
B. SHEN
KODAI MATH. J.
41 (2018), 1–15

VANISHING OF KILLING VECTOR FIELDS ON COMPACT

FINSLER MANIFOLDS

Bin Shen

Abstract

In this paper, we define a new Ricci curvature on Finsler manifold named the mean

Ricci curvature, which is useful in the study of di¤erent symmetric fields on man-

ifolds. By presenting a Bochner type formula of Killing vector fields on general Finsler

manifolds, we prove the vanishing theorem of the Killing vector fields on any compact

Finsler manifold with a negative mean Ricci curvature. This result involves the

vanishing theorem of Killing vector fields in the Riemannian case.

1. Introduction

The Killing vector field, which is a basic concept in Di¤erential Geometry
and Physics, is obtained from the isometric transformation on a manifold.
Compared to the conformal field or the projective field, it is the simplest
symmetric field on manifolds. The Bochner technique shows that any Killing
vector field on a compact Riemannian manifold with negative Ricci curvature
must be trivial. In particular, this implies that such manifold dose not have a
one parameter family of isometries. The detail can be given as the following
theorem.

Theorem 1.1 ([5]). Suppose ðM; gÞ is a compact Riemannian manifold whose
Riemannian Ricci tensor is nonnegative, i.e., Rica 0. Then every Killing field X
is parallel, and RicðX ;XÞ ¼ 0. Furthermore, if the Ricci curvature is negative,
i.e., Ric < 0, then there is no nontrivial Killing field.

Indeed one can use the maximum principle or the integral method to prove
Theorem 1.1. The isometric transformation is a special kind of conformal or
projective transformation. Correspondingly, the Killing vector field is a special
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kind of the conformal or projective vector field. Such geometric vector fields,
including the Killing, homothety, conformal, a‰ne and projective vector fields,
have attracted many researchers’ attentions [2, 9]. In Finsler geometry, using
conformal vector fields on a Riemannian manifold with constant curvature,
Zhongmin Shen and Qiaoling Xia obtained the expression of the conformal
vector fields on a Randers space with weak isotropic flag curvature [8]. Later,
Huangjia Tian proved that there is no nontrivial projective vector field on any
compact Finsler manifold with negative flag curvature [10]. Since the Killing
vector field is also a special kind of projective vector field, one can consider
Tian’s work as the analog of Theorem 1.1. However, his proof is di¤erent from
the proof of the Riemannian case. Moreover, the condition in his result is about
the flag curvature, which is the sectional curvature when the metric is refined to
a Riemannian one. This means that Tian’s analog in the Finsler case can not
be considered simply as a generalization of Theorem 1.1.

In this paper, we prove a vanishing theorem of Killing vector fields on
Finsler manifolds, based on two important concepts, namely, the degenerate
elliptic operator and mean Ricci curvature. The presented theorem includes
Theorem 1.1. The method we adopted here is the same as that used in the
Riemannian case. Details are presented in Theorem 4.2 in Section 4 and the
following theorem.

Theorem 1.2. Suppose ðM;FÞ is a compact Finsler manifold with non-

positive mean Ricci curvature fRicRica 0. Then every Killing field V is parallel, andfRicRicðV ;VÞ ¼ 0. Furthermore, if the mean Ricci curvature is negative, i.e., fRicRic < 0
then there is no nontrivial Killing field.

2. Finsler manifold and mean Ricci curvature

In this section, we present some basic concepts and relations in Finsler
geometry, including some important non-Riemannian tensors. At last, we give
the definition of mean Ricci curvature.

