3HjFj2 þ
Xn
i¼1

ðki þHÞ3 þ nH þ n� 1

2
a

� �
jAj2

 !
fv

� ðn2H 2 þ nðn� 1ÞaH � jAj2Þclv þ
nðn� 1Þ

2
caHlv:

Considering n2H 2 þ nðn� 1ÞaH � jAj2 ¼ nðn� 1Þðc� bÞ is a constant and (3.4),
we have

ðn2H 2 þ nðn� 1ÞaH � jAj2Þclvð3:17Þ

¼ 1

n
ðn2H 2 þ nðn� 1ÞaH � jAj2ÞðnHfv �slvÞ:

Inserting (3.17) into (3.16), the expression in (3.16) becomes

Lð fvÞ ¼ �nH 3 � 3HjFj2 þ
Xn
i¼1

ðki þHÞ3 þ nH þ n� 1

2
a

� �
jAj2

 !
fvð3:18Þ

þ 1

n
ðn2H 2 þ nðn� 1ÞaH � jAj2Þðslv � nHfvÞ þ

nðn� 1Þ
2

caHlv

¼ 1

n
ðn2H 2 þ nðn� 1ÞaH � jAj2Þslv þ

nðn� 1Þ
2

caHlv

þ
Xn
i¼1

ðki þHÞ3 þ ðn� 2ÞH þ n� 1

2
a

� �
jFj2 � nðn� 1Þ

2
aH 2

" #
fv

¼ ðn� 1Þðc� bÞslv þ
nðn� 1Þ

2
caHlv

þ
Xn
i¼1

ðki þHÞ3 þ ðn� 2ÞH þ n� 1

2
a

� �
jFj2 � nðn� 1Þ

2
aH 2

" #
fv:
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On the other hand, (3.6) implies that

nðn� 1Þ
2

caHlv ¼
a

2
ð2S2 fv �blvÞ:ð3:19Þ

Inserting (3.19) into (3.18) and considering

2S2 ¼ n2H 2 � jAj2 ¼ nðn� 1ÞH 2 � jFj2;
we have

Lð fvÞ � ðn� 1Þðc� bÞslv þ
a

2
blvð3:20Þ

¼
"
a

2
ð2S2 � nðn� 1ÞH 2Þ þ

Xn
i¼1

ðki þHÞ3

þ ðn� 2ÞH þ n� 1

2
a

� �
jFj2

#
fv

¼
Xn
i¼1

ðki þHÞ3 þ ðn� 2Þ H þ a

2

� �
jFj2

" #
fv;

which implies (3.9). r

4. Proof of the main theorem

In order to prove our main result, we will describe some particular regions of
the hyperbolic space Hnþ1. We recall that Hnþ1 admits a foliation by means of
totally umbilical hypersurfaces

Lt ¼ fp A Hnþ1 j hp; vi ¼ tg;

where v A Lnþ2 is a fixed vector and t2 þ hv; vi > 0 ([28]).
In particular, when v is a nonzero null vector, we have that such hyper-

surfaces Lt are exactly the horospheres of Hnþ1. In this case, we will refer to the
interior domain enclosed by Lt the set

fp A Hnþ1 j hp; vi < tg;

and the exterior domain enclosed by Lt the set

fp A Hnþ1 j hp; vi > tg:
On the other hand, when v is a spacelike vector, the level set

L0 ¼ fp A Hnþ1 j hp; vi ¼ 0g
defines a totally geodesic hypersphere in Hnþ1. So, in analogy to the context of
the Euclidean sphere Snþ1, we will refer to such hypersphere as the equator of
Hnþ1 determined by v. This equator divides Hnþ1 into two connected compo-
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nents, which (proceeding with our analogy between Snþ1 and Hnþ1) will be called
hemispheres of Hnþ1 determined by v.

For the simplicity of proof, we first show the following proposition.

Proposition 4.1. Let j : Mn ,! Lnþ1
1 ðcÞ, nb 3, be a complete linear Wein-

garten spacelike hypersurface with bounded mean curvature H and R ¼ aH þ b,
where a, b are constants and ab 0, b < c. Suppose the angle function fv deter-
mined by a nonzero vector v A Rnþ1þjcj

q , q ¼ 1þ 1
2 ðjcj � cÞ with jv>j A L1ðMÞ does

not change sign on M, then jFj2fv ¼ 0 on M.

