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ABSOLUTE ZETA FUNCTIONS AND THE AUTOMORPHY
NOBUSHIGE KUROKAWA AND HIDEKAZU TANAKA

Introduction

In this paper we study the absolute zeta function {,(s) associated to a certain
“absolute automorphic form” f(x) on the group

I'=R.o={xeR|x>0}.

We require f(x) to satisfy the following automorphy:
1
f<;) = CX_Df(X)7

where D eZ with C = +1.

To explain our problem we first recall the history of absolute zeta func-
tions briefly. Soulé [17] (2004) introduced the absolute zeta function (the zeta
functions over F;) of a suitable scheme X as the limit of the congruence zeta
function

Cxp = ;13} Cx/k, (5),

where

L X (Fym
Cx/E,(s) = exp (Z% p—ms> ;

m=1

see Kurokawa [12] (2005) and Deitmar [4] (2006). Later Connes-Consani [2]
(2010) [3] (2011) interpreted it as

Cxyry (5) = exp (Jw SOx] dX)

1 logx
when

S (x) = |X(Fy)| € Z[x].
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At this point, it would be suggestive to explain this integral via the Jackson
p-integral. The congruence zeta function

Cxyr, (5) = exp (Z f(}im) pms>
m=1

is written as

_ log p [*f(x)x"!
CX/F,,(S) = exp(l — Jl log x dpx ),

where the Jackson p-integral (p > 1)

[/ "ot e - S g™ (" — o)

m=1

will have the property

lim Jw g(x) dyx = Jloo g(x) dx

r—1)q

for a suitable class of functions g(x). Hence, for

_logp  flx)x—!
9(x) = 1-p'  logx

it would be reasonable to expect that

G dx>.

1 log x

fim i, 9) = exp |

Unfortunately this integral has divergency in general. For example, let
X =P". Then

n+l _
)= PR = x4t 1 =T
SO
0 —s—1
J f—(x)x dx = oo
1 logx

from the contribution around x =1, where f(1) =n+ 1.
To remedy this difficulty, Kurokawa-Ochiai [9] (2013) and Deitmar-Koyama-
Kurokawa [5] (2015) used the zeta-regularization process:

w=0 )

0
Caye ) = ex0 (5 Zugm (0.9

w
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with

1 © - e
Zy, (w,8) = T J F(x)x™ (log x) ! dx.

We notice that

| st w—
ZX/FI(WaS) :WJO f(et)e srln ldl
is the Mellin transform frequently used in the theory of zeta functions, where
f(e") is usually an automorphic form.

As an example of this procedure, we see that

—w

Zpog, (w,8) = (s—n) "+ (s—(n—1)) "4 57"

and
1

P S e )

which has a functional equation
Cory (1= 5) = (=1)" po i ().
Here
n = dim P”
and
n+1=y(P") = f(1),
where x(X) is the Euler-Poincaré characteristic. At the same time
xn+1 1
J(xX)=——7—

x—1

7(3) =

corresponding to the functional equation of (p/g, (s) under s < n —s.

The situation is exactly similar in the case of the Grassmannian scheme
Gr(n,m) classifying the m-dimensional linear subspaces in the n-dimensional
linear space, where

has the automorphy

J(x) = |Gr(n,m)(Fy)]
_ (xn_ l)n-(x"’mﬂ _ 1)
(xm—=1)---(x—=1)
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with the automorphy

Here
m(n —m) = dim Gr(n, m).

The absolute zeta function (g, mr, (s) is a rational function satisfying the
functional equation

Larnmy s (m(n —m) = 8) = (=1) 0y m (5),

where

(1) = (Gt = 11

m
The case of P" is a special case of the Grassmannian:
P'=Gr(n+1,1).

These are particular cases of the following Theorem 1, which is the first
result of this paper.

THEOREM 1. Let

with an integer | >0, and positive integers m(i), n(j). Put
deg(f) = I+ |m| — |nl,
deg(f) = deg(f) +1

=21+ |m| — |n],
where
Im| = Zm(i)v
i=1
b
n| =" n()j).
=1
Define
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with
— 1 . —s—1 w—1
Zr(w,s) = WL f(xX)x " (log x)" dx.
Then the following properties hold.
(1)

7(3) = P

with C = (—1)“"" and D = deg(f).

