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ON DEVIATIONS, SMALL FUNCTIONS AND STRONG ASYMPTOTIC
FUNCTIONS OF MEROMORPHIC FUNCTIONS
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Abstract

The paper addresses two long-standing problems: of extending the second main
theorem of Nevanlinna to the case of small functions, and of finding an upper limit for
the number of asymptotic functions of a function of finite lower order. Upper estimates
of the sum of deviations and the numbers of strong asymptotic functions and strong
functional asymptotic spots of meromorphic functions of finite lower order are
presented. The structure of the set of Petrenko’s deviations from small functions
for meromorphic functions of finite lower order is examined. An analogue of Denjoy’s
question for strong asymptotic small functions of meromorphic functions of finite lower
order is also considered.

1. Introduction

Throughout the paper we apply the standard notations of value distribu-
tion theory of meromorphic functions: N(r,a, ), N(r,a, f), N(r, f), m(r,a, f),
m(r, f), T(r,f), d(a, f) and O(a, f) ([18]). Since 1920’s the problem of general-
izing Nevanlinna’s second main theorem has been approached a number of times,
beginning with Nevanlinna’s own theorem on three small functions. Following
earlier results of Chuang, Yang Le and Osgood, in 1986 Frank and Weissenborn

proved the theorem for rational defective functions ([8]).

THEOREM 1.1. Let f be a transcendental meromorphic function. Then for
distinct rational functions qi,...,qr and every ¢ >0 we have

k

m(r, f)+ Y m(r,qy, f) < 2+ T(r,f)

v=1

for r — oo, possibly except for r in a set of finite linear measure.
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A meromorphic function « is called a small function with respect to f if
T(r,a)=o(T(r.f)) (r— o0).

The set of all small functions of f is denoted by &(f). In 1986 Steinmetz
proved a result which was more general than the theorem obtained by Frank and
Weissenborn ([25]).

THEOREM 1.2. Let [ be a nonconstant meromorphic function and let {av}f:1
be a set of pairwise distinct meromorphic small functions of f. Then for every
e> 0,

k

m(r.f)+ > m(r,a,, f) < 2+&)T(r.[)

v=1

for r — o0, possibly except for r in a set of finite linear measure.

The analogue of the second main theorem including ramification factor was
finally obtained by Yamanoi in 2004 ([26]).

THEOREM 1.3. Let [ be a nonconstant meromorphic function on C and let
ai,...,a; be distinct meromorphic functions on C. Assume that for v=1,... k,

T(r,a)) = o(T(r,f)) (r— ).

Then for every & >0 we have

k
(k—2—-¢&)T Z]Vrav,

v=1

for r— o, r¢ E, fEdlog r<o. We also have the defect relation,

3" (Ola, f)+0(a, ) <2

aeS(f)

In 1969 Petrenko set up the question: how will Nevanlinna’s theory change
if ' we measure the proximity of a meromorphic function [ to a value a applying a
different metric? He introduced the following function of deviation:

max log*|f(z)] for a = oo,

L(r.a, f) =

max log* for a # oo.

|z|=r

1 ’
f(Z) a
I lle quaIltlty

Bla, f) = lim inf gT(Z’r

r—oo
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is called the magnitude of deviation of f with respect to a, and

Q(f) == fae C: fla,f) > 0},

the set of positive deviations of f. Let us remind that the values

o := lim sup log T /) and A :=liminf log 7(r, /)
F—o log r F—00 log r

are called order and lower order of a meromorphic function f, respectively. In
case of meromorphic functions of finite lower order the properties of f(a, f)
and d(a, f) are similar. Petrenko himself obtained the sharp upper estimate of
p(a, f) and also an estimate for the sum }» _&pf(a,f) ([20]).

THEOREM 1.4.  If f is @ meromorphic function of finite lower order A, then for
all ae C we have
7l
fla, f) < B(4) := < sin
Lz if A>0.5.

> Bla,f) < 8l6m(i+1)°.

aeé

if 2<025,

The conjecture asserting that the inequality f(co,f) <mp is true for entire
functions of order o, 0.5 < o < oo, was stated by Paley in 1932 and proved
in 1969 by Govorov in [11]. In [17] Marchenko and Shcherba presented the
following exact estimate of the sum of deviations for functions of finite lower
order and solved the problem posed by Petrenko in [21].

THEOREM 1.5. If f is a meromorphic function of finite lower order A,
then

> Bla,f) <2B(A).

aeC

The value
m(r,a, f)

Ala, f) = hfgi}}l’ W

is called Valiron’s defect of f at a. 1f A(a, f) >0 we say that a is a defective
value of f in the sense of Valiron and denote V(f):={aeC:A(a,f) > 0}.
There is an interesting relationship between the set of positive deviations and the

set of Valiron’s defective values. The result belongs to Shea and was presented
by Fuchs in [9] (see also [21]).
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For y > 0 we put

A
/A2 — A) if y>05 orsin%>\/;

(1—(1—=A)cosmy) if 0<y<0.5 and sin% < %

B(y,A) = -
sin 7y

THEOREM 1.6. Let [ be a meromorphic function of finite lower order .
Then for each a e C we have

Bla,[) < B(2,Ala, f))-

CorROLLARY 1.6.1. For meromorphic functions of finite lower order

Q) c V)

The estimate in Theorem 1.6 is sharp, which was shown by Ryshkov in [23]. In
1973 the result of Shea was extended to n-valued algebroid functions by Niino in
[19].