Let ðM;FÞ be a Finsler manifold. Actually, F is defined on TM, i.e.,
F ¼ F ðx; yÞ, and is smooth on T0M :¼ TMnf0g. We call F a Riemannian
metric if F ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
gijðxÞyiy j

p
, where all the fundamental tensor components gij ¼

1

2

q2F 2

qyiqy j
are independent of the tangent coordinates y. So there is an important

tensor to indicate this fact, called the Cartan tensor, which is defined by
C ¼ Cijk dxi n dx j n dxk. The components are given by

Cijk ¼ 1

2

qgij

qyk
¼ 1

4

q3F 2

qyiqy jqyk
:ð1Þ

It follows from the definition that a Finsler metric is a Riemannian one if and
only if the Cartan tensor vanishing, i.e., C ¼ 0.
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Spray G is a special vector field defined on the punched tangent bundle T0M.
Locally, it can be given as

G ¼ yi q

qxi
� 2Giðx; yÞ q

qyi
;ð2Þ

where Gi are called the spray coe‰cients, and are 2-homogenous in y, namely,
Giðx; lyÞ ¼ l2Giðx; yÞ; for any l > 0. In the assistance of the fundamental
tensor, the spray of a Finsler metric can be expressed as

GiðyÞ ¼ 1

4
gilðyÞ 2

qgjl

qxk
ðyÞ � qgjk

qxl
ðyÞ

� �
y jyk:

The spray coe‰cients arise from the geodesic equation. Actually, the spray
gives a canonical horizontal-vertical split of TðT0MÞ ¼ HlV, where V iden-
tical to the TM is called the vertical bundle, and H is the direct sum complement
of V in TðT0MÞ. For any vector on M, we can lift it to a horizontal bundle or
the vertical bundle by horizontal lifting or vertical lifting, respectively. For any
vector V A TM, VV A V denotes the vertical lifting of V , and VH A H denotes
the horizontal lifting of V . For instance, the vertical lifting of the unit direction

vector
yi

F
qi A TM, is a global vertical vector called the distinguished vector, whose

expression is

l
V ¼ yi

F

q

qyi
:ð3Þ

We use l
H

and l
V

to denote the horizontal and vertical lifting of
yi

F
qi, respectively.

Moreover, the correspondence Y of V and H is an isomorphism. More details
can be found in [1].

There are several important connections on a Finsler manifold. In this
paper, we choose the Chern connection, which is the unique torsion free and
almost compatible a‰ne connection. Components of Christo¤el symbol of Chern
connection are locally defined by

G l
ij ¼

1

2
glk dgik

dx j
þ dgjk

dxi
� dgij

dxk

� �
:

The horizontal derivatives are given by
d

dxi
:¼ q

qxi
�N

j
i

q

qy j
where

N i
j ¼

qGi

qy j
¼ G i

jk y
k:ð4Þ

Noticing the homogeneity of spray coe‰cients, we have Gi ¼ 1
2G

i
jk y

jyk.

The nonlinear connection coe‰cient N i
j only depends on Gi. From now on,

we use components of a tensor to denote the tensor itself. If T ¼ T i
j ei no j is
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a ð1; 1Þ-tensor, where ei and o j are frames and dual frames on the pull back
bundle, respectively, the horizontal covariant derivatives about the Chern connec-
tion ‘kT

i
j are given by

‘kT
i
j ¼

dT i
j

dxk
þ G i

klT
l
j � G l

kjT
i
l :ð5Þ

In particular, when operated on a function f ðxÞ defined on the whole manifold,
the horizontal covariant derivatives become

‘k f ¼ qf

qxk
:ð6Þ

Since the Chern connection is almost compatible with the Finsler metric,
the curvature tensors include two parts, namely, the hh-curvature tensor and the
hv-curvature tensor as

W i
j ¼

1

2
Ri

jklo
k5o l þ Pi

jklo
k5onþl ;ð7Þ

when we choose the dual frame as fo1; . . . ;on;onþ1; . . . ;o2ng. The hh-curvature
is also called Chern Riemannian curvature tensor whose components are locally
defined by

Ri
jkl :¼

dG i
jl

dxk
�
dG i

jk

dxl
þ G i

kmG
m
jl � G i

lmG
m
jk :ð8Þ

The hv-curvature is also called Chern non-Riemannian curvature tensor whose
components are obtained in local coordinates by