(2) ¢r(s) is a meromorphic function on C written explicitly by multiple gamma
functions of order b. Moreover, zeros and poles of {;(s) belong to Z.

(3) ¢r(s) is non-zero holomorphic in Re(s) > deg(f) — 1 except for the simple
pole at s = deg(f).

(4) s(s) has a functional equation

c
G(D—s)" = egr(s)Gr(9),
where ¢ (s) is written explicitly by multiple sine functions of order b.

(5) Lp(s) is a rational function if and only if f(x) e Z[x].
(6) When (y(s) is a rational function (ie., f(x)e Z[x] by (5))

(D=5 = (=17 (s).
We may refer to f(x) and {/(s) in Theorem 1 as “cyclotomic absolute
automorphic forms” and “cyclotomic absolute zeta functions” respectively since

a i le 7y,
B CREGLE)

f(x) : m(i), n(j) € Zo,
| [l () = abeZg
M le ZZO;
= f) =x" [ @u(x)"™ | cm) e Z, 3,
m=1 MeZ-

where ®,,(x) is the m-th cyclotomic polynomial.

We explain general procedures of constructing absolute zeta functions with
the theory of multiple gamma functions and multiple sine functions in §1. The
detailed formulations and the proof of Theorem 1 are given in §2. We show that
many examples of X such as A", P", Gr(n,m), GL(n), SL(n), Sp(n) are special
cases of “cyclotomic” Theorem 1 in §3.

The next theme of this paper is to consider the (absolute) zeta function {,(s)
of a virtual representation p of T.

THEOREM 2. Let p = (p,,p_) be a virtual representation of T

ps: T — GL(ds, C).
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Define
{,(s) = sdet(s — D,])_1
B det(s—D, )
det(s—D,,)
with
—p.(1
D, — lim p(x) —ps(1)
* x—1 x—1
Let

f(x) = str(p(x))
— tr(p. () — tr(p_(x).
Then the following properties hold.

(1)

where

with

%WMF&JTAMXH@%MWUR

(2) When p is self-dual (self-contragradient) unitary,
Ly(—s) = (=1)* ¢, (5)

with
deg(p) = deg(p,) — deg(p_)
=d, —d
and
7(5) =7t

In this case (,(s) (and (;(s)) satisfies the analogue of the Riemann hypothesis:
{y(s) =0, oo = Re(s) =0.
The proof is given in §4. We notice that the correspondence from a

representation p to an absolute automorphic form f may be regarded as the
Langlands correspondence over Fj.
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The next theme of this paper is to consider the absolute zeta function of
several valuables (/(sq,...,s,).

THEOREM 3. Let

m(i, m(i, q)
_ /2, /ZHI 1 (] Xy T 1)
f(x1a~--7xq)_x1 n(j,1) (/q)_l)

with an integer I(k) = 0, and positive mtegers m( k), (],k)
Put

degk +Zm1k Zn(j,k)

Define

with

Z/‘(W,(Sl,--wsq))zﬁjl S TN

wo1d dx,
% ((log x1) - -~ (log x,)) paxt - dxg

XXy
Then the following properties hold.
(1)
f 1 1y _ Cx PV D@ f x,)
o ) . b Xg
with C = (=)™ and D(k) = degy(f).
(2) p(s1,...,84) is a meromorphic function on C? written explicitly by gener-
alized multiple gamma functions.
(3) &r(s1,...,8q) has a functional equation
G(D(1) =51, ., D(q) = 59)C = er(s1,- 18 (51,5 5y),
where & (sy,...,8q) is written explicitly by generalized multiple sine functions.

The proof is given in §5. We may refer to f(x1,...,x,) and {/(sy,...,s,) in
Theorem 3 as “cyclotomic absolute automorphic forms of several valuables” and
“cyclotomic absolute zeta functions of several variables” respectively.

THEOREM 4. We assume q >2 and f(xi,...,x,) € Z|x1,...,x,. Then the
Sfollowing conditions (1) and (2) are equivalent.
(1)

JOsexg) e (=D = DT <i<j<gq).
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(2)
Cr(sty.nny8g) = 1

The proof is given in §6. We remark that in the one variable case, {/(s) =1
if and only if f(x)=0.