If pla,f) >0 and ae C then a meromorphic function f approaches the
value a fast in appropriate components. It could be expected that in those
components the derivative /' approaches 0. Hence a natural question is if the
sum ). B(a, f) can be estimated by A(0, /). This problem was solved by
Marchenko in 1999 ([14]).

THEOREM 1.7. For a meromorphic function of finite lower order A the
following inequality holds

S Bla.f) < 2B(L.AQ0. f)).

a# oo

Let E C (0,00) be a measurable set. The quantities

_ dt
logdens E = lim sup J —,
R—oo 108 R )pn g ¢

1 dt
logdens E = lim inf J —
_— R—o0 10g R EM[1,R] t

are called, respectively, upper and lower logarithmic density of the set E. In [13]
we can find the following analogue of the second main theorem for Petrenko’s
theory.

TueOREM 1.8. Let f be a meromorphic function of finite lower order A and
order p. Let {av}f:l be a finite set of distinct values, a, € C, 1 <v <k. For
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0<y< oo, put

k
Eiy) = { 3 Z(ran f) < ZB(y)T(r,f)}-
v=1

If g is an entire function, put

k
Ex(y) = { 2> Z(r,a,,9) < BO)T(r, g>}.
v=1
We have

logdens Ej(y) > 1 7% and logdens E;(y) > 1 f'g j=12.

The following extension of Theorem 1.8 appears in [15].

THEOREM 1.9. Let [ be a meromorphic function of finite lower order A and
order p. Let {av}f:l be a finite set of distinct complex numbers, and let ¢ be a
fixed positive number. For 0 <y < oo, we put

k
E(y) = {r : Zg(raavaf) < 2B(y7A(0,f,))T(raf)}

y=1

if A0, f") >0, and

E(y) = { > ff(r,av,f><eT<r,f>}

1<v<k
if A(0,f")=0. Then, in both cases,

logdens E(y) > 1 —% and logdens E(y) > 1 — L.

v

Let now f be a meromorphic function and a—a meromorphic small
function of f. We put
Z(r,a, f)

Bla, f) = liflliﬂnf T /)

where Z(r,a, f) = log* max If B(a,f) >0 we say that a is a

1
@ — e
defective function of f in the sense of Petrenko. Let us remind that for a
meromorphic function f and A:R; — R we write a(r) = S(r,f) if h(r) =
o(T(r,f)) for r— o0, r¢ E, mes E < oo. In 2011 the authors obtained the
following theorem, which is a generalization of Theorem 1.8 ([3]).
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THEOREM 1.10. Let f be a transcendental meromorphic function of finite
lower order A and order p, such that N(r, f) = S(r,f) and let 0 <y < c0. Let
also {qv}{le be distinct rational functions. Put

k
E(y) = {V DY L(ran f) < B(V)T(nf)}

v=1

We have

logdens E(y) > 1 —g and logdens E(y) > 1 —g.

Theorem 1.10 implies, that the set of rational functions ¢ with positive deviation
from a function f with N(r, f) = S(r, f) is at most countable and

S Blg. f) < B().
(q)

A standard definition (see, for instance, [4], or [10] p. 233) says that a € C is
an asymptotic value of a meromorphic function f if there exists a continuous
curve I' C C,

Iiz=z(t) (0<t< o), z(t) — oo for t — oo,
such that
lim f(z) = lim f(z(¢)) = a.

z—oo,zel t— o0

We call a pair {a,T'}, defined as above, an asymptotic spot of f. Two
asymptotic spots {a;,I'1} and {a,I»} are considered equal if gy =a,=a
and there exists a sequence of continuous curves y, with one end of each y,
belonging to I'; and the other to I';, and

lim min |z| = oo, lim (z) = a.

Jim min || L /()
A classical theorem of Denjoy-Carleman-Ahlfors gives the sharp upper estimate

of the number of asymptotic spots for entire functions of finite lower order
(see: [10]).

THEOREM 1.11. An entire function of finite lower order A cannot have more
than [22] different asymptotic spots connected with finite values. Here [x] denotes
the integer part of Xx.

The number of asymptotic spots of an entire function of infinite lower order may
be infinite (it is indeed for f(z) = exp(exp z)). The number of asymptotic values
of a meromorphic function may be infinite even for functions of finite order.
In 1986 Eremenko proved that for every value o, 0 < p < oo there exists a
meromorphic function of order o with the set of asymptotic values equal to C
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([6]). It shows that it is not possible to put an upper bound for the number
of classically defined asymptotic values for mermorphic functions in general. In
2004 Marchenko introduced the following definition.

DerINITION 1.1. We say that ae C is an oy-strong asymptotic value of a
meromorphic function f, if there exists a continuous curve

Iiz=z(#), 0<t<o0,z(t) > 0 as t — o0,

such that
-1
hrfiglf g|f((|zz((ll))) _f§l| —ala) > >0, if a oo
hm 1nf %Jz(;(?[))' o(o0) = ap > 0, if a= co.

If a is an ay-strong asymptotic value of f, then an asymptotic spot {a,I'} is
called an ogy-strong asymptotic spot.

In other words, a is a strong asymptotic value of a meromorphic function f if
on an asymptotic curve I" the function tends to a with the speed comparable with
characteristic 7'(r, f). It is easy to notice that, if a is an oy-strong asymptotic
value of f, then the magnitude of Petrenko’s deviation f(a, f) > op. It means
that a is also a defective value in the sense of Petrenko. In the same paper from
2004 Marchenko proved an estimate of the number of strong asymptotic spots

(16]).