Pi
jkl ¼ �

qG i
jl

qyk
:ð9Þ

It follows from the definition that Pi
jkl ¼ Pi

kjl . If we denote Pjikl ¼ gimP
i
jkl , then

Pjikl þ Pijkl ¼ 2ðCijsL
s
kl � CijljkÞ;ð10Þ

where Ls
kl are the components of Landsberg tensor. The Landsberg tensor is

defined by L ¼ Li
jkðx; yÞ

q

qxi
n dx j n dxk with components locally related to

Cartan tensor and Chern non-Riemannian curvature as

Li
jk ¼ Ci

jkjl y
l ¼ �ylPi

ljk:ð11Þ

We denote Lijk ¼ gilL
l
jk. More details about the Riemannian and non Rieman-

nian curvature tensor and their relations can be referred to [6] and [7].
Because curvatures on a Finsler manifold are related to a tangent coordinate

y, i.e., a tangent direction, the flag curvature should be dependent on not only the
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section (called ‘flag’) spanned by two tangent vectors, but also a special direction
(called ‘pole’). Its expression is

KðPyÞ :¼
�Rijkl y

iv jykvl

ðgikgjl � gilgjkÞyiv jykvl
;ð12Þ

where Rijkl :¼ Rs
iklgsj , and Py ¼ spanfy; vg is a 2-dimensional section.

When we denote the y contraction of Chern Riemannian curvature tensor by
Ri

kl ¼ ysRi
skl , it follows from (8) and the equation N i

j ¼ ykG i
jk that

Ri
jk ¼ qN i

k

qx j
�
qN i

j

qxk
þNs

k

qN i
j

qys
�Ns

j

qN i
k

qys
:ð13Þ

If we define

Ri
k :¼ y jRi

jkl y
l ; Rjk :¼ gijR

i
k ¼ �Rijlk y

iyl ;

and assume that v is a unit vector and is orthogonal to y with respect to gy, that
is, v satisfies that gyðv; vÞ and gyðy; vÞ, we obtain

KðPyÞðvÞ ¼ F�2Rjkv
jvk:ð14Þ

So Ri
k or Rjk are also called components of the flag curvature tensor.
For any Finsler metric, a related Riemannian metric defined in [3] is given

by

aijðxÞ ¼
ð
S1

gijðx; yÞox ¼
ð
S1

q2F 2

qyiqy j
ox;ð15Þ

where ox is the volume form on S1 :¼ fx A Rn jFðxÞ ¼ 1g. One can use the
Busemann-Hausdor¤ volume form or Holmes-Thompson volume form according
to the concrete problem.

Since fyig can be considered as the homogeneous coordinates on fiber
SxM ¼ fy A TxM jFðyÞ ¼ 1g, for any point x on a Finsler manifold ðM;F Þ,
there is a volume form called Holmes-Thompson volume element. It is defined by

dVF :¼ sHðxÞ dx;ð16Þ

sHðxÞ :¼
1

cn�1

ð
SxM

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
detðgijÞ

q
dn;ð17Þ

dn :¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
detðgijÞ

q X
i

ð�1Þ i�1
yi dy15� � �5cdyidyi5� � �5dyn;ð18Þ

where ‘‘c ’’ means that the term is suppressed and cn�1 denotes the volume of the
ðn� 1Þ-dimensional Euclidean sphere Sn�1. The symbol dn is the volume form
on the tangent sphere SxM.

We now introduce the definition of the mean Ricci curvature gRicciRicci (or fRicRic
for short). Since the Riemannian Ricci curvature is the integral average of the
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sectional curvature, fRicRic becomes the Riemannian Ricci curvature when the metric
reduces to Riemannian.

Definition 2.1. The mean Ricci curvature fRicRic is a kind of integral average
of the flag curvature tensor on the indicatrix SxM of each point, namely,

fRicRicðvÞ ¼ 1

cn�1

ð
SxM

KðPyÞðvÞ
ffiffiffiffiffiffiffiffiffiffiffiffiffi
det gij

pffiffiffiffiffiffiffiffiffiffiffiffiffi
det aij

p dnð19Þ

¼ 1

cn�1

ð
SxM

F�2Rjkv
jvk

ffiffiffiffiffiffiffiffiffiffiffiffiffi
det gij

pffiffiffiffiffiffiffiffiffiffiffiffiffi
det aij

p dn;

where aij are the components of the related Riemannian metric defined in (15)
with the Holmes-Thompson volume form.

