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VANISHING OF KILLING VECTOR FIELDS ON COMPACT
FINSLER MANIFOLDS

BiN SHEN

Abstract

In this paper, we define a new Ricci curvature on Finsler manifold named the mean
Ricci curvature, which is useful in the study of different symmetric fields on man-
ifolds. By presenting a Bochner type formula of Killing vector fields on general Finsler
manifolds, we prove the vanishing theorem of the Killing vector fields on any compact
Finsler manifold with a negative mean Ricci curvature. This result involves the
vanishing theorem of Killing vector fields in the Riemannian case.

1. Introduction

The Killing vector field, which is a basic concept in Differential Geometry
and Physics, is obtained from the isometric transformation on a manifold.
Compared to the conformal field or the projective field, it is the simplest
symmetric field on manifolds. The Bochner technique shows that any Killing
vector field on a compact Riemannian manifold with negative Ricci curvature
must be trivial. In particular, this implies that such manifold dose not have a
one parameter family of isometries. The detail can be given as the following
theorem.

THEOREM 1.1 ([5]). Suppose (M,g) is a compact Riemannian manifold whose
Riemannian Ricci tensor is nonnegative, i.e., Ric < 0. Then every Killing field X
is parallel, and Ric(X,X)=0. Furthermore, if the Ricci curvature is negative,
i.e., Ric <0, then there is no nontrivial Killing field.

Indeed one can use the maximum principle or the integral method to prove
Theorem 1.1. The isometric transformation is a special kind of conformal or
projective transformation. Correspondingly, the Killing vector field is a special
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kind of the conformal or projective vector field. Such geometric vector fields,
including the Killing, homothety, conformal, affine and projective vector fields,
have attracted many researchers’ attentions [2, 9]. In Finsler geometry, using
conformal vector fields on a Riemannian manifold with constant curvature,
Zhongmin Shen and Qiaoling Xia obtained the expression of the conformal
vector fields on a Randers space with weak isotropic flag curvature [8]. Later,
Huangjia Tian proved that there is no nontrivial projective vector field on any
compact Finsler manifold with negative flag curvature [10]. Since the Killing
vector field is also a special kind of projective vector field, one can consider
Tian’s work as the analog of Theorem 1.1. However, his proof is different from
the proof of the Riemannian case. Moreover, the condition in his result is about
the flag curvature, which is the sectional curvature when the metric is refined to
a Riemannian one. This means that Tian’s analog in the Finsler case can not
be considered simply as a generalization of Theorem 1.1.

In this paper, we prove a vanishing theorem of Killing vector fields on
Finsler manifolds, based on two important concepts, namely, the degenerate
elliptic operator and mean Ricci curvature. The presented theorem includes
Theorem 1.1. The method we adopted here is the same as that used in the
Riemannian case. Details are presented in Theorem 4.2 in Section 4 and the
following theorem.

THEOREM 1.2. Suppose (M,F) is a compact Finsler manifold with non-
positive mean Ricci curvature Ric <0. Then every Killing field V is parallel, and
I/Q‘ZE(V, V) =0. Furthermore, if the mean Ricci curvature is negative, i.e., Ric < 0
then there is no nontrivial Killing field.

2. Finsler manifold and mean Ricci curvature

In this section, we present some basic concepts and relations in Finsler
geometry, including some important non-Riemannian tensors. At last, we give
the definition of mean Ricci curvature.

Let (M,F) be a Finsler manifold. Actually, F is defined on TM, ie.,
F =F(x,y), and is smooth on ToM := TM\{0}. We call F a Riemannian
metrzic 2if F = \/gij(x)y'y/, where all the fundamental tensor components g; =
1 0°F
2 dyidyl
tensor to indicate this fact, called the Cartan tensor, which is defined by
C = Cy dx' @ dx/ @ dx*. The components are given by

are independent of the tangent coordinates y. So there is an important

log; 1 &°F?
1 Cl“ - = Y —_— T T~
m * T2 0yk 4 aylayioyk

It follows from the definition that a Finsler metric is a Riemannian one if and
only if the Cartan tensor vanishing, ie., C =0.
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Spray G is a special vector field defined on the punched tangent bundle 7M.
Locally, it can be given as

- 2Gi(xa y)ia

i
2 G=y' A
( ) y ayl

Ox!