THEOREM 1.12. Let [ be a meromorphic function of finite lower order J.
and let {a,,T',}, v=1,2,... k, be distinct ay-strong asymptotic spots of f. Then

e<[20]

%o

The example of f(z) =exp(exp z) again shows that no similar upper estimate
exists for functions of infinite order.

In 1956 Denjoy made the following conjecture concerning the set of
asymptotic functions of an entire function ([5]).

If [ is an entire function of finite lower order A and ay,a,...,a; are entire
functions of order less than 1/2 such that f(z) — a,(z) — 0 for z tending to infinity
along the path T',, 1 <v <k, then k <[2]].

The problem is still open, although there have been some results, for instance
of Denjoy himself ([5]), Somorjai ([24]) or Fenton, who proved in [7] that the
conjecture holds for asymptotic functions of order less than 1/4. The assump-
tion that the asymptotic functions should be of order less than 1/2 is essential.
If we take f(z) =sin v/z/+/z (f(0) = 1), then all a.(z) = c¢sin /z//z, ce C are
sin /X

\/}

— 0 for x — +o0.

its asymptotic functions as f(x) —a.(x) = (1 —¢)
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Even the number of rational asymptotic functions of a meromorphic function
can be infinite, which the example of f(z) =exp z and its asymptotic functions
b.(z) =c¢/z (c e C) shows. It is interesting to learn, however, if for meromor-
phic functions the number of strong asymptotic functions can be estimated.

DrrmNiTION 1.2, Let f be a transcendental meromorphic function. We say
that a meromorphic function a is an oy-strong asymptotic function of f, if there
exists a continuous curve I' : z =z(¢), 0 < ¢ < o0, z(f) — 0 as t — oo, such that

o log|f(2(1) — a(z(1)]”
(=00 T(|z(0)l,.f)

A pair {a,I'} is called an «y-strong functional asymptotic spot of f.

> o9 > 0.

In [3] we have given two estimates of the number of strong rational asymptotic
functions.

THEOREM 1.13. Let [ be a meromorphic function of finite lower order J.
with N(r, f) = S(r, f) and let m denote the number of distinct ag-strong rational

asymptotic spots of f. Then m < [M]

%

THEOREM 1.14. Let f be a meromorphic function of finite lower order 1,
{pl’rll}v" '7{p1arill}a o -7{Pk,r‘{{},- : '7{pk7rz{z}7 ht+b+-+ik=m,
—m  distinct oy-strong polynomial asymptotic spots of f and d:=

(d+ 2)3(1)]

max; <,<, deg(p,). Then m < [ »
0

2. Main results

Applying a method introduced by Petrenko it is possible to examine the
structure of the set of positive deviations from small functions for meromorphic
functions of finite lower order.

THEOREM 2.1. Let f be a meromorphic function of finite lower order. Then
the set {ae S (f): f(a,f) >0} of meromorphic small functions of f, which are
defective in the sense of Petrenko is at most countable and

2(1 4+ V2)(n2)? if 2>=0.5,
22+ (1+2) sin 7r/1]< nt

B0, )+ > Blaf) <
)

acs(f sin A

2
) if 0<A<0.5.
In case when functions a are constant the statement follows from Petrenko’s
result for entire curves (Theorem 3.3 in [22]). Applying Theorem 2.1 we arrive
at an interesting conclusion concerning asymptotic functions.
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COROLLARY 2.1.1.  Let f be a meromorphic function of finite lower order A.
The set of ag-strong small asymptotic functions of f is finite and the number k of
such functions fulfills the inequality

2(1+V2) (’Z}ﬂ if 1=0.5,

k<

A

o Sin A

2
2(2+(1+\/§)sinni)< )] if 0<i<05.

As can be observed, there is no direct analogue of Denjoy’s hypothesis for strong
asymptotic functions. Although the number of strong asymptotic small func-
tions depends on the order of f, there is no strict upper bound for the order of
a strong asymptotic function other that being a small function of f. A simple
example of a function exp z and its strong asymptotic functions a.(z) = cexp z
(ce C) shows that the condition that a should be a small function of f is
essential.

The following extension of Theorem 1.9 concerns meromorphic functions

with N(r, f) = S(r, f).

THEOREM 2.2. Let f be a meromorphic function of finite lower order ) and
order p, with N(r, )= S(r, f). Let 0 <y < co and let {pl,}{;l be distinct poly-
nomials with d = max,<,<, deg p,. We put

E(y) = {r: > Llrpif) < B(%A(07f<d+”))T(r,f)}
I<v<k
if A0, £194D) >0, and for a fixed positive number e,
E(y) = {r: S 2 puf) < sT(r,f)}
I<v<k

if A0, fU4D) =0. Then we have

logdens E(y) > 1 —g and logdens E(y) > 1 — L

v

As a result, we obtain an upper estimate of the sum of deviations with respect to
polynomials of limited degree.

COROLLARY 2.2.1. Let f fulfill the conditions of Theorem 2.2 and let B,
denote the set of all polynomials of a degree less or equal to d. Then

> B(p.f) < B, A0, £1)).

PeBy

Also the following estimate of the number of asymptotic polynomials holds.
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COROLLARY 2.2.2. If f fulfills the conditions of Theorem 2.2 and {Pv}le
are distinct og-strong asymptotic polynomials of [ with d = max; <, <, deg p,, then
(d+1)
- [BU.A0,717))
o

, where [x] is the integer part of the number x.

For meromorphic functions with N(r, f) = S(r, f) we can put an upper limit not
only on the number of strong asymptotic polynomials, but also on the number of
strong polynomial asymptotic spots.