Acknowledgement. We thank the referee for invaluable comments refining
the paper.

1. General constructions
Let
f:T—{1} - CU{w}

be a function. We define

J(x)x*(log x)

)
w=0

where we assume that Z,(w,s) has an analytic continuation in w to a region
containing w = 0.
We define

_ 1 Jm w—1 @
X

and

G6) = exp 52/

and

For example, let

Then
Z(ws) = (s— )",
o
[ =x77,
Ly (s) = L
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and
gr(s) = —1.
It would be interesting to extend the above construction to the case of
several variables, where

[T ={1})" = Cufewl,

1 o0 o0
Zy(w, (Sla---7sq)> :WJI Jl f(xl,...,xq)xfsl "'X;‘Y‘/

—1dx; dx
x ((log x1) - - - (log x w 1_..._‘]7
((log x1) - - - (log x,)) » .,

)
w=0

0
G 10evs0) = 50 (1 20, (10-15,)

[ CRA

X1 Xq
and
Cf* (—S],. cey —Sq)
&r(S1,...,80) =
7 ( 9) Cr(styony8q)

For example, let

Sty xg) =0 oxge (o, 0 € C).

Then
Zr(w, (s1,--,5) = (51 — o) " (5¢ “q)ﬂla
1
{ S 9 7S - )
s o) (s1—o) - (59— )
f (xl’ 7xf1) =X " x;aq’
1
Cre(Sty.nn,8) = ,
(5 2 (s1401) -+ (54 + o)
and

gf(S], cee 7Sq) = (_1)61.
Now, since the theory of multiple gamma functions and multiple sine func-
tions is essential in the proof of Theorem 1 we briefly review the construction.
For
w=(o,...,0)

with @y,...,®, > 0 (actually this condition can be relaxed: see [1], [10], [11], 8],
[18], [19]) we define the multiple Hurwitz zeta function as

(r(sv X, Q) = Z (7’11601 + -+ no+ x) -,

Ny 1, >0
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This converges absolutely in Re(s) > r and it has an analytic continuation to
all se C. Moreover, {,.(s,x,w) is holomorphic at s =0. The multiple gamma
function T'(x,®) and the multiple sine function S,(x,w) are defined as

»

Se(x, ) = To(x, 0) "' Th(lo] — x,0) Y,

F"(xv Q) = eXp <%€r(sa X, Q)

and

where
lo| = w1+ + o,

Both functions I'y(x,®) and S,(x,w) are meromorphic in x e C. When r =1 we
get classical functions:

G5 x o) =S (4 %)

n=0
i)
w

0

{(s,x) = Z(n +x) 7,

n=0

with the Hurwitz zeta function

X

)
rl(x7 w) _ —wwx/w—l/z

V2n

with the usual gamma function I'(x), and

S1(x, ) =2 sin (ﬂ—x>
)

The analytic continuation of {.(s,x,w) from Re(s) >r to all seC is
obtained by using the integral expression

dt

1 0 7xt[s71
Cr (S7 x’ Q) = J e

(s))o (1—e@t)... (1 —eoi)

1 JC@ u="(log u)*!
L))y (T—wmen)o (T —uer)

du.

Hence, we see that the theory of multiple gamma functions and multiple sine
functions is obtained as a special case of the absolute zeta function starting from
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the absolute automorphic function

1
(I =x=@1)-- (1 —x—o)

J(x) =
as follows:
/ G) = CxPf(x)
with C=(-1)" and D =|o|=w; + - + w;,
L(w,s,0) = Zr(w,5),
(s, 0) = G (s),
[(lof +5,0) 70" = ¢.(s),
and
Se(s, @) = & (s).