3. Bochner type formula of the Killing vector field

In this paper, we denote the horizontal covariant derivative about the Chern
connection by ‘‘j’’ and the vertical covariant derivative about the Chern con-
nection by ‘‘;’’. We will first introduce the Finsler Ricci identity for vector fields.

Lemma 3.1 (Ricci type formula). For any horizontal vector field v ¼ viðx; yÞdi
on a Finsler manifold, the exchange of horizontal covariant derivatives about the
Chern connection satisfies

vjjkjl � vjjljk ¼ Rm
jklvm þ Rm

klvj;m;ð20Þ

where Rm
jkl is the Chern-Riemannian curvature tensor.

Proof. For any vðx; yÞ, the first order horizontal covariant is

vjjk ¼ dvj

dxk
� G l

jkvl ;

where Gk
ij is the Christo¤el symbol of the Chern connection. The second order

horizontal covariant derivative is

vjjkjl ¼
d2vj

dxkdxl
� Gm

jk

dvm

dxl
�
dGm

jk

dxl
vm � Gm

jl vmjk � Gm
lkvjjmð21Þ

¼ d2vj

dxkdxl
� Gm

jk

dvm

dxl
�
dGm

jk

dxl
vm � Gm

jl

dvm

dxk
� G i

mkvi

� �
� Gm

lj

dvm

dx j
� G i

mjvi

� �
:

We have

dvi

dx j
¼ qvi

qx j
�Nk

j

qvi

qyk
;ð22Þ
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and

d2vi

dxkdx j
¼ q2vi

qx jqxk
�
qN l

j

qxk

qvi

qyl
�N l

j

q2vi

qxkqyl
�Nm

k

q2vi

qymqx j
ð23Þ

þNm
k

qN l
j

qym

qvi

qyl
þNm

k N l
j

q2vi

qymqyl
:

Plugging equations (22) and (23) back into (21), we get

vjjkjl � vjjljk ¼
dGm

jl

dxk
�
dGm

jk

dxl
þ Gm

kiG
i
jl � Gm

li G
i
jk

� �
vmð24Þ

� Ns
k

qNm
l

qys
�Ns

l

qNm
k

qys
þ qNm

k

qxl
� qNm

l

qxk

� �
vj;m:

Considering formulae (8) and (13), we get (20). Q.E.D.

Now we will focus on Killing vector fields, which can induce isometric
transformations on manifolds. That is, V ¼ V iðxÞqi is a killing vector field if
and only if the Lie derivative of the metric about the complete lifting ~VV vanishes,
i.e.,

LV̂VF ¼ 0:

A complete lifting ~VV of a vector field V from TM to TTM is always defined by

V̂V ¼ V i q

qxi
þ y j qV

i

qx j

q

qyi
.

Using the correspondence Y between horizontal and vertical bundles, we can
extend the Chern connection to lV. Locally,

‘d=dxi

q

qy j
¼ Gk

ij

q

qyk
:ð25Þ

Moreover, under this correspondence, Y�1ðVHÞ ¼ VV: Then, we can express
the complete lifting in a global way as

V̂V ¼ VH þ F‘lHV
V:ð26Þ

Actually,

V̂V ¼ V i q

qxi
þ y j qV

i

qx j

q

qyi
ð27Þ

¼ V i d

dxi
þ y j qV i

qx j
þ V kG i

kj

� �
q

qyi

¼ V i d

dxi
þ y j‘d=dx jVV:
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Locally, LV̂VF ¼ 0 is equal to

V i qF

qxi
þ y j qV

i

qx j

qF

qyi
¼ 0;ð28Þ

or

y jykVkj j ¼ 0:ð29Þ

By taking the second derivatives of (29) about yi, y j , one can directly conclude
that V satisfies the following equation

Vij j þ Vjji þ 2Cp
ijVpjq y

q ¼ 0;ð30Þ

where C
p
ij :¼ gpqCqij and Cqij ¼

1

4
½F 2�y iy jyq ¼

1

2

qgij

qyq
is the Cartan tensor.