THEOREM 2.3. Let f be a meromorphic function of finite lower order A with
N(r,f) = S(r, ) and
{pl,l"ll},...,{pl,l"}l},...,{pk,l"{‘},...,{pk,l"fz}, it +i+- -+ i =m,

—og-strong polynomial asymptotic spots of [ with d = max,<,<; deg p,. Then
< B(;”vA(O7f(d+l)))

%o

The following estimates hold for transcendental meromorphic functions of finite
lower order without restrictions on the quantity of their poles.

THEOREM 2.4. Let f be a transcendental meromorphic function of finite lower
order . and order p, and let 0 <y < oo. Let also {pv}{f:l be distinct polynomials
with d = max;<,<; deg p,. We put

E(y) = {r : 1;;kif(r,pv,f) < (d+2)3(%A(O,f("*”))T(r,f)}
if A0, £y > 0, an_d ;’or a fixed positive number e,

E(y) = {r : 1;;kf(mvv,f) < sT(r,f)}
if A0, fU4D) =0. Then we ha;e_

logdens E(y) > 1 73 and logdens E(y) > 1 — P

v

COROLLARY 2.4.1. Let f fulfill the conditions of Theorem 2.4 and let B,
again denote the set of all polynomials of a degree less or equal to d. Then

Y Blp, f) < (d+2)B(2,A0, /).

PeBy

We also have the following upper bound for the number of polynomial
asymptotic spots.
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THEOREM 2.5. Let f be a meromorphic function of finite lower order A,

1 1 k k . . .
{plar]}7~~'7{plvril}7'"7{pk7r1}7"'7{pkvrik}7 nh+i+--+i =m,

—m  distinct  ag-strong  polynomial asymptotic spots of f and d:=
(d +2)B(2,A0, f 1))
oo '

max;<,<x deg(p,). Then m <

3. Auxiliary results

In order to prove Theorem 2.1 we apply the following formula by Petrenko
concerning the intervals where the value of #(r, 0, f) is not too big in com-
parison with T'(r, f) ([21]).

Lemma 3.1. Let [ be a meromorphic function of finite lower order
A, x >max(4,0.5). Then for any numbers S, R such that 2S5 < 0.5R we
have

0.5R 1 0.5R 0.5R
[N g T[S T[N,
28 r/°+l . A 28 r/”+l 4x 28 r;’+l
Sin —
2x
¢ [T0S.)) TCRJ)
x—A S R '

We also need a modification of the lemma on the logarithmic derivative, which
follows from Lemma 4 in [13].

Lemma 3.2. Let [ be a meromorphic function. Then, possibly except for r

in a set of finite linear measure, for k =1,2,... we have
f®
#(red ) = ottostr 1), (= o),

where f®) means the k-th derivative of f.

Let f be a transcendental meromorphic function of finite lower order A
and for 1 <v<k, let {pv}f,‘:1 be a set of distinct polynomials, such that
deg(py) <d for 1 <v<k, and d >1. Let Sy >0 be chosen in such a way
that if |z| > Sp, then for all 1 <v,n <k,v+#n we have p,(z) # p,(z). We put
for v #7y
(3.1) Cyp = min |p,(z) — pn(z)l >0,

2] = So

min ¢,, =c¢>0.
1<v,p<k
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Let {R,} be a sequence of positive numbers, R, — o (n — o0), fulfilling the
condition

(3.2) 7 = lim inf 08T S) _ iy, 108 TGR, /)
r—00 log r n—o0 log R,

For n > ng we consider the set
(3.3) Gy ={z: 80 < |z < Ry, | [ ()| < R, {(@EDDED T2}
where ng is chosen in such a way that for n > ny we have

{(2d +2)"™ + (2d + 2)"} ! <

i+l
(3.4) T(3R,, f) <R, and R, 1

Now for 1 <v <k we put G, , for the union of those connected components of
G, which contain a point z; such that

. C
|f(z1) = po(z1)| < 1
and points z3,z3,...,z4+1 such that for j=2,... d+1
|f(j71)(zj) _Pt(,j71>(zj)| < R;{((d+1)/2)(/l+l)+d+2}.

Applying the method introduced by Weitsman in [27] and following the same
lines as in [2], we may show that for n > ny the sets G, , and G, , are disjoint for
v # 5. In particular, for all ze G,,,, n > ny we get

[(2d 4 2)*" + (2d + 2) Y|+

c c
1f(2) = p(2)] < R, T1<7%
Thus for 1 <v <k and n >ny we may consider the functions
| ! G

(3.5) U, y(z) =
{#(H 1 +d+2} log Ry z¢ G-

By definition, the value of each u, , is relatively high in some of the components
of G,, that is in places where @+ is close to zero. Moreover, for v # 7 the
sets where the values of u,, or u,, are relatively high do not overlap. We
should note here that each u, ,(z) is a J-subharmonic function in Sy < |z| < Ry,

which can be shown in a similar way as Lemma 6 in [17]. We now conduct a
i0

symmetrization of functions u,,. For a complex number z = re’ we put:
* 1 i
m*(z,uy,,) = sup =— | u,,(re’?) do,
|E|=20 2n)g

T*(Zyun,v) = m*(z, umv) + N(V7 un,v)a
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where r e (Sp, Ry), 0 €[0,7], |E| is Lebesgue’s measure of the set £ and

r (T
N(r ) = J 1) dt,
1 t
where for 1 <v <k, g, ,(r) is the number of the zeros of f“@*(z) in G,,N
{z:|z| <r}. For oJ-subharmonic functions u, the star function 7*(z,u) was
introduced by Baernstein in [1]. For a number ¢, 0 < ¢ < +o00, let us consider
the set