where G' are called the spray coefficients, and are 2-homogenous in y, namely,
G(x,2y) = 22G'(x, y), for any A>0. In the assistance of the fundamental
tensor, the spray of a Finsler metric can be expressed as

; 1, ag; ag; .
6'(3) = 3" (0{23% ) - Z (bt

The spray coefficients arise from the geodesic equation. Actually, the spray
gives a canonical horizontal-vertical split of T(TyM) = # @ ¥, where ¥~ iden-
tical to the TM is called the vertical bundle, and s is the direct sum complement
of v in T(TyM). For any vector on M, we can lift it to a horizontal bundle or
the vertical bundle by horizontal lifting or vertical lifting, respectively. For any
vector Ve TM, V” e ¥ denotes the vertical lifting of ¥, and V” e # denotes

the horizontal lifting of V. For instance, the vertical lifting of the unit direction
i

vector yf(% e TM, is a global vertical vector called the distinguished vector, whose

expression is
v yi 0
3 I ==_—.
3) F oy
We use /" and I’ to denote the horizontal and vertical lifting of yféi, respectively.

Moreover, the correspondence ® of ¥~ and # is an isomorphism. More details
can be found in [1].

There are several important connections on a Finsler manifold. In this
paper, we choose the Chern connection, which is the unique torsion free and
almost compatible affine connection. Components of Christoffel symbol of Chern
connection are locally defined by

1_1 /k(égik_’_&gjk_%).

U 2g ox/  Oxi Oxk
The horizontal derivatives are given b i '*i N/ i where
SV Y xi T axt T N Gy
. 0GT &
(4) N = a7 i y™.

Noticing the homogeneity of spray coefficients, we have G’ = %Fj’k yIyk.
The nonlinear connection coefficient Nji only depends on G'. From now on,
we use components of a tensor to denote the tensor itself. If 7= T/e; @ w’ is
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a (1,1)-tensor, where ¢; and w/ are frames and dual frames on the pull back
bundle, respectively, the horizontal covariant derivatives about the Chern connec-
tion Vi T} are given by

oT;
(5) ViT) =

! ! i
s H T =TT

In particular, when operated on a function f(x) defined on the whole manifold,
the horizontal covariant derivatives become

6 Vif ==—.
(6) kS Oxk

Since the Chern connection is almost compatible with the Finsler metric,
the curvature tensors include two parts, namely, the hh-curvature tensor and the
hv-curvature tensor as

-1
(7 Q}—z k,wk/\w +Pk1w A"
when we choose the dual frame as {w!,..., 0", "' ... ©*'}. The hh-curvature

is also called Chern Riemannian curvature tensor whose components are locally
defined by

) S A
(3) Ry =54 ==+ T}, T T}, T

The hv-curvature is also called Chern non-Riemannian curvature tensor whose
components are obtained in local coordinates by

i
ary

J!

It follows from the definition that Pj,d Pk/, If we denote Py = giijf;C,, then

(10) Pjixt + Pijrr = 2(Cjs Ly — Cyi),
where L}, are the components of Landsberg tensor. The Landsberg tensor is

defined by L=1L k(x ») aA ® dx/ ® dx* with components locally related to

ox!

Cartan tensor and Chern non-Riemannian curvature as
. o o
(11) Ly = Cyyy' ==y Pp.

We denote L = gL} - More details about the Riemannian and non Rieman-

nian curvature tensor and their relations can be referred to [6] and [7].
Because curvatures on a Finsler manifold are related to a tangent coordinate

v, Le., a tangent direction, the flag curvature should be dependent on not only the
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section (called ‘flag’) spanned by two tangent vectors, but also a special direction
(called ‘pole’). Its expression is

— Ry y'viy*o!
(gixgjt — gag) y'vly

(12) K(Hy) = kvl’

where Ry := R},9y, and II, = span{y,v} is a 2-dimensional section.
- When we denote the y contraction of Chern Riemannian curvature tensor by
Ry, = y*Ry,, it follows from (8) and the equation N; = ykl";k that

13 R =—k— —N; .
(13) T oxi oxk k- oys 7 9y

If we define
R :=y/Riyy', Ry :=gyRj = —Ryjuy'y',
and assume that v is a unit vector and is orthogonal to y with respect to g,, that
is, v satisfies that g,(v,v) and g,(y,v), we obtain
(14) K(IL,)(v) = FRyv'o*.