Before giving the Bochner type formula of the Killing vector field on Finsler
manifold, we define a degenerate elliptic operator sD. First, Laplacian on a
Riemannian manifold is defined by s¼ ‘ � ‘ ¼ gijð‘q=qxi‘q=qx j � ‘‘q=qx i q=qx

j Þ;
where ‘ � ‘ means taking trace by the Riemannian metric gij . Now, we replace
the gij by a degenerate matrix yiy j to define the degenerate elliptic operator, that
is

Definition 3.2. A degenerate elliptic operator sD is defined as the second
order derivative about the Chern connection contracting with a symmetric semi-
positive definite matrix aij ¼ yiy j , namely,

sD :¼ ‘ � ‘ ¼ yiy jð‘d=dxi‘d=dx j � ‘‘d=dx i d=dx
j Þ;ð31Þ

where � means taking trace with respect to the matrix yiy j, and ‘ means the
horizontal covariant derivative with respect to the Chern connection.

By direct computation, one can easily see that

sD ¼ yiy jð‘di‘dj � ‘‘di
dj Þ

¼ ‘y idi‘y jdj � yið�N
j
i Þ‘dj � ‘yiy j‘di

dj

¼ ‘y idi‘y jdj :

Thus we can present the following definition on the sphere bundle.

Definition 3.3. On the tangent sphere, the operator also can be given by

sSD :¼sD

F 2
¼ ð‘lHÞ2;ð32Þ

where lH ¼ yi

F

d

dxi
is the horizontal correspondence of the distinguished vector

lV.
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From Definition 3.2, we know this degenerate elliptic operator can be
calculated as the usual Laplacian. In geometric analysis, the Laplacian is always
written as s¼ gij‘i‘j, where ‘i means the covariant derivative. Here we can
express the degenerate elliptic operator as sD ¼ yiy j‘i‘j or sSD ¼ l il j‘i‘j.
The symbol ‘i means the horizontal covariant derivative with respect to the
Chern connection. Based on these facts, we can prove the following Bochner
type formula for Killing vector fields on Finsler manifolds.

Proposition 3.4 (Bochner type formula). The Killing vector field V ¼V iðxÞqi
satisfies the following formula

sDðjV j2Þ ¼ 2j‘ ~VV j2 � 2RðV ;VÞ;ð33Þ
where sD is given by (31), ~VV ¼ Vi y

i, and R is the flag curvature tensor.

Proof. Contracting (30) by yi, it follows that

yiðVij j þ VjjiÞ ¼ 0:ð34Þ
Plugging it back into (30) yields

Vij j þ Vjji þ 2Cp
ij ðVqy

qÞjp ¼ 0;ð35Þ
where we have used the fact that yi

jp ¼ ‘p y
i ¼ 0. Taking the second order

covariant derivative, one can get

ðgijViVjÞjkjl ¼ 2gijVijkVjjl þ 2gijViVjjkjl ;ð36Þ
where we have used the fact that gijjp ¼ ‘pgij ¼ 0.

Since the component of the Killing vector field is only dependent on x, by
Lemma 3.1, the vector satisfies

Vjjkjl � Vjjljk ¼ Rm
jklVm þ 2Rm

klVpC
p
jm:ð37Þ

Contracting (36) by yk, yl , we can acquire that

sDðgijViVjÞ ¼ 2gijykylVijkVjjl þ 2gijykylViVjjkjlð38Þ

¼ 2gijðVk y
kÞjiðVl y

lÞj j � 2V jylykVkj jjl

¼ 2gijðVk y
kÞjiðVl y

lÞj j � 2V jylykðVkjlj j þ Rm
kjlVmÞ

¼ 2j‘ð ~VVÞj2 � 2RðV ;VÞ;

where ~VV ¼ Vi y
i and R is the flag curvature tensor. Q.E.D.