We describe the “multiple gamma function of negative order” I'_,(x,w) for
o= (w,...,o,) also. This is defined as
s—())

F,,(x, Q) = &Xp (i C—r<s> X, Q)

0s
for
Cosxo)= Y (=D)"" " (moy+ -+ nop+ )7
Ay, 1, =0, 1
= (D)o (1) +x)7,
Ic{l,.., r}
where

Hence, we have the explicit formula

ny+tnp+1

rLxo)= [[ (mo+ - +mno+x0"

_ H (a)(]) 4 x)(_l)\lHl '
Ic{l,..r}
The multiple sine function of negative order S_,(x,w) is defined by

So(x,0) = T(x,0) "' T_(—|o| - x,0) ™"
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We remark the simplest case r = 0:

Lo(s,x,0) = x77,
mmm:;
and
So(x,0) = To(x,0) 'To(—x,0)
=—1.
We have
S (x,0) =1

for r > 1 as shown below. Let
S0 = (1 =x7) (1= x )
_ Z (_1)\1\x7w(1).

1c{l e, r}
Then
7(3) = e
X
with C = (=1)" and D = —|w|. Moreover we have
£ w5, 0) = Zy(w,s),
[ (s,0) = G (s),
(el +5,0) ™ = G- (s),
and

S_(s, ) = &(s).
Now, the fact
S_i(s,0) =1

is proved exactly in the similar way as Theorem 1 (6), but we show it directly
here from

S_(s,0) =T_(s,0) 'T_(~|o| — 5,0)""

Ic{l,...r} Jc{l,..,r}
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In the second factor replace J by I ={1,...,r} —J. Then we have

S = [[ (6+o)™" (ws—a@) ")

Ic{1,...r}

as expected above.

2. Proof of Theorem 1

(1) From
() — 1) (7@ 1)

S(x) = : (xn) — 1) - (xn®) — 1)

we obtain
1 o (x—m(l) -1 ,(xfm(a) -1)
/() = e e
(1)@ bydeal) ("D —1) - (2" — 1)
(xn(l) _ 1) .. (x”(b) — 1)

= Cx Pf(x)

with
C— (_1)a7b
and
D = deg(f) = deg(f) + 1.
(2) Since
b (xm(l) —-1) ..(xm(a> —1)
flx)= x!l (1= x—nM). (1 = x )
1
- 1) 4=l =lnl+m(1)
(1 _ xfn(l)) (1 — X*n(b>)lc{§;a}( ) x

with
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we get
' - (_l)a—m J% x—(s—l+\g|—m(l))(log x)w—l dX
Zf(w, 5) = IC; u Tw) J, 1- x—n(l)) (1= x—n(b)) X
= > (=) Me(w,s =1+ |n| — m(I),n)
Ic{l,...,a}
Hence

Especially, {;(s) is meromorphic on C, and its zeros and poles belong to Z.
(3) From the expression

{r(s) = Dp(s — deg(f), )

x I Tols—1+nl—m(1),mD""
IC{1,...,a}

= Ty (s — deg(/), n)
x [ Tols—deg(f) +mD),m"

Ic{l,...,a}

we know that {;(s) is non-zero holomorphic in Re(s) > deg(f) — 1 except for the
simple pole at s = deg(f) coming from the first factor.
Moreover

_ _n1
ResS,_qeg(s) G (5) = pp(m) ™" x [] Tolm(1), )"
I+#0

with

py(n) = I (kin(1) + -+ kpn(D)),

which is the Stirling modular form of Barnes [1] (1904) and [] denotes the
regularized product of Deninger [6] (1992):
‘v—0>.

d ,
A=exp <— — >y 1
Hr=er(-a
In [20] (2012), Tanaka investigated the Stirling modular form.
(4) From (1) we see that
fH(x) = Cx7Pf (x)
with C = (=1)*"" and D = deg(f).
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Hence, we know exactly as in (2) that
G(s) = G (D +5)€

is a meromorphic function. Thus

Erl S :Cj*(_S)
/() (s)

RACEDN
&(s)

is also a meromorphic function and
(D=5 =L (9)er(s)-

Moreover, from the explicit formula for {;(s) using the multiple gamma function
proved in (2) (3) we obtain the following explicit formula for &s(s) using the
multiple sine function:

Ic{l,...,a}
In fact,
Cf(S) = Hrb(s —deg(f) + m(I),n)(‘”"‘
and
éf(D — S)C — HFb(D — 85— deg(f) + m([)jn)C(_”\l\
= [[To(D — s — deg(f) + |m| — m(I),n) c(-nh-
T
- Hl"b(l+ lm| — m(I) — s, n)<—1)m+b
T
= Hrb(|ﬂ| — (S — deg(f) + m([))’ﬁ)(_l)\lwu
)
give
5(5) = £, (5) (D — )

Yl

TT(To(s — deg(f) +m(I),n) "' Ty(ln] — (s — deg(f) + m(1)),m) ") D
I

[T k(s — deg(f) +m(1),m) """
1
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(5)
(a) proof of «):
Let
f(x) = Za(k)xk € Z[x].
k
Then

Zi(w,9) = Y atk)(s k)™,

k

SO

&) = [Js — 0@

k
is a rational function.
(b) proof of =):
From
xl_‘ﬂl |1|
o _1ya— m(I)
f(x)_(l—xfn(l))-“(l—x*"(b)) Z ( 1) X

1cil,...4} Kty k=0
Let
Z xf(kln(l)Jr---Jrk;,n(b)) _ Z vn(,u)x I
Kty k=0 £>0
with

va(p) = [{(kr, .. ko) [ Kay oo kp 2 0,kin(1) + - + kpn(b) = p}.
Then we get

f(x) = Z (_1)a*|1\xl*\ﬂ\+m(1) (Zva(ﬂ)x”>

Ic{l,...,a} 1=0

=Z< > (—1)”""vﬁ(u+l—|n+m(1)))x"

Ic{l,..,a}

=Z( > (—1)|I|Ug(#+deg(f)—m(I))>X_”~

Ic{1,...,a}
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Now, from the expression

Gls)= ] Tols—deg(s) +m(1),n) "

17l

we see that

ordee, &p(s) = > (=)Mo (u+ deg(f) = m(1)),

Ic{l,...,a}

where the order is considered as the order of a pole (so, negative order for a
zero). Thus we obtain the expression

Fx) =3 (ord oy Gy(s))x ™

u
When (;(s) is a rational function,
orde——, {r(s) =0

for |u| sufficiently large.
Hence, f(x) is a Laurent polynomial with Z-coefficients. Since
m(i) _
_ L =)
f(x) =X Hj(xn(j) — 1)
shows that f(0) is finite, f(x) € Z[x].
(6) From (5), put

p
Then
) =Y all)x*

Since ,

Zp(w,s) = 3 alk)(s = k)™
and ,

209 = Y albls + )
we get k
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and
L (s) = [ (s + 0.
k

Hence

Thus, by (4) we obtain the functional equation

Lr(deg(f) — )N = (=1 W (s),

Otherwise we may argue as follows. The equation
1 -D
S v Cx 7f (%)

of (1) (C=+1, DeZ) for

implies

Hence, we get

By the way

gives

601
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G- =T[(@—k)—s) W

=

where we used

Thus
(D) ¢
Sf(ﬁ') gj(s)
_ k=5 ™
=R
= (—l)f(l). [QED of Theorem 1]
3. Examples

In this section we illustrate by examples that the absolute zeta functions
{xsr,(s) of some typical Z-schemes over F; are identified with the zeta func-
tions {;(s) of certain cyclotomic absolute automorphic forms f such that f(x) =
|X(F,)| for primes powers x; and that in each subsection we list the f(x),
Cxyr, () = {f(s), the invariants D, C, [, a, b, f(1) as Theorem 1, and the func-
tional equation for (y g, (s).

3.1. Affine space A”.
S(x) =x",
Carry (5) = Lr(s) =
[D=2n, C=+1; I=n, a=b=0; f(1)=1]
Caryry (20 = 5) = —Lamgp, (s)-

1

s—n

3.2. Projective space P”.

n+171
f(x):x”+xn71+...+1:x—7
x—1
1
(S—n)..-s.

é'Pn/Fl (S) =
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[D=n C=+1;1=0,a=b=1,m(l)=n+1, n(1)=1; f(1)=n+1]
CP"/FI (n—ys)= (*l)nHCP"/Fl (5).
3.3. Grassmannian space Gr(n,m).