So R. or Ry are also called components of the flag curvature tensor.
For any Finsler metric, a related Riemannian metric defined in [3] is given
by
*F?
15 aA»x:J gii(x, wy:J ——— Wy,
(15) 109 = | ot o= | S

where w, is the volume form on S):={£eR"|F(&)=1}. One can use the
Busemann-Hausdorff volume form or Holmes-Thompson volume form according
to the concrete problem.

Since {y’} can be considered as the homogeneous coordinates on fiber
SiM ={yeTM|F(y)=1}, for any point x on a Finsler manifold (M, F),
there is a volume form called Holmes-Thompson volume element. 1t is defined by

(16) dVp := og(x) dx,

1
17 - \/det(g;) dv,
( ) JH(X) Cn—1 JSYM © (gj) !
(18) dvi=\[det(gy) S (1) Y dy A AdyT A A dy

({3t 1]

where means that the term is suppressed and ¢,_; denotes the volume of the
(n — 1)-dimensional Euclidean sphere S"~'. The symbol dv is the volume form
on the tangent sphere S, M. . .

We now introduce the definition of the mean Ricci curvature Ricci (or Ric
for short). Since the Riemannian Ricci curvature is the integral average of the
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sectional curvature, Ric becomes the Riemannian Ricci curvature when the metric
reduces to Riemannian.

DEFINITION 2.1.  The mean Ricci curvature Ric is a kind of integral average
of the flag curvature tensor on the indicatrix S,M of each point, namely,

det gij

1
K(I1 ~—
Cn—1 L\.M ( y)(v)«/det ajj
1 i \/det glj dv

= J F_szkU Uk
Cn—1 S M det ajj

(19) Ric(v) = dv

where a; are the components of the related Riemannian metric defined in (15)
with the Holmes-Thompson volume form.

3. Bochner type formula of the Killing vector field

In this paper, we denote the horizontal covariant derivative about the Chern
connection by “|” and the vertical covariant derivative about the Chern con-

[T

nection by “;”.  We will first introduce the Finsler Ricci identity for vector fields.

LemMa 3.1 (Ricci type formula).  For any horizontal vector field v = v'(x, y)J;
on a Finsler manifold, the exchange of horizontal covariant derivatives about the
Chern connection satisfies

m m
(20) Okl — Ok = Rigyom + Ryj0jm,

where R;}g, is the Chern-Riemannian curvature tensor.
Proof. For any v(x, y), the first order horizontal covariant is
v
_ oY
Uik = 5k ~ Lietts

where T% is the Christoffel symbol of the Chern connection. The second order
horizontal covariant derivative is

521)j m Oom 5Fj7€1 m m
@ v = it — Tk gt ~ et Om = L O = Tictim
8%v; ov,, oI} ovy, . ovy, .
= e~ T g o o= (= ) =1 (5~ e ).
We have
(22) ou_ i _ e v

oxi axi U gk’
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and
2. 2., 6N1 ) 2, 2
(23) 5,01 - = (’j'U, ——]%_N'I (3 Ui _ ]?1 a (%] '
Oxkoxi oxJoxk  oxk ay/ J axkayl aymax]
ma]vfl avi marl 62Ui

k oym é‘yl kY 6ymayl'
Plugging equations (22) and (23) back into (21), we get

) wHIP) o A A
(24) Vil — Ujjik = (5)6} - 57’, + I — T/?Tfk) Um

B ( vaNlm s aNk)rn aN/T 6N1m>u
Jim

k- ays ops 7 ax! oxk

Considering formulae (8) and (13), we get (20). Q.E.D.

Now we will focus on Killing vector fields, which can induce isometric
transformations on manifolds. That is, V' = V'(x)d; is a killing vector field if
and only if the Lie derivative of the metric about the complete lifting 7 vanishes,
ie.,

ZLyF =0.
A complete lifting V of a vector field ¥ from TM to TTM is always defined by
X 0 oV
V == Vl - J — i
ox! HEd ox/ 0y!

Using the correspondence ® between horizontal and vertical bundles, we can
extend the Chern connection to /”. Locally,
0 0
(25) V(j/gxi 5_);J - ry 5);—1(
Moreover, under this correspondence, ® ' (V) = V’". Then, we can express
the complete lifting in a global way as

(26) V=vV"+FV.V".
Actually,

- . 0 il 2!
2 - l—. J el
(27) r=v 8x’+y oxJ oy!

