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DEHN TWISTS ON KAUFFMAN BRACKET SKEIN ALGEBRAS

Shunsuke Tsuji

Abstract

We give an explicit formula for the action of the Dehn twist along a simple closed

curve in a compact connected oriented surface on the completion of the filtered skein

modules of the surface. To do this, we introduce filtrations of the Kau¤man bracket

skein algebra and the Kau¤man bracket skein modules of the surface.

1. Introduction

Recently it has come to light that the Goldman Lie algebra of a surface
plays an important role in the study of the mapping class group of the surface.
See [3], [4] and [7] for details. Before that, Turaev [13] drew an analogy between
the Goldman Lie algebra and some skein algebra. Hence it is important to
establish some explicit connection between the Kau¤man bracket skein algebra
and the mapping class group. This new connection motivates much of the
interest in theory of the mapping class group of a surface and one of knots and
links. In fact, skein algebras give us a new way of studying the mapping class
group. Furthermore, we expect that this connection will bring us some infor-
mation about 3-manifolds including the Casson invariant.

The aim of this paper is to explain a new relationship between the Kau¤man
bracket skein algebra and the mapping class group. Let S be a compact
connected oriented surface with non-empty boundary. Kawazumi-Kuno [4]
[3] defined an action s of the Goldman Lie algebra on the group ring of
the fundamental group of S. Using this action, Kawazumi-Kuno [4] [3] and
Massuyeau-Turaev [7] obtained a formula for the action of the right handed
Dehn twist tc along a simple closed curve c

tc ¼ exp s
1

2
jðlogðcÞÞ2j

� �� �
: dQp1ðS; �ÞQp1ðS; �Þ ! dQp1ðS; �ÞQp1ðS; �Þ;ð1Þ

where dQp1ðS; �ÞQp1ðS; �Þ is the completed group ring of the fundamental group of S

with base point � A qS, dQbp1ðSÞQbp1ðSÞ is the completed Goldman Lie algebra and
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j � j : dQp1ðS; �ÞQp1ðS; �Þ ! dQbp1ðSÞQbp1ðSÞ is the quotient map. Our goal in this paper is to
establish a skein algebra version of this formula.

Let S be a compact connected oriented surface, I the closed interval ½0; 1�
and Q½A;A�1� the ring of Laurent polynomials over Q in an indeterminate A.
The Kau¤man bracket skein algebra SðSÞ is defined to be the quotient of the
free Q½A;A�1�-module with basis the set of unoriented framed links in S� I by
the skein relation which defines the Kau¤man bracket. Let J be a finite subset
of qS. The Kau¤man bracket skein module SðS; JÞ is defined to be the quotient
of the free Q½A;A�1�-module with basis TðS; JÞ by the same skein relation,
where we denote by TðS; JÞ the set of unoriented framed tangles with the base
point set J � 1

2

� �
. For details, see Subsection 3.1. The Kau¤man bracket skein

algebra SðSÞ has a structure of an associative algebra and a Lie algebra over
Q½A;A�1�. The Kau¤man bracket skein module SðS; JÞ has a structure of an
SðSÞ-bimodule. Furthermore, we define an action s of SðSÞ on SðS; JÞ such
that SðS; JÞ is SðSÞ-module under the action s when we regard SðSÞ as a Lie
algebra. For details, see Subsection 3.2. In this paper, we introduce a filtration
fF nSðSÞgnb0 of SðSÞ and a filtration fF nSðS; JÞgnb0 of SðS; JÞ defined by an
augmentation ideal ker e, where the augmentation map e is defined by eðAÞ ¼ �1
and eðLÞ ¼ ð�2Þap0ðLÞ for any link L in S� I . These operations are continuous
in the topologies of SðSÞ and SðS; JÞ induced by these filtrations. We remark
that there is some relationship between the completion of the group ring of
the fundamental group of S and these filtrations of SðSÞ and SðS; JÞ which
will appear in [10]. We denote the completions of SðSÞ and SðS; JÞ in these

topologies by ŜSðSÞ and ŜSðS; JÞ, respectively. For details, see Subsection 3.3.
The main result of the paper is the formula for the action of the Dehn twist tc
along a simple closed curve c

tcð�Þ ¼ exp s
�Aþ A�1

4 logð�AÞ arccosh � c

2

� �� �2 ! !
ð�Þ : ŜSðS; JÞ ! ŜSðS; JÞ:

which is a skein version of the formula (1). Here logð�AÞ ¼
Py

i¼1
�1
i
ðAþ 1Þ i A

Q½½Aþ 1�� and arccosh
�c
2

� �� �2
¼
Py

i¼0
i!i!

ði þ 1Þð2i þ 1Þ! 1� c2

4

� �iþ1
A Q½½cþ 2��.

This skein version does not follow from the original one [3] [4] [7].
In Section 5, we prove the following three properties of the filtrations of

SðSÞ and SðS; JÞ.
(1) Let S be a compact connected oriented surface with non-empty boun-

dary. The topology on SðS; JÞ introduced by the filtration is Haus-
dor¤, in other words, we have

Ty
n¼0 F nSðS; JÞ ¼ 0.

(2) Let S and S 0 be two oriented compact connected surfaces satisfying
p1ðSÞF p1ðS 0Þ, J and J 0 finite subsets of qS and qS 0, respectively,
satisfying aJ ¼aJ 0. There exists a di¤eomorphism x : ðS� I ; J � IÞ !
ðS 0 � I ; J 0 � IÞ. Then we have xðF nSðS; JÞÞ ¼ F nSðS 0; J 0Þ. But the
induced map x : SðSÞ !SðS 0Þ does not seem to be an algebra homo-
morphism.
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(3) We have X
L 0�L
ð�1ÞjL

0jð�2Þ�jL
0j½L 0� A ðker eÞn

for any link L in S� I having components more than n, where the sum
is over all sublinks j � L 0 � L and jLj the number of components of L.
In other words, for any link L in S� I , ð�2Þ�jL

0 j½L 0� modðker eÞn is a
finite type invariant of order n in the sense of Le [5] (3.2).

The second and third properties follow from Lemma 5.3. Using the second
property and Lickorish’s theorem [6] (Theorem 5.6), we prove the first prop-
erty. In subsequent papers, we need all the above properties. In particular, we
need the first property to prove the faithfulness of the action of the mapping class
group of a compact connected oriented surface with non-empty boundary on the
completed skein algebra of the surface.

In subsequent papers, using this formula of Dehn twists, we obtain an
embedding of the Torelli group of a surface into the completed skein algebra
of the surface defined in this paper. This embedding gives a construction of the
first Johnson homomorphism and a new filtration consisting of normal sub-
groups in the mapping class group. Furthermore, it gives an invariant zðMÞ A
Q½½Aþ 1�� for an integral homology 3-sphere M. The invariant induces
zðMÞ modðAþ 1Þnþ1 which is a finite type invariant of order n. The details
will appear elsewhere [11] and [12].
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2. Definition of tangles in S� I

In this section, let S be a compact connected oriented surface.
We define the set of tangles in S� I .

Definition 2.1. Let J be a finite subset of qS. We define EðS; JÞ to be the
set consisting of all injective maps E ¼

‘
i ti t

‘
j uj from a domain D consisting

of a finite collection of stripes
‘

i I � ð�e; eÞ and annuli
‘

j S
1 � ð�e; eÞ into

S� ð0; 1Þ satisfying the following.
(1) Each uj is an embedding into S� ð0; 1Þ.
(2) The restriction of each ti to ð0; 1Þ � ð�e; eÞ is an embedding into

S� ð0; 1Þ.
(3) The restriction of each ti to f0; 1g � ð�e; eÞ is an orientation preserving

embedding into J � I .
(4) For j A J, EðDÞ \ ð j � IÞ is not empty and is connected.
Two elements E0 and E1 of EðS; JÞ which have the same domain D are

unoriented-isotopic if there exists a continuous map H : D� I ! S� I such that
HðD� f0gÞ ¼ E0ðDÞ, HðD� f1gÞ ¼ E1ðDÞ and Hð�; tÞ A EðS; JÞ for t A I . We
denote by TðS; JÞ the set of unoriented-isotopy classes of elements of EðS; JÞ.
We denote by h�i the quotient map EðS; JÞ !TðS; JÞ. If J ¼ j, we simply
denote TðS; JÞ and EðS; JÞ by TðSÞ and EðSÞ. An element of TðS; JÞ is called
a tangle.

The definition of ‘tangles’ is similar to the definition of ‘links’ of marked
surfaces in [8]. But, a tangle in this definition has one arc on each point of J.