B (X" _ 1)“.(xn—m+l _ 1)
f(x)* (x’”—l)--~(x—1) )

CGr(n,m)/p, (s) 1s a rational function. ( n) |

[D=mn—m), C=+1;1=0,a=b=m; f(1)=

Crtn,myp, (m(n —m) — ) = (—1)(”n‘)CGr(n,m)/F1 (5)-

3.4. General linear group GL(n).
F0) = XV 1) (E = 1) (= 1),

Cormyw (5) is the rational function I'_,(s —n?,(1,2,...,n)).
-1 -1
p=""=D oy =" b ) =0

n(3n—1 =
CGL(n)/F, <% - S> = L6LnF, (5)-

3.5. Special linear group SL(n).
S0 = ¥R 1) (0 1),
Cspomyr, (s) is the rational function T'_(,_y)(s — (n? —1),(2,3,...,n)).

[D:@—l, C= (=)™ 1:”(”2_1), a=n—1,b=0; f(1)=0]

n(3n—1 SO
CsL(n)/Fy <(f) —-1- S) = Lsrmw, (5)

3.6. Symplectic group Sp( ) (size 2n).

S =X = (et = 1) (2 = 1,
Csp(my/F (5) is the rational function T'_,(s — (2n? +n),(2,4 .o, 2n).
[D=n(Bn+1), C=(-1)" I=n* a=n, b=0; f(1)=

Cspny/p (n(3n +1) —S)(_ = Csptn) /1 ()-
Remarks.

(1) Lspmyri (8) = Loz (%)

@ Coprm, ) = Corms (57
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3.7. Multiple gamma functions of order r.

1
S(x) = (x"M 1) (x") = 1)’

{r(s) = Ti(s + |n|,n).
[D=—n|, C=(-1);1=0,a=0, b=r]
Cr(=lnl = )TV = p(s)er (s),
er(s) = Sy(s + |nf, n).

3.8. Multiple gamma functions of oder —r.
S0 = ("0 = 1) (60 - 1),
() = H (s — m(l))(fl)r,um,

Ic{l,...,r}
m(l) = Z m(i)

4. Proof of Theorem 2
(1) Let

with

defined by

Then
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and
d _
o1 Xp(k) (x)—1
D, = 113} kg—)l( x—1
B(1) 0
0 Bld-)
Hence

)N
_ U _ G
Hence
dy d
Zp(w,s) =D (s—a(j) ™" = (s—Bk)™
= l=1
and
d_
oy 2 il = B0
70T = a0))

Thus, we get the identity
Epls) = Gr(s):
(2) From the unitariness of p,, we have
dy ) d_
f(x) = Zxa(./) — Zxﬁ(k)
=1 k=1
with a(j), (k) € V—1R.

By the way, the expression

Ly(s) =i

605



606 NOBUSHIGE KUROKAWA AND HIDEKAZU TANAKA

obtained in (1) gives

g s =Bk
{p(—s) = ke :
[[2 (=5 —a()))
_ (1t i+ B0)
I (s +2())
_ (71)deg(/))Cf*(S)’
where we used
d, d
f*(x) = Zx—%(/) _ Zx—ﬂ(k)
j=1 k=1
Now, the self-duality of p, means
pvi = pia
where
piex) = palx)
In particular, we get
L) = s
tr(‘p (x71) = tr('p_(x71))
= tr(p.. (x)) — tr(p_(x))
tr(p (x)) — tr(p_(x))
= f(x).
Thus we have
Ly(—s) = (1) " (s)
v (—l)deg(/')C/,(s). [QED of Theorem 2]
5. Proof of Theorem 3
Now, we introduce the generalized multiple gamma function I'(x1, ..., x,; Q)
and the generalized multiple sine function S(xi,...,x,;Q) respectively.
For

Q— .

o(r1) - wlrg)
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with w(1,1),...,w(r,q) > 0 (actually this condition can be relaxed: see [13], [14],
[15], [16], [7]) we define Shintani zeta function as

C(sy (X150, X Z H(anzk +xk> .

ny,..,n.>0k

We remark that Shintani zeta function was introduced by Shintani [13], [14]
(1976) but the above definition is a modified version by Friedman-Ruijsenaars [7]