Fy = {re” :u, ,(re”) > 1}
and let
iy (re) = sup{t: re e F'},
where F;" is the symmetric rearrangement of F, through the circular symmet-
rization with respect to the ray argz =0 ([12]). The function @, ,(re”) is non-

negative an non-increasing with respect to 0 for 0 € [0,7], even in 6 and, for a
fixed r, equimeasureable with u, ,(re””). Moreover, for 1 <v <k,

- 1 d+1
(1) = max(log I\I}\i)r( )] ,{ 7 (A+1) +d+2} log Rn>,

iy, y(—r) = max|( log min ! d+l
= SRS e 2

A+ 1)+d+2} logR,,).
Let us also notice that

1’ :
m*(z,uy,y) = —J iy, o (re'?) do.
T J)o '
The function 7*(z,u,,) is subharmonic in D = {re:Sy<r<R,,0<0<
7}, continuous on DU (—R,, Sy) U (S, R,) and also logarithmically convex in
re (So, R,) for each fixed € [0,n] ([1]). What is more, for r e (Sy, R,),

T*(r, un,v) - N(r, un.v)y T*(remaun,\') = T(}", un,v)v

0 A iy, (re'?)

—T*(re u,,)=—""""2 for 0<6<m,

00 ( ) n

where T'(r,u, ,) is the Nevanlinna characteristic of u, ,(z). The following lemma
points to the existence of intervals where for a fixed 6 the star function
T*(re” uy,,,) is increasing with r ([3]).

Lemma 3.3, Let Sy > 0, as before, be such that if |z| = Sy then p,(z) # p,(2)
(I<vip<k,v#n). Let also {R,} be defined as in (3.2), ny as in (3.4)
For each number S) > Sy, there exists ny > ny such that for all n>n, and
0 € [0,7] the function T*(re®, uy ) is monotonically increasing in r on the interval
[S1, Ry).
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For o(r)—a real-valued function of a real variable r we consider the
operator

h —hy _
La(r) = lir};lﬁiglf a(re) + oc(;; ) — 2a(r) _

When o(r) is twice differentiable in r, then

Latr) =1 (ro0)).

As T*(re” u, ) is a convex function of log r, for Sy < r < R,, 0 € [0,7] we have
LT*(re"g,uW) > 0.

The following lemma gives a stronger convexity condition.

Lemma 3.4, Let Sy, {R,} be as in Lemma 3.3.  For almost all 0 € [0, 7] and
for almost all r e (So, R,) we have

; 1 0ty ,(re™)
LT*(re" > - 7
(re aunav) = - 30

The proof of Lemma 3.4 can be conducted similarly as the proof of Lemma 1 in
[13]. We now put
k

To(z /) =Y T (2 uny).

v=1
It follows from the definition of operator L and from logarithmic convexity of
each 77*(z,uy,,) that
k
LT;(z, /)= Y LT (z,uy,) = 0.

y=1

Moreover, Lemma 3.4 implies that

. 1 < dity, o (re?)
LTy >y B 2
0 <Z7f) = T ; 66
For 7 > 0 we choose the numbers o and  such that

. 7 7 i
< — < ——
0<a< mm(n, 21), 5 = <y 7 o
and let

k
lz cosn,b——Zu,“ (re™) cos (o + V)

:I

— zsin t(a + ) Tg (re™, f) + T sin oy N(r, 0, f4FD).
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The following result shows that the set of real numbers r where £, (r,7) is positive
cannot be relatively big ([3]).

LemMma 3.5. Let So, {Ryn}, n1 be defined as in Lemma 3.3. Let S| =Sy + 1,
n=ny. Put A={r:S <r <Ry hy(r,7) >0}. We have

rJ ? <log T(3R,, f) +loglog R, + O(1) (n— o0).
4

4. Proof of Theorem 2.1
Let ay,...,a; be meromorphic functions small with respect to f. We shall

apply Lemma 3.1 to (I1<v<k):

.
f(z) —a(2)

0.5R 0.5R
g vy j- » vy
(4.1) J ranf) 4o ™ J mrdnf) 4
28 rit . T 25 r/u+1
sin —
2x
7 (OB N(r,0, f —a,)
+ 7'[/1 tan EJZS T d}"
¢ [TQ2S,f) TQRf)
t 7 { s TR ’
Moreover,

N(r0,f —a) <T(r,.f —a)=(1+0()T(r. f) (r— ).
By [21] (Lemma 1.9.2, p. 40), we can find two sequences {2S,}, {2R,} such
that % — 0 and

n

TOSS) TR ([ 100 ),

Srf er 25, A+l
It follows from (4.1) that
0.5R, 0.5R,
42) J ZL(r,ay, f) dr < A J m(r,ay, f) o

A+1 -
28, At A

0.5R, T(r, f)

ﬁdr.

A
J tan — (1 1
+ 7/ tan 4x( +o( ))st,,

Moreover, L(r,ay, f) = (B(ay, f) —e)T(r, f) for all r > ry. Thus from (4.2) we
get the inequality

(4.3) <ﬁ(av,f)—8—nitan2—l> J“R" T(r.f) 4 o ™ J“S"“m(nav,f) "

X 7 At
sin — %5
2x
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For the sake of simplicity we put f = f(a,, f) —&, a(x,2) = = 0.57Ax"".