Definition 2.2. Let J be a finite subset of qS. An element E of EðS; JÞ is
generic if E : ð

‘
i I t

‘
j S

1Þ � ð�e; eÞ ! S� I satisfies the following.

(1) For x A
‘

i I t
‘

j S
1, the map ð�e; eÞ ! I , t 7! p2 � Eðx; tÞ is an orienta-

tion preserving embedding map, where we denote by p2 the projection
S� I ! I .

(2) The map
‘

i I t
‘

j S
1 ! S, x 7! p1 � Eðx; 0Þ is an immersion such that

the intersections of the image of the map consist of transverse double
points, where we denote by p1 the projection S� I ! S.

It is convenient to present tangles in S� I by tangle diagrams on S in the
same fashion in which links in R3 may be presented by planar link diagrams.

Definition 2.3. Let J be a finite subset of qS, T an element of TðS; JÞ and
E : ð

‘
i I t

‘
j S

1Þ � ð�e; eÞ ! S� I an element of EðS; JÞ representing T which

is generic. The tangle diagram of T is p1 � Eðð
‘

i I t
‘

j S
1Þ � f0gÞ together with

height-information, i.e., the choice of the upper branch of the curve at each
crossing. The chosen branch is called an over crossing; the other branch is called
an under crossing.
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Proposition 2.4 (see, for example, [1]). Let J be a finite subset of qS. Let
T and T 0 be two elements of TðS; JÞ presented by tangle diagrams d and d 0,
respectively. Then, T equals T 0 if and only if d can be transformed into d 0 by
a sequence of isotopies of S and the RI, RII, RIII moves as shown in Figure 1, 2,
and 3.

Let J and J 0 be two finite subsets of qS with J \ J 0 ¼ j. Here e1 and e2

denote the embedding maps from S� I to S� I defined by e1ðx; tÞ ¼ x;
tþ 1

2

� �
and e2ðx; tÞ ¼ x;

t

2

� �
, respectively. We define b� : TðS; JÞ �TðS; J 0Þ !

TðS; J [ J 0Þ by

hEib�hE 0i ¼def : he1 � E t e2 � E 0i

for E A EðS; JÞ and E 0 A EðS; J 0Þ.
Let J be a finite subset of qS, T an element of TðS; JÞ represented by

E A EðS; JÞ and x an element of MðSÞ represented by a di¤eomorphism Xx,
where we denote by MðSÞ the mapping class group of S preserving the
boundary pointwise. We denote by xT an element of TðS; JÞ represented by
ðXx � idI Þ � E A EðS; JÞ.

3. Kau¤man bracket skein modules

Throughout this section, let S be a compact connected oriented surface.

3.1. Definition of Kau¤man bracket skein modules. In this subsection, we
define Kau¤man bracket skein modules.

First of all, we define Kau¤man triples.

Figure 1. RI: Reidemester move I

Figure 2. RII: Reidemeister move II Figure 3. RIII: Reidemeister move III
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Definition 3.1. Let J be a finite subset of qS. A triple of three tangles T1,
Ty and T0 A TðS; JÞ is a Kau¤man triple if there exist E1, Ey and E0 A EðS; JÞ
whose domains are D1, Dy and D0 satisfying the following.

� We have hE1i ¼ T1, hEyi ¼ Ty and hE0i ¼ T0.
� The three images E1ðD1Þ, EyðDyÞ and E0ðD0Þ are identical except for
some neighborhood of a point, where they di¤er as shown in Figure 4.

In other words, there exist three tangle diagrams d1, dy and d0 presenting
T1, Ty and T0, respectively, which are identical except for some neighborhood
of a point, where they di¤er as shown in Figure 5, Figure 7 and Figure 8,
respectively.

We define Kau¤man bracket skein modules.

Definition 3.2 (Kau¤man bracket skein module). Let J be a finite
subset of qS. We define SðS; JÞ to be the quotient of the free Q½A;A�1�-
module Q½A;A�1�TðS; JÞ by the skein relation, i.e., by the submodule of
Q½A;A�1�TðS; JÞ generated by

f�T1 þ ATy þ A�1T0 j ðT1;Ty;T0Þ is a Kau¤man tripleg

[ fT b�Oþ ðA2 þ A�2ÞT jT A TðS; JÞg
where O A TðSÞ is a trivial knot. Following [13], the element of SðS; JÞ repre-
sented by T A TðS; JÞ is denoted by ½T �. We simply denote SðS; jÞ by SðSÞ.

In [8], Muller also defined skein modules for a surface with boundary.
We, however, do not need ‘the boundary skein relation’ and ‘the value of a
contractible arc’.

Let J and J 0 be two finite subsets of qS satisfying J \ J 0 ¼ j. The
Q½A;A�1�-bilinear homomorphism b� : SðS; JÞ �SðS; J 0Þ !SðS; J [ J 0Þ is de-

Figure 4. Kau¤man triple

Figure 5 Figure 6 Figure 7 Figure 8
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fined by ½T �b�½T 0� ¼def : ½T b�T 0� for T A TðS; JÞ and T 0 A TðS; J 0Þ. The skein
module SðSÞ is the associative algebra over Q½A;A�1� with product defined by
ab ¼ ab� b for a and b A SðSÞ. The skein module SðS; JÞ is the SðSÞ-bimodule
given by av ¼ ab� v and va ¼ vb� a for a A SðSÞ and v A SðS; JÞ. For v A
SðS; JÞ, v 0 A SðS; J 0Þ and a A SðSÞ, we have ðvaÞb� v 0 ¼ vb�ðav 0Þ.

3.2. Some Poisson-like structure on SðSÞ. In this subsection, we define a
Lie bracket of SðSÞ and an action s of SðSÞ on SðS; JÞ.

Let J be a finite subset of qS. We denote by E0ðS; JÞ the set of
1-dimensional submanifolds of S with boundary J and no inessential compo-
nents. Here a connected 1-dimensional submanifold of S is inessential if it is a
boundary of a disk in S. We denote the set of isotopy classes in E0ðS; JÞ by
T0ðS; JÞ.

Theorem 3.3. Let J be a finite subset of qS. The skein module SðS; JÞ is
the free Q½A;A�1�-module with basis T0ðS; JÞ.

In the case when J ¼ j, this is proved by Przytycky [9]. For the general
case, it is proved in a similar way to [9].

Corollary 3.4. We have SðS1 � IÞ ¼ Q½A;A�1�½l� where l is the element
represented by the link whose diagram is S1 � 1

2

� �
.

Corollary 3.5. Let J be a finite subset of qS. The Q½A;A�1�-module
homomorphism �Aþ A�1 : SðS; JÞ !SðS; JÞ, x 7! ð�Aþ A�1Þx is an injective
map.

Lemma 3.6. Let J be a finite subset of qS. Let T1, T2, T3 and T4 be four
elements of TðS; JÞ presented by four diagrams which are identical except for some
neighborhood of a point, where they di¤er as shown in Figure 5, Figure 6, Figure 7
and Figure 8, respectively. Then we have ½T1� � ½T2� ¼ ðA� A�1Þð½T3� � ½T4�Þ.

Proof. We have

½T1� � ½T2� ¼ ðA½T3� þ A�1½T4�Þ � ðA�1½T3� þ A½T4�Þ ¼ ðA� A�1Þð½T3� � ½T4�Þ: r

In Definition 3.8, we introduce a Lie bracket in SðSÞ by using the following
proposition and Corollary 3.5.

Proposition 3.7. Let J and J 0 be two finite subsets of qS satisfying
J \ J 0 ¼ j. We have vb� v 0 � v 0b� v A ðA� A�1ÞSðS; J [ J 0Þ for v A SðS; JÞ
and v 0 A SðS; J 0Þ.

Proof. Let T be an element of TðS; JÞ and T 0 an element of TðS; J 0Þ.
Choose tangle diagrams d and d 0 presenting T and T 0, respectively, such that the
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intersections of d and d 0 consist of transverse double points P1;P2; . . . ;Pm. For
i ¼ 1; 2; . . . ;m, let dð1; iÞ and dð�1; iÞ be two tangle diagrams satisfying the
following.

� The two tangle diagrams dð1; iÞ and dð�1; iÞ equal d [ d 0 with the same
height-information as d and d 0 except for the neighborhoods of the inter-
sections of d and d 0.

� The branches of dð1; iÞ and dð�1; iÞ in the neighborhood of Pj belonging to
d 0 are over crossings for j ¼ 1; . . . ; i � 1.

� The branches of dð1; iÞ and dð�1; iÞ in the neighborhood of Pj belonging to
d are over crossings for j ¼ i þ 1; . . . ;m.