The following proposition indicates that the parallel of V is equal to the
parallel of ~VV with respect to the Chern connection, when V is a Killing vector
field.

Proposition 3.5. Suppose V is a Killing vector field. Then V is parallel if
and only if ~VV is a function on TM whose horizontal derivatives vanish.
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Proof. ~VV is a function with vanishing horizontal derivatives if and only ifd

dxi
~VV ¼ 0. That is,

0 ¼ d

dxi
~VV ¼ d

dxi
Vj y

j þ Vj

d

dxi
y j ¼ d

dxi
Vj y

j � VjN
j
i ¼ Vjji y

j ¼ ‘i
~VV :ð39Þ

So if V is parallel, it is obvious that ~VV is a function on TM with vanishing

horizontal derivatives. On the other hand, if
d

dxi
~VV ¼ ‘i

~VV ¼ 0, then considering

the definition of Killing fields, we assert that

Vjji y
i ¼ Vij j y

i ¼ 0:ð40Þ

Thus it follows from (9) and (10) that

0 ¼ q

qyk
ðV i

j j yiÞ ¼ V i
j j

q

qyk
yi þ yi

qG i
jl

qyk
V lð41Þ

¼ Vkj j � yiPjilkV
l

¼ Vkj j � yið�Pijlk þ 2CijsL
s
lk � 2CijkjlÞV l

¼ Vkj j � LjlkV
l :

Taking the derivative of (40) again yields

0 ¼ q

qyk
ðVjji y

iÞ ¼ q

qyk
ðV l

jiglj y
iÞð42Þ

¼ 2Cljk y
iV l

ji þ Vjjk � glj y
iPl

imkV
m

¼ Vjjk þ 2Cl
jkVlji y

i þ LjlkV
l :

Plugging (41) into (42) and noticing that yiVlji ¼ 0, we have

LjlkV
l ¼ 0;

for any Killing vector field V . Therefore,

Vjjk ¼ 0;

which means V is parallel. Q.E.D.

4. Vanishing theorem of Killing vector fields

Before taking a closer look at the Bochner formula, we will describe the local
structure of the operator in the left hand of (33).

For a function h on the tangent bundle TM, we have

hjk ¼ dh

dxk
¼ qh

qxk
�N l

k

qh

qyl
;ð43Þ
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and

hjkjl ¼
dhjk
dxl

� Gm
klhjm ¼ d

dxl

dh

dxk

� �
� Gm

kl

qh

qxm
�N i

m

qh

qyi

� �
ð44Þ

¼ q

qxl
�N i

l

q

qyi

� �
qh

qxk
�Nm

k

qh

qym

� �
� Gm

kl

qh

qxm
�N i

m

qh

qyi

� �
¼ q2h

qxkqxl
� qNm

k

qxl

qh

qym
�Nm

k

q2h

qxlqym
�N i

l

q2h

qxkqyi

þN i
l N

m
k

q2h

qyiqym
� Gm

kl

qh

qxm
�N i

m

qh

qyi

� �
:

Hence by (4),

sDh ¼ ykyl q2h

qxkqxl
� 2yl qG

m

qxl

qh

qym
� 2Gm q2h

qxlqym
yl � 2Gi q2h

qxkqyi
ykð45Þ

þ 4GiGm q2h

qyiqym
� 2Gm qh

qxm
�N i

m

qh

qyi

� �
¼ SOPðhÞ þ FOPðhÞ;

where SOPðhÞ denotes the second order derivative part of h and FOPðhÞ denotes
the first order derivative part of h. Indeed, It follows from (2) that,

SOPðhÞ ¼ ykyl q2h

qxkqxl
� 2Gm q2h

qxlqym
yl � 2Gi q2h

qxkqyi
yk þ 4GiGm q2h

qyiqym
ð46Þ

¼ yk

�2Gk

� �T

q2h

qxkqxl

q2h

qxkqyl

q2h

qykqxl

q2h

qykqyl

0BBBB@
1CCCCA yl

�2Gl

� �

¼ HessianðhÞðG;GÞ;

where HessianðhÞ is the locally Euclidean Hessian of x, y.
At the maximum point of h, HessianðhÞ is semi-negative definite, hence

sDha 0:ð47Þ

Now we can get the following corollary.