(2004). This converges absolutely in Re(s) > g and it has an analytic continua-

tion to all se C. Moreover, (s, (x1,...,X,),Q) is holomorphic at s =0. The
generalized multiple gamma function I'(xi,...,x,;; Q) and the generalized mul-
tiple sine function S(xi,...,x,; Q) are defined as

0
Cxi,...,x;Q) = exp(aé(s, (X1,...,%4), Q)

)

and
S(xt, ..., x5 Q)
. (-1)’
:F(xl,...,xq;Q)ll"<Zw ) — X1, Zwlq — X3 ) .
i=1
Both functions I'(xi,...,x;Q) and S(xi,...,x;Q) are meromorphic in
(x1,...,x4) € C1.
(1) From
a m(i, 1) m(i,q)
1(1)/2 [1iZ (% X -1)
f(x1, ~~7xq) = xl( / xé(q)/z Ib : n(j.1) z,(j )
[T () cxg 7 = 1)
we obtain
A . r = Cx "W PO (xy, L xy)
xl’ 7xq 1 q 9 ) vy
with
C=(-1)""
and
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(2) Since

(0)/2-Y,n(i. 1) 1a)/2-Y,n().q9)
x .« .. xq

S, xg) = X

« Z (71)“7‘”)@"(1’1) .. .x;ﬂ(l,q)
Ic{l,...,a}

with

we get
Zr(w, (s15...,5))
it T : . 1)\ "
= > > COTIT s Y+ Dnlik) —m(I k) = =5
U1, Ug 20 IC{1,...,a} k=1 j=1

Hence

Cr(s15-58)

q b ; I(k)
= H (H H<5k+z(0j+1)n(],k)—m(17k)_7>>

(_l)a—\lHl

Jj=1

. . (—pyli
H‘ H(sk—degk(f)+m([,k)+Zvjn(j,k)>> ,

Ic{l1,...,a} \Vi,..,0q k=1 j=1
I(k
where deg,(f) = %4— Sy m(i k) — Z};l n(j,k). Thus we obtain
Glsieons) = [ Tl —degy(f) +ml1).....,
Ic{l,...,a}
_nl

sy — deg,(f) +m(L,q); N) V",

where
N — ) .
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and

F(xl,...,xq;N) = Fbvq(xl,..

is the generalized multiple gamma function. Hence {;(s1, ...

phic function on CY.
(3) From (1) we see that

Sr(x1, . xg) = Cxl_D(l) x; P

q

Cre(=81500,—8)
= (D(1) = s1,...,D(q) —5,)€
I(1)

>
>

i=1
Thus

I(g)

= [I t(=t=si+m@n),.... =2 —s,+m(I,q);N
2 2
Ic{l,...,a}

,84) 1s a meromor-

ey Xg)

with C = (=1)*" and D(k) = dggk(f). Hence, we have

(_ l)a—bﬂl\

n(j, 1) —s +deg,(f) —m(l,1),...,

<71)h+\l\

n(]a q) - Si[ +degq(f) - Wl(l, q)aN

gr(si.59) =[] Sl —degi(f)+m(,1),...,

Ic{1,..,a}

_nMl
sy — deg, () +m(l,q); N) V"

where
S(x1,..., x5 N)

b

. (-1
= F(xl,...,xq;N)_ll"<Zn(j,1) —xl,...,Zn(j,q) —xq;N>
=1

J=1

is the generalized multiple sine function.

6. Proof of Theorem 4

(a) Proof of (1) = (2):
Let

S0 x) = Y (=D —Dgylx, ...

I<i<j<n

[QED of Theorem 3]

7xq)
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with

gg,-(xl,...,xq) = Z b!-,-(kl,...,kq)x{“ --~x5‘/ EZ[X],...,Xq].
1 kt/

ki

Then we have

1 1

Z/'(Wv (Sl7~--7sq)) = Z Z bU(k17-~-7kq) (Sl *kl)w-”(si—l *ki—l)w

1<i<j<nki,..k,

1

1 1 1
X W W w" W
((Si —ki—=1)" (si—ki) ) (siv1 — kig1) (sj-1 —kj-1)

1 1 1
X w W wo W
((Sj —k—=1" (5—k) ) (41 = ki)™ (5q — ky)

Since

0
%Zf(m (81, +,5))

we have

0
O R ()

wO)

=1.