� The two tangle diagrams dð1; iÞ and dð�1; iÞ are as shown in Figure 9 and
Figure 10, respectively, in the neighborhood of Pi.

We denote by Tð1; iÞ a tangle presented by dð1; iÞ and by Tð�1; iÞ a tangle
presented by dð�1; iÞ. Using Lemma 3.6, we have

½T �b�½T 0� � ½T 0�b�½T � ¼ ðA� A�1Þ
Xm
i¼1
ð½Tð1; iÞ� � ½Tð�1; iÞ�Þ:ð2Þ

This proves the proposition. r

Definition 3.8. Let J be a finite subset of qS. We define a bracket ½ ; � of
SðSÞ by

½x; y� ¼def : 1

�Aþ A�1
ðxy� yxÞ

for x and y A SðSÞ. We define an action s of SðSÞ on SðS; JÞ by

sðxÞðvÞ ¼def : 1

�Aþ A�1
ðxv� vxÞ

for x A SðSÞ and v A SðS; JÞ.

It is easy to prove the following proposition.

Proposition 3.9. Let J be a finite subset of qS. The bracket ½ ; � : SðSÞ �
SðSÞ !SðSÞ makes SðSÞ a Lie algebra. The action s : SðSÞ �SðS; JÞ !

Figure 10Figure 9
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SðS; JÞ makes SðS; JÞ an SðSÞ-module when we regard SðSÞ as a Lie algebra.
Furthermore, for x, y and z A SðSÞ and v A SðS; JÞ, we have the Leibniz rules:

½xy; z� ¼ x½y; z� þ ½x; z�y;
sðxyÞðvÞ ¼ xsðyÞðvÞ þ sðxÞðvÞy;
sðxÞðyvÞ ¼ ½x; y�vþ ysðxÞðvÞ;
sðxÞðvyÞ ¼ sðxÞðvÞyþ v½x; y�:

Let J and J 0 be two finite subsets of qS satisfying J \ J 0 ¼ j. We have

sðxÞðvb� v 0Þ ¼ sðxÞðvÞb� v 0 þ vb�sðxÞðv 0Þ
for x A SðSÞ, v A SðS; JÞ and v 0 A SðS; J 0Þ.

3.3. Filtrations and completions. We introduce filtrations of Kau¤man
bracket skein modules and define completed Kau¤man bracket skein modules.

We define an augmentation map e : SðSÞ !Q by A 7! �1 and ½L� 7! ð�2ÞjLj
for L A TðSÞ where jLj is the number of components of L.

Proposition 3.10. The augmentation map e is well-defined.

Proof. Let T1, Ty and T0 be three elements of TðSÞ such that ðT1;Ty;T0Þ
is a Kau¤man triple. There are three cases,

jT1j � 1 ¼ jTyj ¼ jT0j;
jT1j ¼ jTyj � 1 ¼ jT0j;
jT1j ¼ jTyj ¼ jT0j � 1:

In each case, we have eð½T1� � A½Ty� � A�1½T0�Þ ¼ 0. For T A TðSÞ, we have
eð½T b�O� þ ðA2 þ A�2Þ½T �Þ ¼ 0. This proves the proposition. r

Lemma 3.11. We have ½SðSÞ;SðSÞ� � ker e.

Proof. Since the algebra SðSÞ is generated by the set of elements repre-
sented by knots, it su‰ces to show that ½½T �; ½T 0�� A ker e for any two elements T
and T 0 of TðSÞ satisfying jT j ¼ 1 and jT 0j ¼ 1. Using equation (2), we obtain

½½T �; ½T 0�� ¼ �
Xm
i¼1
ð½Tð1; iÞ� � ½Tð�1; iÞ�Þ;

where Tð1; iÞ and Tð�1; iÞ are some knots for i A f1; . . . ;mg. Then, we have
eð�

Pm
i¼1ð½Tð1; iÞ� � ½Tð�1; iÞ�ÞÞ ¼ 0. This proves the proposition. r

Let J be a finite subset of qS. We define a filtration of SðSÞ by F nSðSÞ ¼
ðker eÞn and a filtration of SðS; JÞ by F nSðS; JÞ ¼ ðF nSðSÞÞSðS; JÞ.
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Theorem 3.12. (1) Let J be a finite subset of qS. We have

F nSðSÞF mSðSÞ � F nþmSðSÞ;
F nSðSÞF mSðS; JÞ � F nþmSðS; JÞ;
F nSðS; JÞF mSðSÞ � F nþmSðS; JÞ;

for n and m A Zb0.
(2) We have ½F iSðSÞ;F jSðSÞ� � F maxðiþj�1; i; jÞSðSÞ and sðF iSðSÞÞðF jSðS;

JÞÞ � F maxðiþj�1; i�1; jÞSðS; JÞ for i and j A Zb0.

Proof. In order to show, for i and j A Zb0,

F iSðSÞF jSðS; JÞ � F iþjSðS; JÞ;

F jSðS; JÞF iSðSÞ � F iþjSðS; JÞ;

it su‰ces to prove

ðker eÞSðS; JÞ ¼ SðS; JÞðker eÞ;
which is obvious by Proposition 3.7. This proves (1).

Using the Leibniz rule and Lemma 3.11, we obtain, for i and j A Zb 0,

½F iSðSÞ;F jSðSÞ� � F maxðiþj�1; i; jÞSðSÞ;

sðF iSðSÞÞðF jSðS; JÞÞ � F maxðiþj�1; i�1; jÞSðS; JÞ:

This proves (2). r

Let J be a finite subset of qS. We define an action of MðSÞ on SðS; JÞ by
x½T � ¼ ½xT � for x A MðSÞ and T A TðS; JÞ. By definition, we have

xðF nSðSÞÞ ¼ F nSðSÞ;
xðF nSðS; JÞÞ ¼ F nSðS; JÞ

for x A MðSÞ and n A Zb0.

Remark 3.13. We have dimQðF nSðS; JÞ=F nþ1SðS; JÞÞ < y. The proof
will appear in [10].

Let J be a finite subset of qS. We consider the topology on SðSÞ induced
by the filtration fF nSðSÞgnb0. By Theorem 3.12, the product and the bracket
of SðSÞ are continuous in the topology. We denote its completion by ŜSðSÞ ¼def :
lim � i!y SðSÞ=F iSðSÞ. We call ŜSðSÞ the completed skein algebra. We also
consider the topology on SðS; JÞ induced by the filtration fF nSðS; JÞgnb0.
By Theorem 3.12, the right action, the left action and the Lie action s of
SðSÞ on SðS; JÞ are continuous in the topology. We denote its completion

by ŜSðS; JÞ ¼def : lim � i!y SðS; JÞ=F iSðS; JÞ. We call ŜSðS; JÞ the completed skein
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module. The completed skein algebra ŜSðSÞ has a filtration ŜSðSÞ ¼ F 0ŜSðSÞ 	
F 1ŜSðSÞ 	 F 2ŜSðSÞ 	 � � � such that ŜSðSÞ=F nŜSðSÞFSðSÞ=F nSðSÞ for n A Zb0.

The completed skein module ŜSðS; JÞ also has a filtration ŜSðS; JÞ ¼ F 0ŜSðS; JÞ 	
F 1ŜSðS; JÞ 	 F 2ŜSðS; JÞ 	 � � � such that ŜSðS; JÞ=F nŜSðS; JÞFSðS; JÞ=F nSðS; JÞ
for n A Zb0. We remark that the completed skein algebra ŜSðSÞ is an associative
Q½½Aþ 1��-algebra and that the completed skein module ŜSðS; JÞ is a Q½½Aþ 1��-
module. The set fðSðS; JÞ; fF nSðS; JÞgnb0Þ j J � qS;aJ < yg is denoted by
YðSÞ.

We denote by �MMðSÞ �MðSÞ the subset consisting of all elements x satisfy-
ing that, for any finite subset J of qS, any non-negative integer m and any
element v A F mSðS; JÞ, there exists a non-negative integer N such that jbN )
ðid� xÞ jðvÞ A F mþ1SðS; JÞ.

For x A �MMðSÞ and a finite subset J of qS, a Q½½Aþ 1��-module homomor-

phism logðxÞ : ŜSðS; JÞ ! ŜSðS; JÞ is defined by logðxÞðvÞ ¼
Py

i¼1
�1
i
ðid� xÞ iðvÞ.