Corollary 4.1. Suppose ðM;FÞ is a compact Finsler manifold with negative
flag curvature, then there is no nontrivial Killing field.

Proof. From Proposition 3.4 and (47), one can obtain that

0bsDðgijViVjÞ ¼ 2j‘ð ~VVÞj2 � 2RðV ;VÞ;ð48Þ
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holds at the maximum point of jV j2. Since the flag curvature is negative, there
must be

Vij j y
i ¼ 0; and RðV ;VÞ ¼ 0;ð49Þ

which means V ¼ 0 at the maximum point of jV j2. It is equal to jV j2 ¼ 0,
hence V ¼ 0. Q.E.D.

Furthermore, by the weak maximum principle of degenerate elliptic operator
in [4], we can prove the following theorem, which contains the above corollary.

Theorem 4.2. Suppose ðM;FÞ is a compact Finsler manifold with non-
positive flag curvature R. Then every Killing field V is parallel with respect to
the Chern connection, and RðV ;VÞ ¼ 0. Furthermore, if the flag curvature is
negative, then there is no nontrivial Killing field.

Proof. We will only prove the first part with non-positive flag curvature.
It follows from Proposition 3.4 and (32) that for a Killing vector field V ,

sSDðjV j2Þ ¼ 2 ‘
~VV

F

� ����� ����2 � 2
RðV ;VÞ

F 2
b 0;ð50Þ

on the whole sphere bundle. By (46), we know that the degenerate elliptic

operator has at least a non-degenerate direction G. Since jV j2 b 0, by Theo-
rem 2.1 of [4], on any domain W with boundary qW, supWjV j2 a supqWjV j2.
However, the sphere bundle SM is compact since M is compact. Then jV j2 is a
constant. Hence

0 ¼ 2 ‘
~VV

F

� ����� ����2 � 2
RðV ;VÞ

F 2
b 0;ð51Þ

which means ‘
~VV

F

� �
¼ 0 and RðV ;VÞ ¼ 0. It asserts from Proposition 3.5 that

the equation ‘
~VV

F

� �
¼ 0 is equal to Vij j ¼ 0, that is, V is parallel with respect to

the Chern connection. Q.E.D.

Now let’s look into the degenerate elliptic operator sSD. We have the
following proposition. Firstly, we denote the integral inner product about the
Holmes-Thompson volume form on the sphere bundle SM by ð� ; �Þ.

Proposition 4.3. Let ðM;F Þ be a compact Finsler manifold. The degen-
erate elliptic operator sSD is self-adjoint with respect to the integral inner product
about the Holmos-Thompson volume form on the sphere bundle. In other words,
for any two functions u, w on SM,

ðsSDu;wÞ ¼ ðu;sSDwÞ:ð52Þ

12 bin shen



Proof. For the convenience of readers, we will present the details in local
coordinates here. Considering (32), we only need to prove that

‘lH ðdet gijÞ
X
i

ð�1Þ iyi dy15� � �5cdyidyi5� � �5dyn5dx

" #
¼ 0:ð53Þ

It follows from the definition of Chern connection and the correspondence Y
between horizontal and vertical bundles that

‘d=dxi

d

dx j
¼ Gk

ij

d

dxk
; ‘d=dxi

q

qy j
¼ Gk

ij

q

qyk
:ð54Þ

By the duality of dxi and
d

dxi
, dyi and

q

qyi
, one can obtain that

‘d=dxi dxk ¼ �Gk
ij dx

j ;ð55Þ

‘d=dxi dyk ¼ �Gk
ij dy

j � d

dxi
N k

l �Nk
j G

j
il þ Gk

ij N
j
l

� �
dxl :