-0 (oVi -\ 0
=Vi— 4y =+ VFiri ) —
ox! T (6xf + k-’) 0y!

o .
=V % + ij(;/(;xj 0
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Locally, #,F =0 is equal to

 OF OV OF
2 ! - J T A —
(28) v 6x’+y oxJ dy! ’
or
(29) yjyk Vk‘j =0.

By taking the second derivatives of (29) about y’, y/, one can directly conclude
that V' satisfies the following equation

(30) Vitj + Vi +2C5Vpiqp* = 0,
here CI:=¢?1C,; and C~—1[F2] —lagiji the Cartan tensor
where Cj; := g"Cy; a ai =gl =3 55 s the Cartan tensor.

Before giving the Bochner type formula of the Killing vector field on Finsler
manifold, we define a degenerate elliptic operator A?. First, Laplacian on a
Riemannian manifold is defined by A=V.-V= gif(Va/afog/ng — Vve/ﬁxl.g/axj%
where V -V means taking trace by the Riemannian metric g¥. Now, we replace
the g7 by a degenerate matrix y’y/ to define the degenerate elliptic operator, that
is

DEFINITION 3.2. A degenerate elliptic operator A” is defined as the second
order derivative about the Chern connection contracting with a symmetric semi-
positive definite matrix a” = y'y/, namely,

(31) AP =VovV= yiyf(v()‘/(sva()‘/(jxi - Vv(;/m‘,(s/(sxi),

where ¢ means taking trace with respect to the matrix y‘y/, and V means the
horizontal covariant derivative with respect to the Chern connection.

By direct computation, one can easily see that
AP = y'y (Vs Vs, = Vv,s)
= V5,V = V' (=N )WV, = Vw5
= V,yi5,Vyis;-
Thus we can present the following definition on the sphere bundle.

DrermNiTION 3.3.  On the tangent sphere, the operator also can be given by

AD
(32) ASP =y = (V)2

i
where 17 =2

o . . C
T on is the horizontal correspondence of the distinguished vector
. *
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From Definition 3.2, we know this degenerate elliptic operator can be
calculated as the usual Laplacian. In geometric analysis, the Laplacian is always
written as A = gV,;V;, where V; means the covariant derivative. Here we can
express the degenerate elliptic operator as AP = y'y/V;V; or ASP =1''V,V;.
The symbol V; means the horizontal covariant derivative with respect to the
Chern connection. Based on these facts, we can prove the following Bochner
type formula for Killing vector fields on Finsler manifolds.

PROPOSITION 3.4 (Bochner type formula).  The Killing vector field V = V'(x)0;
satisfies the following formula

(33) AP(IV?) =2VV P =2R(V, V),
where AP is given by (31), V = Viy', and R is the flag curvature tensor.

Proof. Contracting (30) by y, it follows that

(34) Y'(Vij + Vi) = 0.
Plugging it back into (30) yields
(35) Vij+ Vii + 2C§(qu")‘p =0,

where we have used the fact that y‘ip =V,y"=0. Taking the second order
covariant derivative, one can get

(36) G"ViVi) iy = 20" Vi Vi + 29" ViV,

where we have used the fact that g;, = V,g; = 0.
Since the component of the Killing vector field is only dependent on x, by
Lemma 3.1, the vector satisfies

(37) Viwtr = Vi = RigVn + 2R3V, G-
Contracting (36) by y*, y!/, we can acquire that
(38) ANP(g"ViVy) =297y Y Vi Vi + 297"y ViV
=297 (Vi) (Viy") ;= 2V vy Vigu
= Zgij(V}cyk)\i(Vlyl)U - 2Vj)’lyk(Vk\l\j + R/r(_y;/ Vin)
= 2/V(V)| = 2R(V, V),
where ¥V = V;»’ and R is the flag curvature tensor. Q.E.D.

The following proposition indicates that the parallel of V' is equal to the
parallel of V" with respect to the Chern connection, when V is a Killing vector
field.

PrOPOSITION 3.5.  Suppose V' is a Killing vector field. Then V is parallel if
and only if V is a function on TM whose horizontal derivatives vanish.
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5 Proof. V is a function with vanishing horizontal derivatives if and only if
— V' =0. That is,

oxi

(39) 0:%17:5? V,y’+V,;l ;V, — ViN/ = Vyy! =V;V.