For x A �MMðSÞ, x A ŜSðSÞ and z A ŜSðS; JÞ, since xðxzÞ ¼ xðxÞxðzÞ and xðzxÞ ¼
xðzÞxðxÞ, logðxÞ satisfies the Leibniz rule

logðxÞðxzÞ ¼ logðxÞðxÞzþ x logðxÞðzÞ;
logðxÞðzxÞ ¼ logðxÞðzÞxþ z logðxÞðxÞ:

Definition 3.14. For x A �MMðSÞ, an element xx A ŜSðSÞ is a skein represen-
tative of x by ððSðSÞ; fF nSðSÞgnb0Þ;YðSÞÞ if we have

logðxÞ ¼ sðxxÞ : ŜSðS; JÞ ! ŜSðS; JÞ;
in other words

xð�Þ ¼ expðsðxxÞÞ : ŜSðS; JÞ ! ŜSðS; JÞ;

for any finite subset J of qS.

4. Dehn twists

In this section, we show the following.

Theorem 4.1. Let S be a compact connected oriented surface and c a
simple closed curve. We also denote by c an element of SðSÞ represented by
a knot presented by the simple closed curve c. Then we have tc A �MMðSÞ, and
�Aþ A�1

4 logð�AÞ arccosh � c

2

� �� �2
A ŜSðSÞ is a skein representative of tc A �MMðSÞ by

ððSðSÞ; fF nSðSÞgnb0Þ;YðSÞÞ in the sense of Definition 3.14. Here
�Aþ A�1

4 logð�AÞ is

an element of Q½½Aþ 1�� and arccosh � c

2

� �� �2
¼
Py

i¼0
i!i!

ði þ 1Þð2i þ 1Þ! 1� c2

4

� �iþ1
A Q½½cþ 2��.
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Using the following lemma, we prove Theorem 4.1. The following lemma
will be proved later.

Lemma 4.2. We denote by S1 the quotient R=Z, by cl a simple closed curve
S1 � 1

2

� �
in S1 � I , by t the Dehn twist along cl and by l an element of SðS1 � IÞ

represented by the knot presented by cl . Fix a positive integer m. Choose points

p1 ¼
1

2m
; . . . ; pi ¼

i

2m
; . . . ; pm ¼

m

2m
in S1. We denote by r0i an element of

SðS1 � I ; fðpi; 0Þ; ðpi; 1ÞgÞ represented by the tangle presented by fpig � I .
Then we have the following.

� (1) We have ðt� idÞ2nþmðr01 b� r02 b�� � �b� r0mÞ A F nSðS1 � I ; fp1; . . . ; pmg �
f0; 1gÞ.

� (2) We have

logðtÞðr01 b� r02 b�� � �b� r0mÞ

¼ s
�Aþ A�1

4 logð�AÞ arccosh � l

2

� �� �2 !
ðr01 b� r02 b�� � �b� r0mÞ:

Proof of Theorem 4.1. We fix an embedding i : S1 � I ! S such that
iðclÞ ¼ c. In order to prove the theorem, it is su‰cient to consider two cases:
the simple closed curve is separating or not.

We assume that iðS1 � IÞ is separating S into two surfaces S1 and S2. For

a finite set J 0 ¼ 1

2m
; . . . ;

m

2m

� �
� S1, we consider the trilinear map

$J 0 : SðS1; ðJ \ qS1Þ [ iðJ 0 � f1gÞÞ �SðS1 � I ; J 0 � f0; 1gÞ

�SðS2; ðJ \ qS2Þ [ iðJ 0 � f0gÞÞ !SðS; JÞ

defined by $J 0 ð½T1�; ½T2�; ½T3�Þ ¼ ½T1T2T3� for T1 A TðS1; ðJ \ qS1Þ [ iðJ 0 � f1gÞÞ,
T2 A TðS1 � I ; J 0 � f0; 1gÞ and T3 A TðS2; ðJ \ qS2Þ [ iðJ 0 � f0gÞÞ. Here we
denote by T1T2T3 the tangle presented by d1 [ iðd2Þ [ d3, where d1, d2 and d3
present T1, T2 and T3, respectively. We remark that d1 [ iðd2Þ [ d3 must be
smoothed out in the neighborhood of iðS1 � f0; 1gÞ. By Theorem 3.3, the set[

J 0
$J 0 ðSðS1; ðJ \ qS1Þ [ iðJ 0 � f1gÞÞ � fidJ 0 g

�SðS2; ðJ \ qS2Þ [ iðJ 0 � f0gÞÞÞ

generates SðS; JÞ as a Q½A;A�1�-module, where we set idJ 0 ¼
def :

r01 b� r02 b�� � �b�
r0m. In order to show the theorem, we use the following.

� The map $J 0 preserves the filtrations, in other words,

$J 0 ðSðS1; ðJ \ qS1Þ [ iðJ 0 � f1gÞÞ � F nSðS1 � I ; J 0 � f0; 1gÞ

�SðS2; ðJ \ qS2Þ [ iðJ 0 � f0gÞÞÞ � F nSðS; JÞ:
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� We have tc �$J 0 ¼ $J 0 � ðid; t; idÞ and sðiðxÞÞ �$J 0 ¼ $J 0 � ðid; sðxÞ; idÞ
for x A SðS1 � IÞ.

By Lemma 4.2, for any x A SðS1; ðJ \ qS1Þ [ iðJ 0 � f1gÞÞ and y A SðS2;
ðJ \ qS2Þ [ iðJ 0 � f0gÞÞ, we obtain

ðtc � idÞ2nþmð$J 0 ðx; idJ 0 ; yÞÞ ¼ $J 0 ðx; ðt� idÞ2nþmðidJ 0 Þ; yÞ A F nSðS; JÞ;
sðLðcÞÞð$J 0 ðx; idJ 0 ; yÞÞ ¼ $J 0 ðx; sðLðclÞÞðidJ 0 Þ; yÞ

¼ $J 0 ðx; logðtÞðidJ 0 Þ; yÞ ¼ logðtcÞð$J 0 ðx; idJ 0 ; yÞÞ;

where LðcÞ ¼def : �Aþ A�1

4 logð�AÞ arccosh � c

2

� �� �2
for any simple closed curve c. This

proves the theorem in the case that c is a separating simple closed curve.
We assume that SniðS1 � ð0; 1ÞÞ is a connected surface S1. For a finite set

J 0 ¼ 1

2m
; . . . ;

m

2m

� �
� S1, we consider the bilinear map

$J 0 : SðS1; J [ iðJ 0 � f0; 1gÞÞ �SðS1 � I ; J 0 � f0; 1gÞ !SðS; JÞ
defined by $J 0 ð½T1�; ½T2�Þ ¼ ½T1T2� for T1 A TðS 0; J [ iðJ 0 � f0; 1gÞÞ and T2 A
TðS1 � I ; J 0 � f0; 1gÞ. Here we denote by T1T2 the tangle presented by
d1 [ iðd2Þ, where d1 and d2 present T1 and T2, respectively. We remark that
d1 [ iðd2Þ must be smoothed out in the neighborhood of iðS1 � f0; 1gÞ. By
Theorem 3.3, the set

$J 0 ðSðS1; J [ iðJ 0 � f0; 1gÞÞ � fidJ 0 gÞ
generates SðS; JÞ as a Q½A;A�1�-module, where we set idJ 0 ¼def : r01 b� r02 b�� � �b�
r0m. In order to show the theorem, we use the following.

� The map $J 0 preserves the filtrations, in other words,

$J 0 ðSðS1; J [ iðJ 0 � f0; 1gÞÞ � F nSðS1 � I ; J 0 � f0; 1gÞÞ � F nSðS; JÞ:
� We have tc �$J 0 ¼ $J 0 � ðid; tÞ and sðiðxÞÞ �$J 0 ¼ $J 0 � ðid; sðxÞÞ for
x A SðS1 � IÞ.