If 2 > 1 then ¢ may take up any value from the interval (0,%). From (4.3) we

get
: 0.5R R
n T n
fsna_ 1 +cosa J (:’ {) dr < J 7m(r,~av7f) dr.
A 25, rAt 25, pAtl
Let F(o) = f(z2) " sin o — 1 +cos o. This function attains its maximum on the
. T . arctan
interval (0’5) at the point gy = vl b and
T

ﬁz
A\ B+ (7A)? + 7d)

Then for n > ny we have,

5 O3 T(r, f) O3 m(r, ay, f)
{(ni)z(l +/2) - 8} Lsn : ar= stn rAtl ar

Applying this estimate to k distinct functions a, we get

k 2 0.5R 0.5R, \~k
ﬁ (av) _ " T(ra f) ! y=1 I’}’l(l", aV7f)
Z{(nl)z(l +2) 8} Ls,, rAtl dr= JZS,, ril ar

For r > ry we have ([25]),

F(oo) = > B2 (nd) 2 (14+v2) L.

K+l
im(",av,f) <2T(r,f)+ Clog T(2r,f), ak+1 = 0.

v=1
Thus for n > ny,

. k+1 g
OSRH v:+1 m(r, av>f)
s

0.5R, T(V, f)

it

dr.

drS(Z—FS)J

28, 28,

It follows that
k+1

> Bay, f) < 2(mh) 1+ V2).
v=1

This completes the proof of Theorem 2.1 in case 4 > 0.5.

If 2 < 0.5 then the function ¢ = 0.5zAx~' for x > 0.5 takes up any value
from the interval (0,z1). If 0 < f(a,, f) < mA tan 74, then again the maximum
value of F(o) on (0,71) is attained at oy = arctan f(z2)"'. Similarly as in the
case 4 >0.5 we get

2 2 2
Floy) = s S _ B~ sin _ S ﬁ2s1nn/1 .
DB+ @)+ ) (@A) (sinmi+ V1 +sin® m)  (72) (14 V2)
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Repeating the reasoning of the case 4 > 0.5, we arrive at the estimate

k+1 ( )
Zﬂ (ay, f) <2 (1+v2),

sin A

where the sum is taken over those functions a, for which f(a,, f) < n/ tan /.
Let now 0 <1< 0.5 and f(a,, f) > nAtan zA. In this case for o € [0,7A)
we have

sin A . sin A
—25sin? 0.57) =

max F(g) = F(nl) = f {p — mA tan 0.57A}.

For 4 <0.5 we have n/ tan 0.5z < 0.574 tan 7l < O.Sﬁ. Thus

sin n/l

max F(o )>05ﬂ

0<o<mi

Similarly as before we get that for k distinct functions a,u,

ke 4nl

;ﬂ(a"’f) = Snn

A

fi hi i in thi nf) < = , h
and from that, since in this case f(a,, f) i e have
k+1 2
4(rh
S Fan f) < AT
sin” 7l

v=1

Put 4 ={a,: f(ay, f) > nAtan nl}, B={a,: f(a,, f) < nitannl}. Then

k+1 2
Zﬁz(avvf) =< Zﬂ2(an + Zﬂ avv S (ﬂj') {2+(1 +\/§) sin 77,'}.}
v=1

a,eA a,eB

The statement in this case follows directly from this estimate. This completes the
proof of Theorem 2.1.

5. Proof of Theorem 2.2

We show the estimate for the upper logarithmic density of E(y). The proof
for the estimate of the lower logarithmic density can be conducted in a similar
way, only instead of R, we take any positive number R, and we replace the lower
order A with the order p.

We start with the following sum

1

k
Zg)(”al)v, Zlog I‘H‘aﬁf— Z og" F(re®) — p,(re)]’

v=1 v=1

where r e (S|, R,), p, are polynomials such that for 1 <v <k, deg(p,) <d.
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If [f(re™) — p,(re)| = > < then

N

1 <lo+é—‘
[/ (re™) = pu(re®)| =% ¢

Let |f'(ref0\') —pv(remv)| < 2 Then we have

log*

1 | =) D (™)
logt ————— <log" A +log* @ |
C T =P = T = pae ™) | T [T (e
As u, \(re™) < ,,(r), it follows from the inequalities above that in general
for re (Si,R,), 1 <v <k we have
! ; (f = p)“
log" ————— <, ,(r) +logt M| r,~—""——]+log" -
&7 patrem] = Ml T A

This way we obtain

(d+1)
L(r,pn, f) < Z{ftn,v(r) +log™ M(V,W)}‘FklOng -

1 v=1

k
(5.1)

V:
Notice that if y» < A the theorem is obvious. Let then y > 1. We take
A< t<y. We choose wzzl—oc. Thus
T
$in To o~

Zun,v(r) — T (re™) 4 7 cos taN (r,0, £ 4+,

v=1

hy(r,7) =

9

From the definition of Valiron’s defect,
.. N(r,0, fl@+)
d+h)y — 1 = St AN
A0, f )=1 hgllyflf TG /@y
so if ¢ >0 is a fixed number, for r > ry(¢) we have
(52) N(r,0, f14D) > (1= A, /) =) T(r, f141).

Notice that when A(0, £@+D) =1 we have B(y,A(0, f@*1)) = B(y) and the
statement follows from Theorem 1.7.