Proof. Initially from Gauss equation (2.3) and b < c, we obtain that

n2H 2 þ nðn� 1ÞaH ¼ jAj2 þ nðn� 1Þðc� bÞ > 0;ð4:1Þ

which implies that the mean curvature H does not vanishes on M. Hence, we
can choose an orientation for M in such a way that H > 0.

Since

Xn
i¼1

ðki þHÞ ¼ 0 and
Xn
i¼1

ðki þHÞ2 ¼ jFj2;

it follows from Lemma 3.1 that

Xn
i¼1

ðki þHÞ3 b� n� 2ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
nðn� 1Þ

p jFj3:

Thus we obtain

Xn
i¼1

ðki þHÞ3 þ ðn� 2Þ H þ a

2

� �
jFj2 b ðn� 2ÞjFj2 H þ a

2
� jFjffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

nðn� 1Þ
p

 !
:ð4:2Þ

From (2.9), a simple computation implies

H þ a

2

� �2
� jFjffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

nðn� 1Þ
p

 !2
¼ a2

4
þ c� b > 0ð4:3Þ

if b < c. Therefore, since we have assumed that ab 0, b < c, from equations
(4.2) and (4.3), we obtain

Xn
i¼1

ðki þHÞ3 þ ðn� 2Þ H þ a

2

� �
jFj2ð4:4Þ

b ðn� 2ÞjFj2 H þ a

2
� jFjffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

nðn� 1Þ
p

 !
b 0:
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on M. Therefore, Lemma 3.4, equation (4.4) and the fact fv does not change
sign on M allow us to conclude that

div Pð‘fvÞ þ ðn� 1Þðb� cÞ‘lv þ
a

2
P1ð‘lvÞ

� �

does not change sign on M.
Since H is bounded, it follows from Gauss equation (2.3) that jAj2 is

bounded on M. Consequently, from Cauchy-Schwarz inequality, we have
that

Pð‘fvÞ þ ðn� 1Þðb� cÞ‘lv þ
a

2
P1ð‘lvÞ

����
����

¼ � nH þ n� 1

2
a

� �
Aðv>Þ � A2ðv>Þ þ a

2
ðnH þ AÞðv>Þ þ ðn� 1Þðb� cÞv>

����
����

a nHjAj þ n

2
ajAj þ jAj2 þ a

2
nH þ ðn� 1Þðc� bÞ

����
����jv>j A L1ðMÞ:

Hence, from Lemma 3.3 we obtain

div Pð‘fvÞ þ ðn� 1Þðb� cÞ‘lv þ
a

2
P1ð‘lvÞ

� �
¼ 0:

Equation (4.4) and the hypothesis on nb 3 imply that jFj2fv ¼ 0 on M. r

Proof of Theorem 1.1. When c ¼ 1, we note that, when v is a null vector,
our hypothesis on the hyperbolic Gauss map of M means that the correspond-
ing angle function fv ¼ hN; vi has strict sign on M, and when v is a timelike
vector, the simple fact that M is a spacelike hypersurface implies that fv always

has strict sign on M. Applying Proposition 4.1 we conclude that jFj2 ¼ 0 on
M when v is either a timelike or null vector. Therefore, M must be totally
umbilical. Furthermore, when v is a spacelike vector, we have fv does not change
sign on M from the assumption of Gauss map. A straightforward computation
shows that

‘2lv �
1

n
ðslvÞg

����
����
2

¼ j‘2lvj2 �
1

n
ðslvÞ2 ¼ jFj2f 2v ;

where g stands for the Riemannian metric of M. Thus jFj2fv ¼ 0 implies that

‘2lv ¼
1

n
ðslvÞg:

Consequently, ‘lv ¼ v> is a conformal vector field on M. On the other hand,
taking into account once more that jv>j A L1ðMÞ, v can not be a tangent vector
to M. Therefore, from Lemma 3.2 we conclude that M is a totally umbilical
hypersurface.
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When c ¼ �1, our hypothesis on the Gauss map of M implies that there
exists a timelike vector v A Rnþ2

2 such that the corresponding angle function fv ¼
hN; vi has strict sign on M, Applying Proposition 4.1 again, we conclude that

jFj2 ¼ 0 on M. Consequently, M must be a totally umbilical hypersurface.
r
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