By Lemma 4.2, for any x A SðS1; J [ iðJ 0 � f0; 1gÞÞ, we obtain

ðtc � idÞ2nþmð$J 0 ðx; idJ 0 ÞÞ ¼ $J 0 ðx; ðt� idÞ2nþmðidJ 0 ÞÞ A F nSðS; JÞ;
sðLðcÞÞð$J 0 ðx; idJ 0 ÞÞ ¼ $J 0 ðx; sðLðclÞÞðidJ 0 ÞÞ

¼ $J 0 ðx; logðtÞðidJ 0 ÞÞ ¼ logðtcÞð$J 0 ðx; idJ 0 ÞÞ;

where LðcÞ ¼def : �Aþ A�1

4 logð�AÞ arccosh � c

2

� �� �2
for any simple closed curve c. This

proves the theorem in the case that c is not a separating simple closed curve.
This proves the theorem. r

In order to prove Lemma 4.2, we need a Q½A;A�1�-bilinear map
ð�Þð�Þ : SðS1 � I ; J � f0; 1gÞ �SðS1 � I ; J � f0; 1gÞ !SðS1 � I ; J � f0; 1gÞ de-
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fined by ½T1�½T2� ¼ ½T1T2� for any finite subset J � S1. Here we denote by T1T2

the tangle presented by m1ðD1Þ [ m2ðD2Þ where we choose tangle diagrams D1 and
D2 presenting T1 and T2, respectively, and define embedding maps m1

and m2 : S
1 � I ! S1 � I by m1ðy; tÞ ¼ y;

tþ 1

2

� �
and m2ðy; tÞ ¼ y;

t

2

� �
. We re-

mark that m1ðD1Þ [ m2ðD2Þ must be smoothed out in the neighborhood of cl .
By this bilinear map, we define the product of SðS1 � I ; J � f0; 1gÞ. By defini-
tion we have ðF kSðS1 � I ; J � f0; 1gÞÞðF lSðS1 � I ; J � f0; 1gÞÞ � F kþlSðS1 � I ;
J � f0; 1gÞ for k and l A Zb0.

At first, we prove the part (1) of Lemma 4.2.

Proof of Lemma 4.2(1). For i ¼ 1; . . . ;m, we set xi ¼def : r01 b�� � �b� r0i�1 b�
tðr0i Þb� r0iþ1 b�� � �b� r0m and by x�1i ¼def : r01 b�� � �b� r0i�1 b� t�1ðr0i Þb� r0iþ1 b�� � �b�
r0m. We simply denote id ¼def : r01 b� r02 b�� � �b� r0m. We remark that xix

�1
i ¼ id.

We have

ðt� 1Þ2nþmðidÞ ¼ ðx1x2 � � � xm � idÞ2nþm ¼
Xm
i¼1

x1x2 � � � xi�1ðxi � idÞ
 !2nþm

:

Since ðtðr0i Þ � r0i Þ
2 ¼ �ðl þ 2Þtðr0i Þ þ ðAþ 1Þt2ðr0i Þ þ ðA�1 þ 1Þr0i A F 1SðS1 � I ;

pi � f0; 1gÞ, we have ðt� 1Þ2nþmðidÞ A F nSðS1 � I ; fp1; . . . ; pmg � f0; 1gÞ. This
proves the part (1) of the lemma. r

To prove Lemma 4.2 (2), we need the following lemma.

Lemma 4.3. We have s
�Aþ A�1

4 logð�AÞ arccosh � l

2

� �� �2 !
ðr0i Þ ¼ logðtÞðr0i Þ for

i ¼ 1; . . . ;m.

For n ¼ 0; 1; . . . , we define the Chebyshev polynomial TnðXÞ A Z½X � by
setting T0ðXÞ ¼ 2, T1ðXÞ ¼ X and Tnþ1ðX Þ ¼ XTnðXÞ � Tn�1ðX Þ. We set

ðT þ 1ÞnðXÞ ¼
def :Pn

i¼0
n!

i!ðn� iÞ!TiðX Þ. It is obvious that ðT þ 1Þnðqþ q�1Þ ¼

ðqþ 1Þn þ ðq�1 þ 1Þn. Since

ðT þ 1ÞnðxÞ ¼ ð
ffiffiffiffiffiffiffiffiffiffiffi
xþ 2
p

Þn
ffiffiffiffiffiffiffiffiffiffiffi
xþ 2
p

�
ffiffiffiffiffiffiffiffiffiffiffi
x� 2
p

2

 !n
þ

ffiffiffiffiffiffiffiffiffiffiffi
xþ 2
p

þ
ffiffiffiffiffiffiffiffiffiffiffi
x� 2
p

2

 !n !
;

we have the following proposition.

Proposition 4.4. We have

ðT þ 1Þ2nðxÞ A ðxþ 2ÞnZ½x�;
ðT þ 1Þ2nþ1ðxÞ A ðxþ 2ÞnZ½x�:
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We define a sequence fangnb2 by ðlogð�xÞÞ2 ¼
Py

n¼2 anðxþ 1Þn A Q½½xþ 1��.
Since Xy

n¼2
anðT þ 1Þnðqþ q�1Þ ¼

Xy
n¼2

anððqþ 1Þn þ ðq�1 þ 1ÞnÞ

¼ ðlogð�qÞÞ2 þ ðlogð�q�1ÞÞ2 ¼ 2ðlogð�qÞÞ2

¼ 2 arccosh
�q� q�1

2

� �� �2
;

we obtain 2 arccosh �X

2

� �� �2
¼ ðlogð�TÞÞ2ðXÞ ¼def :

Py
n¼2 anðT þ 1ÞnðXÞ A

Q½½X þ 2��.
By Theorem 3.3, we have SðS1 � I ; pi � f0; 1gÞ ¼ Q½AG1; rG1� as a

commutative algebra, where 1 ¼def : r0i and rn ¼def : tnðr0i Þ for any n A Z. Since

ðAþ 1Þ iðr� 1Þ2jþ1 � F iþjSðS1 � I ; pi � f0; 1gÞ, we have ŜSðS1 � I ; pi � f0; 1gÞ
¼ Q½½Aþ 1; r� 1��.

Proof of Lemma 4.3. We have

s
�Aþ A�1

4 logð�AÞ arccosh � l

2

� �� �2 !
ðr0i Þ

¼ s
�Aþ A�1

8 logð�AÞ ðlogð�TÞÞ
2ðlÞ

� �
ðr0i Þ

¼ 1

8 logð�AÞ ððlogð�TÞÞ
2ðlÞðr0i Þ � ðr0i Þðlogð�TÞÞ

2ðlÞÞ:

¼ 1

8 logð�AÞ
Xy
k¼2
ðakðT þ 1ÞkðlÞr0i � akr

0
i ðT þ 1ÞkðlÞÞ:

Since, for any n A Zb0,

l nr0i ¼ ðArþ A�1r�1Þn; r0i l
n ¼ ðA�1rþ Ar�1Þn

we have

1

8 logð�AÞ
Xy
k¼2
ðakðT þ 1ÞkðlÞr0 � akr

0ðT þ 1ÞkðlÞÞ

¼ 1

8 logð�AÞ
Xy
k¼2
ðakðAr1 þ 1Þk þ akðA�1r�1 þ 1Þk

� akðA�1r1 þ 1Þk � akðAr�1 þ 1ÞkÞ:
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¼ 1

8 logð�AÞ ððlogð�ArÞÞ
2 þ ðlogð�A�1r�1ÞÞ2

� ðlogð�A�1rÞÞ2 � ðlogð�Ar�1ÞÞ2Þ

¼ 1

4 logð�AÞ ððlogð�ArÞÞ
2 � ðlogð�Ar�1ÞÞ2Þ

¼ 1

4 logð�AÞ ððlogð�AÞ þ logðrÞÞ2 � ð�logð�AÞ þ logðrÞÞ2Þ

¼ logðrÞ ¼ logðtÞðr0i Þ:

This proves the lemma. r

Proof of Lemma 4.2(2). We have

s
�Aþ A�1

4 logð�AÞ arccosh � l

2

� �� �2 !
ðr01 b� r02 b�� � �b� r0mÞ

¼
Xm
i¼1

r01 b�� � �b� r0i�1 b�s
�Aþ A�1

4 logð�AÞ arccosh � l

2

� �� �2 !
ðr0i Þ

b� r0iþ1 b�� � �b� r0m:

Using Lemma 4.3, we obtainXm
i¼1

r01 b�� � �b� r0i�1 b�s
�Aþ A�1

4 logð�AÞ arccosh � l

2

� �� �2 !
ðr0i Þb� r0iþ1 b�� � �b� r0m

¼
Xm
i¼1

r01 b�� � �b� r0i�1 b� logðtÞðr0i Þb� r0iþ1 b�� � �b� r0m ¼
Xm
i¼1

logðxiÞ:

Since xixj ¼ xjxi, we obtainXm
i¼1

logðxiÞ ¼ logðx1x2 � � � xmÞ ¼ logðtÞðidÞ:

This proves the lemma. r

Remark 4.5. Let S be a compact connected oriented surface with non-
empty connected boundary and let IðSÞ �MðSÞ be the Torelli group of S.
Then we have

(1) IðSÞ � �MMðSÞ.
(2) For any x A IðSÞ, there exists xx A ŜSðSÞ satisfying that xx is a skein

representative of x A IðSÞ � �MMðSÞ by ððSðSÞ; fF nSðSÞgnb0Þ;YðSÞÞ in
the sense of Definition 3.14.