Then (53) follows from the direct calculation that

LHS ¼ grslHðgrsÞðdet gijÞ
X
i

ð�1Þ iyi dy15� � �5cdyidyi5� � �5dyn5dx

þ ðdet gijÞ
X
i;k

ð�1Þ ið�N i
kl

kÞ dy15� � �5cdyidyi5� � �5dyn5dx

þ ðdet gijÞ
X

i; j;k; l;m

ð�1Þ iy i dy1

5� � �5 l m �G
j
mk dyk � dN

j
l

dxm
�N

j
kG

k
ml þ G

j
mkN

k
l

 !
dxl

" #( )

5� � �5cdyidyi5� � �5dyn5dxþ ðdet gijÞ
X
i; j;k; l

ð�1Þ iyi dy1

5� � �5cdyidyi5� � �5dyn5dx15� � �5ð�G
j
kl l

k dxlÞ5� � �5dxn

¼ ðdet gijÞ
X

i; j;k; l; r; s

ð�1Þ i
�
yigrs grlG

l
ks

yk

F
þ glsG

l
rk

yk

F

� �
� G i

kl

ykyl

F

� yiG
j
kj

yk

F
� yiG

j
kj

yk

F

�
dy15� � �5cdyidyi5� � �5dyn5dx

� ðdet gijÞ
X
i; j;k

ð�1Þ i ð�1Þ i�j�1
yiG

j
ki

yk

F

� �
dy15� � �5cdy jdy j5� � �5dyn5dx

¼ 0:
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Since SM is compact, we can directly compute that,

ðsSDu;wÞ ¼ 1

cn�1

ð
M

dx

ð
SxM

ðsSDuÞwðdet gijÞð56Þ

�
X
i

ð�1Þ iyi dy15� � �5cdyidyi5� � �5dyn

¼ � 1

cn�1

ð
M

dx

ð
SxM

ð‘lHuÞð‘lHwÞ
ffiffiffiffiffiffiffiffiffiffiffiffiffi
det gij

p
dn

¼ 1

cn�1

ð
M

dx

ð
SxM

uðsSDwÞ
ffiffiffiffiffiffiffiffiffiffiffiffiffi
det gij

p
dn

¼ ðu;sSDwÞ:

This equation can also be acquired from the fact that ‘F ¼ ‘yi ¼ yk‘kgij ¼ 0
for Chern connection ‘. Q.E.D.

Using the mean Ricci curvature, we can further get Theorem 1.2, which
includes Theorem 1.1.

Proof of Theorem 1.2. For any Killing vector field V , it follows from
Proposition 3.4 that,

sSDðjV j2Þ ¼ 2 ‘ V i y
i

F

� ����� ����2 � 2
RðV ;VÞ

F 2
b 0;ð57Þ

on the sphere bundle. Taking the integral of both sides on SM, one can getð
SM

sSDðjV j2Þ
ffiffiffiffiffiffiffiffiffiffiffiffiffi
det gij

p
dndxð58Þ

¼ 2

ð
SM

‘ V i y
i

F

� ����� ����2 ffiffiffiffiffiffiffiffiffiffiffiffiffi
det gij

p
dndx� 2

ð
SM

RðV ;VÞ
F 2

ffiffiffiffiffiffiffiffiffiffiffiffiffi
det gij

p
dndx:

By (19) in Definition 2.1, Proposition 4.3 and the condition, we can get

0 ¼
ð
SM

sSDðjV j2Þ
ffiffiffiffiffiffiffiffiffiffiffiffiffi
det gij

p
dndxð59Þ

¼ 2

ð
SM

‘ V i y
i

F

� ����� ����2 ffiffiffiffiffiffiffiffiffiffiffiffiffi
det gij

p
dndx� 2

ð
M

fRicRicðV ;VÞ
ffiffiffiffiffiffiffiffiffiffiffiffiffi
det aij

p
dxb 0:

If the mean Ricci curvature is non-positive, then

‘ ~VV ¼ 0; and fRicRicðV ;VÞ ¼ 0:ð60Þ

14 bin shen



The first one asserts from Proposition 3.5 that V is parallel with respect to the
Chern connection. If the mean Ricci curvature is negative, thenfRicRicðV ;VÞ ¼ 0;ð61Þ
which means V ¼ 0. Q.E.D.
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