Thus, we obtain (1) = (2) of Theorem 4.
(b) Proof of (2) = (1):

Let
S(x1, 7Xq) = Z a(ky, 7kq)x{ﬂ e e Z[xl’ .
ki, ky
Since
H 1 a(ky ..., kyq)
Cr(st,. .0, 8q) = < > .
' ! ki, ky (Sl _kl) (Sq kq)
we have
H(Sl _kl) zkz ..... kqa(kl ..... kq) 1
ki
This gives
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for every k. Similarly, we have

Sooalk,. k) =0,..., > alk,... k) =0
kl,k3,m,kl, kl,kz,m,k{,,z,kq

and

a(kl,...,kq) =0
k|‘k2,4..,kq,]

for every k»,...,k,—1 and k, respectively. Now f(xi,...,x,) divided by x; — 1
can be written as

S(x1,0,x0) = (x1 = Dy (X1, .., xg) +r1(x2, ..., Xg).
Since ri(x2,...,x,) divided by x, — 1 can be written as

FL(X2, .00, Xg) = (X2 = 1)gha(X2,. .., Xy) +12(x3, ..., Xg),
we have

SOon, o, xg) = (x1 = Dy (vr, ., xg) + (2 — Dy (32, .., Xg) + 12(X3, ..., Xg).
When it’s repeated, we have
SOen, o xg) = (10— Dy (x1, ..o, xg) + (%2 — Dy (x2, ..., Xy)
et (g1 — 1>¢q71(xq717xq) + 1g-1(xg)-

Since

S alky,... ky) =0,

ket ez, g1
we have
rg-1(xg) = 0.
Thus, we have
S, xg) e —Lxa—1,... x40 — 1).
Similarly, we have

X, ox) e —Lxa—1,.. ,xp0—1,x,—1),..., f(x1,...,Xg)

e(x—1lxzs—1,...,x,—1).
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Hence, we have

D-&

S(x1,...,x4) €

(xi—=1,..,xio = Lxi — 1,0, x,— 1),
1

Finally, we show

q
(=1, xi = Lxg =1L x = 1) = (=D —1)[1<i<j<q).
i=1

Obviously, we have

q
(xi=D(xj—1]l<i<j<q)C ﬂxl—l —Lxig =1, x,— 1)

Now we show

q
(e —1,.. ~Lxgi—Lo.ox,—Dc((xi—Dx—-D[1<i<j<q).
i=1

If f(x1,....x0) e N (1= 1,...,xio1 — Lxisr — 1,...,x, — 1), then we have

SOor, o, xg) = (2 — Dha(xr, ..o, xg) + (33 — Dhns(xa, ..., xg)
+ 4 (g = Dhig(x1, .. .5 xg),

SOer, o, xg) = (x1 = Dhoi (i, ..., xg) + (33 — Dhos(xi, ..., xy)
+ 4 (g — Dhog(x1,. .., xg),

SO, xg) = (10— Dhgi(xn, oo xg) + -+ (X1 — Dhgg—1(x1, ..., Xg).
Using
S, xg) = (20 — Dha(xr, ..o, xg) + (3 — DAz (e, ..., xg)
+ o4 (g — Dhng(x1, ..., xq)
and

f(xl,...,xq) = (x1 — 1)h21(x1,...,xq) + (X3 — 1)/’123(}6],...,)@1)
+ o (g — Dhog(x1, ..., xg),

we have hip(x1,...,x4) € (x1 —L,x3—1,...,x,—1). Similarly, we have

h13(x1,...,xq)e(x1 — 1,x2— I,X4— 1,...,xq— 1),...,h1q,1(x1,...,xq)

e(xi—Lxm—1,...,x;020—1,x,— 1)



ABSOLUTE ZETA FUNCTIONS AND THE AUTOMORPHY 613

and hig(x1,...,x4) € (x1 —1,x2—1,...,x,1 —1). Hence, we obtain

SO nxg) e (=D -1 <i<j<gq)

Thus, we obtain (2) = (1) of Theorem 4. [QED of Theorem 4]
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