The proof will appear in [11].

31dehn twists on kauffman bracket skein algebras



5. Filtrations

5.1. The filtrations depend only on the underlying 3-manifold. In this
subsection, we prove the following theorem. The proof of the theorem is
analogous to that of [2] Proposition 6.10.

Theorem 5.1. Let S and S 0 be two compact connected oriented surfaces,
J a finite subset of qS and J 0 a finite subset of qS 0 such that there exists a
di¤eomorphism x : ðS� I ; J � IÞ ! ðS 0 � I ; J 0 � IÞ. Then we have xðF nSðS; JÞÞ
¼ F nSðS 0; J 0Þ for nb 0.

To prove it, we need new filtrations of the Kau¤man bracket skein modules.
Let Q½A;A�1�TðS; JÞ be the free module with basis TðS; JÞ over Q½A;A�1�

and h�i the natural surjection Q½A;A�1�TðS; JÞ !SðS; JÞ. For a tangle T A
TðS; JÞ and closed components L1;L2; . . . ;Lm of T , we define

T ;
[m
i¼1

Li

 !
¼def :
Xm
j¼0

X
fi1; i2;...; ijg�f1;2;...;mg

2m�jT 0 [
[j
h¼1

Lih A Q½A;A�1�TðS; JÞ

where T 0 ¼ Tn
Sm

i¼1 Li. We set F ?0SðS; JÞ ¼def : SðS; JÞ and denote by
F ?nSðS; JÞ the Q½A;A�1� submodule generated by ðAþ 1ÞF ?ðn�1ÞSðS; JÞ and
the subset of SðS; JÞ consisting of all elements hðT ;

Sn
i¼1 KiÞi A SðS; JÞ for T A

TðS; JÞ and closed components K1;K2; . . . ;Kn of T for nb 1. Similarly, the
filtration fF ?nSðS 0; J 0Þgnb0 is defined as fF ?nSðS; JÞgnb0.

Lemma 5.2. Let E1 : D
0 � I tD� I ! S� I and E2 : D

0 � I tD� I !
S� I be elements of EðS; JÞ satisfying the following, where D 0 and D ¼Fn

i¼1ðS1Þi are 1-dimensional manifolds with aðqD 0Þ ¼aJ.
� The embeddings E1 and E2 are generic, which means satisfying the conditions
in Definition 2.2.

� The images E1ðD 0 � I tD� IÞ and E2ðD 0 � I tD� IÞ are identical except
for D� I , where they di¤er as shown in Figure 11 and Figure 12, respec-
tively. Here, D is a closed disk in S.

Then, we have

hhE1i; hE1jD�Iii� hhE2i; hE2jD�Iii A ðAþ 1ÞF ?ðn�1ÞSðS; JÞ:

Proof. There exists two cases.
(1) For some j0 k, D� I \ E1ððS1Þj � IÞ;D� I \ E1ððS1Þk � IÞ 
 D� I \

E1ðD 0 � I tD� IÞ � E1ððS1Þj � I [ ðS1Þk � IÞ.

Figure 11. E1 Figure 12. E2 Figure 13. E0 Figure 14. Ey
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(2) For some j, D� I \ E1ðD 0 � I tD� IÞ � E1ðD 0 t ððS1ÞjÞ � IÞ.
(1) Let E0 : D

0 � I tD0 � I ! S� I and Ey : D 0 � I tDy � I ! S� I be
two elements of EðS; JÞ satisfying the following.

� E0jD 0�I ¼ EyjD 0�I ¼ E1jD 0�I ¼ E2jD 0�I .
� E0ðD 0 � I tD0 � IÞ and EyðD 0 � I tDy � IÞ equal E1ðD 0 � I tD� IÞ
except D� I , where they are shown in Figure 13 and Figure 14, respec-
tively.

Using Lemma 3.6, we obtain

hhE1i; hE1jD�Iii� hhE2i; hE2jD�Iii

¼ ðA� A�1ÞðhhE0i; hE0jD0�Iii� hhEyi; hEyjDy�Iii:

Since ap0ðD0Þ ¼ap0ðDyÞ ¼ n� 1, we have

hhE1i; hE1jD�Iii� hhE2i; hE2jD�Iii A ðAþ 1ÞF ?ðn�1ÞSðS; JÞ:
(2) We denote DnðS1Þj by D 00. Let E0 : D

0
0 � I [D 00 ! S� I and

Ey : D 0y � I [D 00 ! S� I be two elements of EðS; JÞ satisfying the following.
� E0jD 00�I ¼ EyjD 00�I ¼ E1jD 00�I ¼ E2jD 00�I .
� E0ðD 00 � I tD 00 � IÞ and EyðD 0y � I tD 00 � IÞ equal E1ðD 0 � I tD� IÞ
except D� I , where they are shown in Figure 13 and Figure 14, respec-
tively.

Using Lemma 3.6, we obtain

hhE1i; hE1jD�Iii� hhE2i; hE2jD�Iii

¼ ðA� A�1ÞðhhE0i; hE0jD 00�Iii� hhEyi; hEyjD 00�Iii:

Since ap0ðD 00Þ ¼ n� 1, we have

hhE1i; hE1jD�Iii� hhE2i; hE2jD�Iii A ðAþ 1ÞF ?ðn�1ÞSðS; JÞ:
This proves the lemma. r

Lemma 5.3. Let S be a compact connected oriented surface, and J a finite
subset of qS. We have F nSðS; JÞ ¼ F ?nSðS; JÞ for any non-negative integer n.
Furthermore, we have X

L 0�L
ð�1ÞjL

0 jð�2Þ�jL
0 j½L 0� A ðker eÞn

for any link L in S� I having components more than n, where the sum is
over all sublinks L 0 � L including the empty link and we denote by jLj the
number of components of L. In other words, for any link L in S� I ,
ð�1ÞjL

0jð�2Þ�jL
0 j½L 0� modðker eÞn is a finite type invariant of order nþ 1 in the

sense of Le [5] (3.2).

Proof. We prove the lemma by induction on n. If n ¼ 0, we have
F ?0SðS; JÞ ¼ F 0SðS; JÞ ¼ SðS; JÞ. We assume that n > 0 and F n�1SðS; JÞ ¼
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F ?ðn�1ÞSðS; JÞ. For any tangle T A TðS; JÞ and knots K1;K2; . . . ;Kn A TðSÞ,
we have

ðhK1iþ 2ÞðhK2iþ 2Þ � � � ðhKniþ 2ÞhTi

¼ hðK1 b�K2 b�� � �b�Kn b�T ;K1 b�K2 b�� � �b�KnÞi:

Hence we have F ?nSðS; JÞ 	 F nSðS; JÞ. Using Lemma 5.2 repeatedly, for any
tangle T and closed components K1;K2; . . . ;Kn of T , we have

hðK1 b�K2 b�� � �b�Kn b�T 0;K1 b�K2 b�� � �b�KnÞi� T ;
[n
i¼1

Ki

 !* +
A ðA� A�1ÞF ?ðn�1ÞSðS; JÞ ¼ ðA� A�1ÞF n�1SðS; JÞ � F nSðS; JÞ:

Here we set T 0 ¼def : Tnð
Sn

i¼1 KiÞ. Since hðK1 b�K2 b�� � �b�Kn b�T 0;K1 b�K2

b�� � �b�KnÞi ¼ ðhK1iþ 2ÞðhK2iþ 2Þ � � � ðhKniþ 2ÞhT 0i A F nSðS; JÞ, we have
hðT ;

Sn
i¼1 KiÞi A F nSðS; JÞ. If J ¼ j, by definition, we haveX

L 0�L
ð�1ÞjL

0jð�2Þ�jL
0j½L 0� A F ?nSðSÞ ¼ F nSðSÞ ¼ ðker eÞn:

This proves the theorem. r

Proof of Theorem 5.1. By definition, we have xðF ?nSðS; JÞÞ ¼
F ?nSðS 0; J 0Þ. Using Lemma 5.3, we have xðF nSðS; JÞÞ ¼ xðF ?nSðS; JÞÞ ¼
F ?nSðS 0; J 0Þ ¼ F nSðS 0; J 0Þ. This proves the theorem. r

In this paper, we define the Kau¤man bracket K : funoriented framed links
in S3g ! Q½A;A�1� by hLi ¼KðLÞhji A SðI � IÞ for L A flinks in S3g ¼
TðI � IÞ. For an unoriented framed link L in S3 and components K1;K2; . . . ;
Km of L, we define KðL;

Sm
i¼1 KiÞ ¼def :

Pm
j¼0
P
fi1; i2;...; ijg�f1;2;...;mg 2

m�jKðL 0 [S j
h¼1 KihÞ. Here we set L 0 ¼def : Ln

Sm
i¼1 Ki.