Let us take 0 < A(0, £ty <1 and 0 <& < 1 — A(0, f@+D),

Applying the first theorem of Nevanlinna we obtain

(53) TO*<Z7f): Iovf ZT Z”nv

M»

(z,upy) + N(r,up,y))

—

V=
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1 1 d+1
Sm(r,m>+N<r,f(d+l>>+k{ 42_ (/1+1)+d+2}loan

=70, f“+ ¢ +k{ s (/1+1)+d+2}loan,

where Cy is a constant appearing in the first theorem of Nevanlinna. For
re€ (ro(€), Ry), from (5.2) and (5.3), we get

1
finl S””“Zum =T (r, f1D) = k{d+ (2+1 )+d+2}10an
2
—1Cy + 7 cos ta(l — A0, £+ ) —S)T(nf(d“))

Sll’l T
E un 1 -
sm T

d
+k{ er (4 +1)+d+2}10an+Cf

T(r, f*D)

sin 7o
H,(r,7)

+ 7z ctg (1 — A0, £ — 8)T(V,f<d+l>)} =
T

We now consider the set
Ay ={re (S|, Ry) : Hy(r,7) > 0}.
If re A, then h,(r,7) >0 and by Lemma 3.5,

(5.4) rJ dr <log T(3R,, f) +loglog R, + O(1).
A]ﬂ[sl R,,]

If r¢ A4y, then

sin to

Zﬁn‘,v(r) < {(1 —cos ta(1 — A0, £y — )T (r, £14HD)

+k{d;1(i+l)+d+2} logR,,JrCf}
)

Thus for r € [ro(e), Ry]\A4; from (5.1) we get
g ) 1— 1 — A0 (d+1)y _ T (d+1)
Z (1,20 f) < o (1 = c0s (1 = A, £1) = ) T, /1)
ntk d+1
sinrocH 5 (A+1 )+d+2}loan+Cf}

d+1)
+Zlog M( %) +klogt —

v
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Applying Lemma 3.2, lemma on the logarithmic derivative, and the fact that
N(r,f)=S(r,f), we obtain that, possibly except for r in a set of finite linear

measure, for re [ro(¢), Ry]\4; and for all o such that 0 < o < min (n,%), for
T
n— oo,

k

> L(rpf) <

v=1

T

(1 —cos za(l — A0, f9DY —eNT(r, f)

sin To

+o(T(r, 1))+ O(log Ry,).

We now calculate the minimum of Si;nm (1 —cos za(1 — A0, f1@D) —g))

over all the numbers o with 0 < o < min <7z,2£>. Thus for n — oo we get
T

k
S L1, pn f) < (B, AO, £40) + )T (r, f) + o(T(r, 1)) + Olog Ry).

v=1
T(R'™, f)
log R
We put S, = Ro®)| where {R,} is a sequence from (3.2). Let also r €[Sy, Ry,
S, > S;. It follows from the definition of S, that

T(Ry™, f)
log R,

Let 6(R) — 0 be chosen in such a way that — o for R — 0.

T(V, f) = T(Smf) =log R,

)

for r € [Sy, R,], which implies that log R, = o(T(Sy, f)) (n — o). Therefore, as
y > 1, for r e [S,, Ry\A41, possibly except for r e Ej, where E is a set of finite
linear measure we have

k

YLl pe. f) < (B, A0, f19) + o)) T(r, )

v=1

< B, AQ ST f) (= ),
SO [Su, Ry]\A1 C E(y) UEy. This, together with Lemma 3.5 leads to the estimate

dt dt dt
‘L'J —ZTJ —Z‘EJ —+0(1)
E()NLR,) T E()N(Si R [Su, Ral\A; T

> 1(1 = 6(Ry)) log R, —log T(3R,, f) —loglog R, + O(1),
for n — oo. We divide this inequality by 7 log R,

1 dt log T(3R,, log log R, + O(1
J W s(R,)) 08 (3R, f) _loglog R, + O(1)
log Ry JE()np,r,) 7log R, 7log R,
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From the definition of {R,} we obtain for all 7 < y:

S A
logdens E(y) > 1 — =

Passing to the limit with 7 — y we get
A

logdens E(y) > 1 — —.
7

Thus we obtain the statement in this case.
Finally, let us observe that if A(0, /@) =0 we may conduct the proof
similarly, only taking a fixed positive number instead of A(0, f(@*+1).

6. Proof of Theorem 2.3
In the beginning let us notice that we need to consider only the case when
0 < A0, £y < 1.

If A(0, £@*+1)) =0 we have no oy-strong asymptotic polynomials (see: Corollary
2.2.2) and if A(0, £“*1)) = 1, the statement follows from Theorem 1.10. Let f
be a transcendental meromorphic function of finite lower order 4 with N(r, f) =
S(r, f), pi1,-..,pr—distinct polynomials of deg(p,) <d and let

{plarll}7"'7{p1arz‘11}a'"7{p/€7F{(}7-"7{pk7rz€i}v it +i+- -+ =m,

be m distinct ap-strong polynomial asymptotic spots of f. Let G, be the set
defined in (3.3) and let Gy, ; C Gy, 1 < j < j,, v=1,...,k, be the components of
G,, each of which contains points zj,zs,...,z441 such that

|f(s—1)<ZS) —p<S_l)(Zs)| < Rn—{((d+l)/2)(M—l)4—(1’4—2}7

Vv

s=1,2,....,d+1 (f9(z) = f(z)). Applying the method introduced by Weits-

man in [27] and following the same lines as in [2], we may show that for n > ny
the components G, , ; are pairwise disjoint. In particular,