So if V is parallel, it is obvious that ¥ is a function on TM with vanishing
horizontal derivatives. On the other hand, if (% V =V;V =0, then considering

the definition of Killing fields, we assert that

(40) V}‘;yl = V,-|jyi =0.
Thus it follows from (9) and (10) that
o, 0 ary
(41) OZW(V\]‘.V!) V\ja kyl+ylale
= Vi — ¥ P V'
= Vi; = ¥'(=Piinc + 2Cys Ly — 2Cuin)V
= Vi, — L V"
Taking the derivative of (40) again yields
0 ; 0 ;
(42) 0= ay_k(leiy ) = W(Vig/j)")

= 2C]jkyiV‘§ + V/\k - g/jyiPilmk v
= j|k+2Cle‘ y +lekV

Plugging (41) into (42) and noticing that y'V; =0, we have

LiV'=0,
for any Killing vector field V. Therefore,
Viwe =0,
which means V' is parallel. Q.E.D.

4. Vanishing theorem of Killing vector fields

Before taking a closer look at the Bochner formula, we will describe the local
structure of the operator in the left hand of (33).
For a function / on the tangent bundle 7TM, we have

Sh  oh _, oh

(43) hye =S &= 3%~ e



VANISHING OF FINSLER KILLING FIELDS 11

and

(Sl’l|k m 4 oh " Oh : oh
(44) hi = Sl Lihym = ox! <5xk) ~Tu (8)6’” =N 5)")

o . o\/[oh oh oh . oh
Y RV N ) _ NP
(W ! 6y’> (GX" N 6y"’) . (0xm N @y’)

*h  ONJ" Oh o*h . 0%h

_ Tk T m 1

= Oxkox!  ox! oym koxloym T oxkayi

+Ni m azh _Tm ﬁ_ i%
1Yk ayjaym kil oxm may,’ .

Hence by (4),

o*h oG™ 0h 0%h - 0%h
45) APh= Myl o -2l - 2G" F—2G" ——— "
(43) VY axkaxl ~ 7 TaxT aym oxlaym” oxkayi”
A 0%h oh - Oh
4G'G" ——— —2G" — NI~
+ aytaym <axm m ay1>

= SOP(h) + FOP(h),

where SOP(h) denotes the second order derivative part of 4 and FOP(h) denotes
the first order derivative part of 4. Indeed, It follows from (2) that,

2 A2 2 2
1% - 26" axofa};m y' =26 (’)fkgyi Y 4GIGT ayaiaim
%h %h
vEONT| axkaxt axkay! | [y
B (—ZG"> Ph O <—2G1>
aykox! dykoy!
= Hessian(h)(G, G),

(46)  SOP(h) = y*y

where Hessian(h) is the locally Euclidean Hessian of x, y.
At the maximum point of s, Hessian(h) is semi-negative definite, hence

(47) AP <.

Now we can get the following corollary.

COROLLARY 4.1. Suppose (M, F) is a compact Finsler manifold with negative
flag curvature, then there is no nontrivial Killing field.

Proof. From Proposition 3.4 and (47), one can obtain that

(48) 0= AP(GTVV) =2IV(V)|* = 2R(V, V),
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holds at the maximum point of |V|2. Since the flag curvature is negative, there
must be

(49) Vijy'=0, and R(V,V)=0,

which means ¥ =0 at the maximum point of |V'|>. It is equal to |V]* =0,
hence V' =0. Q.E.D.

Furthermore, by the weak maximum principle of degenerate elliptic operator
in [4], we can prove the following theorem, which contains the above corollary.

THEOREM 4.2. Suppose (M,F) is a compact Finsler manifold with non-
positive flag curvature R.  Then every Killing field V is parallel with respect to
the Chern connection, and R(V,V)=0. Furthermore, if the flag curvature is
negative, then there is no nontrivial Killing field.

Proof. We will only prove the first part with non-positive flag curvature.
It follows from Proposition 3.4 and (32) that for a Killing vector field V,

(50) ASP(1V?) :2’v<_’7) F_LRULY)

-2 >0
a F2 =7

on the whole sphere bundle. By (46), we know that the degenerate elliptic
operator has at least a non-degenerate direction G. Since |V|2 >0, by Theo-
rem 2.1 of [4], on any domain Q with boundary 4Q, supg|V|* < sups|V|*.