Using Lemma 5.3, we have the following corollary.

Corollary 5.4. For an unoriented framed link L in S3 and some compo-
nents K1;K2; . . . ;Km of L, we have KðL;

Sm
i¼1 KiÞ A ðAþ 1ÞmQ½A;A�1�.

Proof. Since ker e ¼ ðAþ 1ÞmQ½A;A�1�hji, we have F mSðI � IÞ ¼
ðAþ 1ÞmQ½A;A�1�hji. By Lemma 5.3, we have ðAþ 1ÞmQ½A;A�1�hji ¼
F mSðI � IÞ ¼ F ?mSðI � IÞ. We obtain hðL;

Sm
i¼1 KiÞi ¼KðL;

Sm
i¼1 KiÞhji.

This proves the corollary. r

5.2. Filtrations are Hausdor¤. In this subsection, we prove the following.

Theorem 5.5. Let S be a compact connected oriented surface with non-empty
boundary and J a finite subset of qS. We have

Ty
n¼1 F nSðS; JÞ ¼ f0g. In other

words, the natural homomorphism SðS; JÞ ! ŜSðS; JÞ is injective.
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We denote by V the subset of Zb0 � Zb0 � Zb0 consisting of all triples
ða; b; cÞ A Z3

b0 satisfying aþ bþ c A 2Zb0 and jb� cja aa bþ c. For ða; b; cÞ A
V, we denote the right figure in Figure 15 by the left figure in Figure 15.

Let S0;gþ1 be the surface D2n
‘g

i¼1 di where we denote by D2 ¼ fðx; yÞ A R2 j

x2 þ y2 a 1g and by di the open disk

(
ðx; yÞ A R2

���� x2 þ yþ 1� i

gþ 1

� �2
<

1

4gþ 4

� �2)
for 1a ia g. We denote by VðgÞ the set consisting of all

ði1; i2; . . . ; i3g�3Þ which satisfies

ði3j�3; i3j�2; i3j�1Þ; ði3j�1; i3j; i3jþ1Þ A V

for j ¼ 1; . . . ; g� 1. Here we define i0 ¼
def :

i1 and i3g�2 ¼
def :

i3g�3. We denote by
lðg; 0Þði1; i2; . . . ; i3g�3Þ the element of TðS0;gþ1Þ presented by Figure 16 for
ði1; i2; . . . ; i3g�3Þ A VðgÞ.

Fix an orientation preserving embedding e3 : D
2 � I ! S3 and a di¤eo-

morphism e4 : S0;gþ1 � I ! S3ne3ðS0;gþ1 � IÞ where we denote the closure of

S3ne3ðS0;gþ1 � IÞ by S3ne3ðS0;gþ1 � IÞ. Then we define a bilinear map
ð� ; �Þ : SðS0;gþ1Þ �SðS0;gþ1Þ ! Q½A;A�1� by ðhL1i; hL2iÞ ¼Kðe3ðL1Þ [ e4ðL2ÞÞ
for L1 and L2 A TðS0;gþ1Þ. Here we simply denote e3 ¼def : e3jS0; gþ1�I . The

bilinear map induces ð� ; �Þ : CnSðS0;gþ1Þ � CnSðS0;gþ1Þ ! C½A;A�1�. Here
we denote by C½A;A�1� the ring of Laurent polynomials over C. For a primitive
2r-th root of unity g, the bilinear map induces ð� ; �Þ : SgðS0;gþ1Þ �SgðS0;gþ1Þ
! C where we set SgðS0;gþ1Þ ¼def : CnSðS0;gþ1Þ=ðA� gÞCnSðS0;gþ1Þ. The
bilinear map induces the linear map c : SðS0;gþ1Þ ! HomQ½A;A�1�ðSðS0;gþ1Þ;
Q½A;A�1�Þ by v 7! ðu 7! ðv; uÞÞ. It induces the linear maps

c : CnSðS0;gþ1Þ ! HomC½A;A�1�ðCnSðS0;gþ1Þ;C½A;A�1�Þ;

c : SgðS0;gþ1Þ ! HomCðSgðS0;gþ1Þ;CÞ:

We denote by �jA¼g the quotient map CnSðS0;gþ1Þ !SgðS0;gþ1Þ.

Figure 15. ða; b; cÞ A V
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For a surface S and any finite subset J � qS, we recall that we denote by
T0ðS; JÞ the set of isotopy classes of 1-dimensional submanifolds of S with
boundary J and no inessential components and that SðS; JÞ is freely generated
by T0ðS; JÞ as a Q½A;A�1�-module.

Theorem 5.6 (Lickorish [6], P.347, Theorem). (1) The map lðg; 0Þ : VðgÞ !
T0ðS0;gþ1Þ is bijective.

(2) For a primitive 4r-th root of unity g, SgðS0;gþ1Þ=ker c is a free C-module
with basis

flðg; 0Þði1; . . . ; i3g�3Þ j ði3j�3; i3j�2; i3j�1Þ; ði3j�1:i3j; i3jþ1Þ A V;

2r� 4b i3j�3 þ i3j�2 þ i3j�1; 2r� 4b i3j�1 þ i3j þ i3jþ1g:

We remark that Lickorish gave another basis in [6]. Using Theorem in [6],
we have lðg; 0Þ is injective. It is proved in a similar way to the proof of Lemma
5.10 in this paper that lðg; 0Þ is surjective.

Figure 16. lðg; 0Þði1; i2; . . . ; i3g�3Þ
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Lemma 5.7. (1) The C½A;A�1�-module homomorphism c : CnSðS0;gþ1Þ !
HomC½A;A�1�ðCnSðS0;gþ1Þ;C½A;A�1�Þ is injective.

(2) The Q½A;A�1�-module homomorphism

c : SðS0;gþ1Þ ! HomQ½A;A�1�ðSðS0;gþ1Þ;Q½A;A�1�Þ
is injective.

Proof. Let x be an element of CnSðS0;gþ1Þnf0g. Using Theorem 5.6,
we have cðxjA¼gÞ0 0 for some primitive 4r-th root of unity g. In other words,
we have ðxjA¼g; yÞ0 0 for some y A SgðS0;gþ1Þ. We regard y as an element
of CnSðS0;gþ1Þ by SgðS0;gþ1Þ ¼ CT0ðS0;gþ1Þ ,! C½A;A�1�T0ðS0;gþ1Þ ¼ Cn
SðS0;gþ1Þ. Since ðx; yÞjA¼g ¼ ðxjA¼g; yÞ0 0, we have ðx; yÞ0 0. This proves
(1).

Let x be an element of SðS0;gþ1Þnf0g. We regard x as an element of

CnSðS0;gþ1Þ. By (1), we have ðx;
Pm

j¼1ðaj þ bj
ffiffiffiffiffiffiffi
�1
p

ÞcjÞ0 0 for some aj and
bj A R and cj A T0ðS0;gþ1Þ. Let k be an integer satisfying that the coe‰cient
of Ak in ðx;

Pm
j¼1ðaj þ bj

ffiffiffiffiffiffiffi
�1
p

ÞcjÞ is not 0. We denote by oðu1; . . . ; umÞ the

coe‰cient of Ak in ðx;
Pm

j¼1 ujcjÞ for uj A R. Then, o : Rm ! R, ðu1; . . . ; umÞ 7!
oðu1; . . . ; umÞ is a linear map. Since o is linear, o is continuous. By defini-
tion, we have oða1; . . . ; amÞ0 0 or oðb1; . . . ; bmÞ0 0. Using the density of Q
in R, we have oðq1; . . . ; qmÞ0 0 for some q1; . . . ; qm A Q. Hence we obtain
ðx;
Pm

j¼1 qjcjÞ0 0. This proves (2). r

To prove Theorem 5.5 in the case J ¼ j, we need the following lemma.

Lemma 5.8. Let S be a compact connected oriented surface with non-empty
boundary. We have

cðF kSðSÞÞ ¼ cðF ?kSðSÞÞ � ðAþ 1Þk HomQ½A;A�1�ðSðSÞ;Q½A;A�1�Þ
for k A Zb0.

Proof. By Theorem 5.1, it is su‰cient to prove the lemma in the case
S ¼ S0;gþ1. Let L and L 0 be links in S0;gþ1 � I and K1; . . . ;Kk components of L.
By Corollary 5.4, we have Kðe3ðLÞ [ e4ðL 0Þ;

Sk
i¼1 e3ðKiÞÞ A ðAþ 1ÞkQ½A;A�1�.