, c(d

176~ o) < 2D

n

Vz e Gy,

where G, , = Ulgjéjv Gy }
Let (py,I'{) and (p,,I'}) be two distinct asymptotic spots and let G, , |

contain a part of the asymptotic curve I'). It is easy to show that for n > ng, I'y

does not intersect with G, , 1 ([3]). For n>ny, v=1,...,k, 1 <j< j, we put

log z€ Gy, j

1
fD(2)]

U,y j(2) == .
{%(H 1) +d+2} log Ry z¢ Gy,
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For 7 > 0 we also put

H,(r,7) := zk: ity (r) — B(z, A0, f11)

0
X {T(r,f“””) +m{—(/1+ 1) +d+ 2} log R, + Cf}

Ay = {r: H,(r,7) > 0},

where m = j; +---+ jix. Following the same lines as in the proof of (5.4), we
can show, that

(6.1) TJ i <log T(3R,, f) +loglog R, + O(1) (n— ),
Jlﬂ[SI,R,,] t

where 7 is any fixed positive number such that r > 4. From Lemma 3.2 we get

Y@ -0
V&%ﬁﬂﬂ|+mglﬂW@—AW@

(6.2)  log" log

1
e ch
1
< log+ - . + O(IOg(”T("y f)))
£ 0 (z) = pP ()]
|zl =r¢E,,, mes(E,;)<o and s=1,...,d+ 1.

Put E, =J,<y<qs1 Evs and notice, that mes(E,) < oo. As {p,I7},...
{py, I}, v=1,...,k are og-strong polynomial asymptotic spots of f,

1

log™

L 1f(2) = pv(2)] _ :
(6.3) 131;1;2{:} Tz 7) >o00>0, I=1,...,i.

Thus, on asymptotic curves I}, for |z| € [S,, R,], we have

1 o
o= 2 )

As log R, = o(T(Sy, f)) (n— o), for |z| €[Sy, R,] we get

d+1
2100 > {5 0D+ d e 2f o R, ()

log™

which means that
|f(Z) _pv(z)‘ < R;{((d+1)/2)(/l+l)+d+2} (n _ OO)
Moreover, it follows from (5.4) that for s=1,...,d + 1 we have
1
+

g
L /9 @) - p ()]
6.4 lim inf
(64) z—0,ze ), 2 ¢ By T(|z, f)

>0 > 0.
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Therefore for z — co on asymptotic curves I'), for s=1,...,d+1 we have

d+1
2

1
log* >3 1) > {

: ; (i+1)+d+2}loan,
F9@E) = p )]

SO
|f(s)(z) 7p53)(2)‘ < R;{((d+1)/2)(/l+l)+d+2}

for |z[ € [Sw,Ral, |z|¢ E, (n— o). Put E:=U ., E, and notice that
mes E < co. If

zel]/, |z| €[Sy, RW\E,
for 1 </ <i, v=1,...,k we get
1£(2) = pu(z)] < R, (HHDRHDRER (7 o0),
and for 1 <s<d+1
|f(3)(z) _ p‘()s)(z)‘ < R;{((d+1>/2)<)'+1)+d+2} (n _ OO)

This way we get that for each asymptotic curve I'/ (1 <v<k,1</<i,),
there exists a component G, .,  of G, such that for n>ny we have the
inclusion

[0 {z: |z € [Su RNE} € Gy (o = Joll)).

From Lemma 3.2 we conclude that for r — oo, ré¢ E, 441, mes E, 4.1 < o0,
v=1,...k,

. fFla+n) p(d+l) . Fld+D)
logt M| r,—— | =log" M|(r,Z = O(log(rT(r, .
: - ¢ M (r =) = 0lloxrT (1)

Put E=J,_,-4 Evas1. For |z =r, r¢ E, for each 1 <v <k we have

: 1 - +; ril(r
e @]~ 108 [ T OUoet T 1))):

|f(Z) —Dv

Notice that E C E.
From lemma on the logarithmic derivative and from the fact that N(r, /) =
S(r, f) it follows that

T(r, f D) < T )+ o(T(r, f)), 1= o0, 1 ¢ E, mes(E) < 0.
Thus for r € [S,, R,)\(4; UE UE), we have

(6.5) Z max u, . ;(z) < (B(z, A0, f“*V)) 4 o(INT(r, f), n— o0,

el=r
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and from (6.1),

dt log S,
TJ 7= T(l - e ) log R, —log T(3R,, f) — log log R, + O(1).
Sy, R\ (4| UEUE) © log R,

From this and from the definition of the sequence R, (see: (3.2)),

. J dt A
lim sup —>1-=->0.
n—oo 108 Ry Jis, r\(4,UEVE) T T
Therefore, from (6.3), (6.4) and (6.5), there exists a sequence r, € (S, Ry)\ (4] U
E UE) such, that for each I'/ (1 <v<k,1</<1i,) we have

1
max u, , j,1(2) = max log ————
‘Z‘:l‘” ™ Ydold) ‘lernvze Gu.v,jo(l) |f(d+1)(z)|

and

It follows, that
m(oy + o(1)) < B(z, A0, £ D) £ o(1), n— 0.

Passing with n — oo, we get moy < B(t,A(0, f@*1))).  As we can choose any
7 > A, this way we get the statement. O

Let us remark, that the proofs of Theorem 2.4 and Theorem 2.5 can be
obtained by similar reasoning as in the proofs of Theorem 2.2 and Theorem
2.3, bearing in mind that this time the restriction N(r,f) = S(r,f) does not
hold. It means that we can apply only the estimate 7'(r, f“*D) < (d +2)T(r, f)
instead of T'(r, D) < T(r, )4 o(T(r, f)) (for r outside a set of finite linear
measure).
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