However, the sphere bundle SM is compact since M is compact. Then |V|2 is a
constant. Hence

(51) 0:2'V(Z>

: v .
which means V(f) =0 and R(V,V)=0. It asserts from Proposition 3.5 that

2

RV, V
-2 v, )>0,

F2

: 14 : o :
the equation V(F) =0 is equal to Vj; =0, that is, V' is parallel with respect to
the Chern connection. Q.E.D.

Now let’s look into the degenerate elliptic operator AP, We have the
following proposition. Firstly, we denote the integral inner product about the
Holmes-Thompson volume form on the sphere bundle SM by (-,-).

ProprosITION 4.3. Let (M,F) be a compact Finsler manifold. The degen-
erate elliptic operator NSP is self-adjoint with respect to the integral inner product
about the Holmos-Thompson volume form on the sphere bundle. In other words,
for any two functions u, w on SM,

(52) (ASPuyw) = (u, ASPw).
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Proof. For the convenience of readers, we will present the details in local
coordinates here. Considering (32), we only need to prove that

(53) Vx| (det gj) Z(—l)iyi Ayt A Ac@i A ndy" Adx| = 0.

It follows from the definition of Chern connection and the correspondence ®
between horizontal and vertical bundles that

0 K 0 0 i 0
Y Vaon' g = i Ve gy =T pe:
By the duality of dv' and ;. oy and . one can obtain that
(55) Vsjoxi dx* = =T} dx/,

_ ) i A
Vssox dy* = =T dy’ — (ﬁzv/f - N/T)+ EfN,-’) dx’
Then (53) follows from the direct calculation that
LHS = g"1” (g,s)(det g;) Z(—l)iyi Ay A Ady A Ay Adx
+ (det g;) Z(—l)i(—NZlk) Ayt A Ac?j)\i A Ady" Adx
ik

+(detgy) D> (=)' ay'

i,j,k,l,m

5N
/\.../\{lm[ mkdy —(5 po N’rm,+1"mk >dx]}

A---/\C?;i A= Ady" Adx + (det gj) Z (=D)'y" dy!
i,j,k,l

/\m/\cjy\"/\m/\dy”/\dxl/\'--/\(—Fillkdx[)/\m/\dx”

/

k k
i\ 5,0 1S Y Y i VY
= (det gy) > (—U’[yg (gﬂr,g7+gzsr,’k F) ~ T
Lk Lr,s

—y’l",i/yF—yl"k/F} dy' A- /\Jy\i/\-n/\dy"/\dx

— (det g) Z ( - 1y’1"’ y)dy A- /\d/y\l'/\n-/\dy”/\dx
i,j,k
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Since SM is compact, we can directly compute that,

(56) (ASPu,w) = J de (ASPu)w(det gy)
M Jsom

Cn—1
X Z(—l)iyi dy! /\-~-/\a7y\"/\-~-/\dy”

1

=— J de (Vixu)(View)y/det g;; dv
M Jsm

Cn—1

1

= J de u(ASPw)\/det g; dv
M Jsm

Cn—1

= (u, ASPw).

This equation can also be acquired from the fact that VF = Vy’ = kakgij =0
for Chern connection V. Q.E.D.

Using the mean Ricci curvature, we can further get Theorem 1.2, which
includes Theorem 1.1.

Proof of Theorem 1.2. For any Killing vector field V', it follows from
Proposition 3.4 that,

2

_LRY)

F2

(57) APV = 2‘V<ny—i) >0,

F

on the sphere bundle. Taking the integral of both sides on SM, one can get

(58) J ASP(|V|?)y/det g; dvdx
SM

2L ()
SM F

By (19) in Definition 2.1, Proposition 4.3 and the condition, we can get

(59) OZJ ASD(|V|2)\/det gij dvdx
sM

=L 7(77)
sM F

If the mean Ricci curvature is non-positive, then

2
R(V,V
v/det g dvdx — ZLM(Fz) Vdet g dvdx.

2
\/det g; dvdx — 2J Ric(V,V)y/det a; dx > 0.
M

(60) VWV =0, and Ric(V,V)=0.
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The first one asserts from Proposition 3.5 that V' is parallel with respect to the
Chern connection. If the mean Ricci curvature is negative, then

(61) Ric(V,V) =0,
which means V = 0. Q.E.D.
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