This proves the lemma. r

Lemma 5.9 (A special case of Theorem 5.5). Let S be a compact connected
oriented surface with non-empty boundary. We have

Ty
n¼0 F nSðSÞ ¼ f0g.

Proof. By Theorem 5.1, it is su‰cient to prove the lemma in the case
S ¼ S0;gþ1. By Lemma 5.8, we have

c
\y
n¼0

F nSðS0;gþ1Þ
 !

�
\y
n¼0
ðAþ 1Þn HomQ½A;A�1�ðSðSÞ;Q½A;A�1�Þ ¼ f0g:

Since c is injective, we have
Ty

n¼0 F nSðSÞ ¼ f0g. This proves the lemma. r
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For gb1 and mb1, we denote by Vðg;mÞ the set consisting of all ði1; i2; . . . ;
i2m�1; j1; j2; . . . ; j3g�2Þ which satisfy ðik�1; ik; 1Þ A V for k ¼ 1; . . . ; 2m� 1,
ð j3k�2; j3k�1; j3kÞ; ð j3k; j3kþ1; j3kþ2Þ A V for k ¼ 1; . . . ; g� 1 and ði2m�1; j1; j2Þ A V,

where we denote i0 ¼def : 1 and i3g�1 ¼def : i3g�2. Let J be a finite subset of qD2 �
qS0;gþ1 satisfying aJ ¼ 2m. Let lðg;mÞði1; i2; . . . ; i2m�1; j1; j2; . . . ; j3g�2Þ be the
element of T0ðS0;gþ1; JÞ represented by a submanifold of S0;gþ1 presented by the
diagram as in Figure 17 for any ði1; i2; . . . ; i2m�1; j1; j2; . . . ; j3g�2Þ A Vðg;mÞ.

Lemma 5.10. For gb 1 and mb 1, lðg;mÞ : Vðg;mÞ !T0ðS0;gþ1; JÞ is
surjective.

Proof. We use the following proposition. For any L A T0ðS0;gþ1; JÞ, there
exists ~LL representing L and satisfying the following conditions for some n in
Proposition 5.11. This proves the lemma. r

Let I1; . . . ; I2m�1; J1; . . . ; J3g�2 be one-dimensional submanifolds of S0;gþ1 as

in Figure 18. We set L ¼def : ð
S2m�1

q¼1 IqÞ [ ð
S3g�2

r¼1 JrÞ.
We prove the following proposition by induction on n.

Proposition 5.11 (n). Let ~LL be a one-dimensional submanifold of S0;gþ1
satisfying the following.

� There is no closed disk d in S0;gþ1 such that qd � ~LL.
� We have q~LL ¼ J.
� The intersections ~LL \ L consist of transverse double points.

Figure 17. lðg;mÞði1; i2; . . . ; i2m�1; j1; j2; . . . ; j3g�2Þ
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We denote by að~LLÞ the set consisting of all P A ~LL \ L satisfying

eðfðx; yÞ A qD2 j xb 0gÞ � ~LL; eðfðx; yÞ A qD2 j xa 0gÞ � L; eð0:1Þ ¼ P:

for some embedding e : D2 ! S0;gþ1. Then we have aðað~LLÞÞa n) L A
lðg;mÞðVðg;mÞÞ where we denote by L the isotopy class of ~LL.

Proof. By definition, we have Proposition 5.11 (0). We assume n > 0
and Proposition 5.11 ðn� 1Þ. Let ~LL be a one-dimensional submanifold of
S0;gþ1 satisfying the above conditions and aað~LLÞ ¼ n. Since aað~LLÞ > 0, there
exists an embedding e : D2 ! S0;gþ1 such that eðfðx; yÞ A qD2 j xb 0gÞ � ~LL,

eðfðx; yÞ A qD2 j xa 0gÞ � Ln~LL as in Figure 19. Choose ~LL 0 a one-dimensional
submanifold of S0;gþ1 which is ~LL except for the neighborhood of eðDÞ, where it
looks as shown in Figure 19.

Figure 18. L

Figure 19. ~LL 0
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Since ~LLF ~LL 0 and aðað~LL 0ÞÞ < n, we have L A lðg;mÞðVðg;mÞÞ where we
denote by L the isotopy class of ~LL. This proves Proposition 5.11 (n) for any
nb 0. r

We define an injective map

iðg;mÞ : Vðg;mÞ ! VðgþmÞ
ði1; i2; . . . ; i2m�1; j1; j2; . . . ; j3g�2Þ

7! ð1; i1; 1; i2; i3; 1; . . . ; i2m�3; 1; i2m�2; i2m�1; j1; j2; . . . ; j3g�2Þ

for mb 1 and gb 1. Let J be a finite subset of qD2 � qS0;gþ1 satisfying
aJ ¼ 2m. We define the Q½A;A�1�-module homomorphism iðg;mÞ : SðS0;gþ1; JÞ
!SðS0;gþmþ1Þ by hlðg;mÞðvÞi! hlðgþm; 0Þðiðg;mÞðvÞÞi. Using Theorem
5.6(1), we have the following proposition.

Proposition 5.12. The Q½A;A�1�-module homomorphism iðg;mÞ :
SðS0;gþ1; JÞ !SðS0;gþmþ1Þ is well-defined and injective.

Corollary 5.13. The map lðg;mÞ : Vðg;mÞ !T0ðS0;gþ1; JÞ is bijective.

Let S be a compact connected oriented surface with non-empty boundary,
J a finite subset of qS and P1 and P2 two points of J. We choose two
orientation preserving embeddings d1; d2 : I ! qS such that d1ðIÞ \ J ¼ d1

1
2

	 

¼ P1 and that d2ðIÞ \ J ¼ d2

1
2

	 

¼ P2. We define a surface SðP1;P2Þ by gluing

S and I � I by ð0; 1� tÞ ¼ d1ðtÞ and ð1; tÞ ¼ d2ðtÞ. We introduce i 0ðP1;P2Þ :
T0ðS; JÞ !T0ðSðP1;P2Þ; JnfP1;P2gÞ such that i 0ðP1;P2ÞðLÞ is the isotopy class

of ~LL [ t; 12
	 


A I � I j t A I
� �

where ~LL represents L. The map i 0ðP1;P2Þ induces a

Q½A;A�1�-module homomorphism iðP1;P2Þ :SðS; JÞ !SðSðP1;P2Þ; JnfP1;P2gÞ.

Lemma 5.14. Let S be a compact connected oriented surface with non-empty

boundary and J ¼ fP1;P2; . . . ;P2m�1;P2mg a finite subset of qS. We set h ¼def :

iðP2m�1;P2mÞ � � � � � iðP3;P4Þ � iðP1;P2Þ and ~SS ¼def : SðP1;P2ÞðP3;P4Þ � � � ðP2m�1;P2mÞ.
Then h is injective. Since h is injective, i 0ðP1;P2Þ : T0ðS; JÞ !T0ðSðP1;P2Þ;
JnfP1;P2gÞ and iðP1;P2Þ : SðS; JÞ !SðSðP1;P2Þ, JnfP1;P2gÞ are injective.

Proof. For some integer g and some finite subset J 0 � qD2 � qS0;gþ1, we

choose a di¤eomorphism w : ðS� I ; J � IÞ ! ðS0;gþ1 � I ; J 0 � IÞ and w 0 : ~SS� I !
S0;gþmþ1 � I satisfying ðw�Þ

�1 � iðg;mÞ � w 0� ¼ h. Here we denote by w� : SðS; JÞ
!SðS0;gþ1; J

0Þ and w 0� : Sð~SSÞ !SðS0;gþmþ1Þ the Q½A;A�1�-module isomor-
phisms induced by w and w 0, respectively. Since iðg;mÞ is injective, h is also
injective. Hence iðP1;P2Þ is injective. This proves the lemma. r

Proof of Theorem 5.5 in general cases. We suppose J0j. Let J be

fP1; . . . ;P2mg. We set h ¼def : iðP2m�1;P2mÞ � � � � � iðP1;P2Þ and ~SS ¼def : SðP1;P2Þ � � �
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ðP2m�1;P2mÞ. By definition, we have hðF nSðS; JÞÞ � F nSð~SSÞ for any n A Zb0.
Using Lemma 5.9, we have hð

Ty
n¼0 F nSðS; JÞÞ �

Ty
n¼0 F nSð~SSÞ ¼ f0g. Here,

by Lemma 5.14, h is injective. Hence, we have
Ty

n¼0 F nSðS; JÞ ¼ f0g. This
proves the theorem. r
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