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p-HARMONIC FUNCTIONS ON COMPLETE MANIFOLDS

WITH A WEIGHTED POINCARÉ INEQUALITY
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Abstract

In this paper, we consider p-harmonic functions on complete Riemannian manifolds

and give di¤erent proofs of some main theorems by Chang-Chen-Wei, in [3]. More-

over, we are able to refine their results in case of weakly p-harmonic functions. Some

applications to study the connectedness at infinity of stable minimal hypersurfaces are

also given.

1. Introduction

Suppose that M is a complete noncompact oriented Riemannian manifold
of dimension n. At a point x A M, let fo1; . . . ;ong be a positively oriented
orthonormal coframe on T �

x ðMÞ, for lb 1, the Hodge star operator is given by

�ðoi15� � �5oilÞ ¼ oj15� � �5ojn�l
;

where j1; . . . ; jn�l are selected such that foi1 ; . . . ;oil ;oj1 ; . . . ;ojn�l
g gives a posi-

tive orientation. Let d be the exterior di¤erential operator, so its dual operator
d � is defined by

d � ¼ ð�1Þnðlþ1Þþ1 � d � :
Then the Hogde-Laplace-Beltrami operator D acting on the space of smooth
l-forms WlðMÞ is of form

D ¼ �ðd �d þ dd �Þ:
Recall that an l-form o on M is said to be p-harmonic ðp > 1Þ if o satisfies

do ¼ 0 and d �ðjojp�2
oÞ ¼ 0. When p ¼ 2, a p-harmonic 1-form is exactly a

harmonic 1-form. Some vanishing propeties of the set of p-harmonic 1-forms
are given by X. Zhang and Chang-Guo-Sung (see [21, 4]). The p-harmonic
1-forms have closed relationship to the set of p-harmonic functions. To describe
p-harmonic functions, let us define the p-Laplace operator on a Riemannian
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manifold M by

Dpu :¼ divðj‘ujp�2‘uÞ

for any function u A W
1;p
loc ðMÞ and p > 1. A function u A W

1;p
loc ðMÞ is said to

be p-harmonic if Dpu ¼ 0. Hence, if u is a smooth p-harmonic function then
o :¼ du is a p-harmonic 1-form. Motivated by beautiful applications of the
theory of harmonic functions to study geometric structures of Riemannian mani-
fold, let us introduce a geometric notation which is related to the connectedness
at infinity via the theory of p-harmonic functions. Let E � M be an end of M,
namely, E is an unbounded connected component of MnW for a su‰ciently large
compact subset W � M with smooth boundary. As in usual harmonic function
theory, we define the p-parabolicity and p-nonparabolicity of E as follows (see
[1, 2, 5, 7, 16]):

Definition 1.1. An end E of the Riemannian manifold M is called
p-parabolic if for every compact subset K � E

cappðK ;EÞ :¼ inf

ð
E

j‘f jp ¼ 0

where the infimum is taken among all f A Cy
c ðEÞ such that f b 1 on K .

Otherwise, the end E is called p-nonparabolic or p-hyperbolic.

In [1], the authors gave a characterization of p-hyperbolic ends on complete
Riemannian manifolds which carry a Sobolev type inequality. In [16], Pigola
et al. discussed potential theoretic properties of the ends of a manifold enjoying
an Lp;q-Sobolev inequality. They proved that a complete manifold with more
than one end never supports an Lp;q-Sobolev inequality provided the negative
part of its Ricci tensor is small. Recently, in [3], Chang-Chen-Wei studied
p-harmonic functions with finite Lq energy and proved some vanishing type
theorems for p-harmonic functions with finite Lq-energy on Riemannian mani-
folds satisfying a weighted Poincaré inequality. Then such these vanishing
theorems are applied to study properties of p-parabolic ends of the manifolds.
Recall that M is said to have a weighted Poincaré inequality, ifð

M

rj2
a

ð
M

j‘jj2ð1:1Þ

holds true for any smooth function j A Cy
0 ðMÞ with compact support in M.

The positive function r is called the weighted function. Therefore, if the bottom
of the spectrum of Laplacian l1ðMÞ is positive then M satisfies a weighted
Poincaré inequality with r1 l1. Here l1ðMÞ can be characterized by variational
principle

l1ðMÞ ¼ inf

Ð
M
j‘jj2Ð

M
j2

: j A Cy
0 ðMÞ

( )
:
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When M satisfies a weighted Poincaré inequality then M has many interesting
properties concerning topology and geometry. It is worth to notice that
weighted Poincaré inequalities not only generalize the first eigenvalue of the
Laplacian, but also appear naturally in other PDE and gemetric problems. For
example, l1ðMÞ is related to the problem of finding the best constant in the
inequality

kukL2 aCk‘ukL2

obtained by the continuous embedding W 1;2
0 ! L2ðMÞ. It is also well known

that a stable minimal hypersurface satisfies a weighted Poincaré inequality with
the weight function

r ¼ jAj2 þRicðn; nÞ

where A is the second fundamental form and Ricðn; nÞ is the Ricci curvature of
the ambient space in the normal direction. For further discussion on this topic,
we refer to [9, 10, 14] and the references there in. In this paper, we first prove
the following theorem.

Theorem 1.2. Suppose that Mn is a complete noncompact Riemannian mani-
fold satisfying a weighted Poincaré inequality ðPrÞ and the Ricci curvature is
bounded by

RicMðxÞb�arðxÞ

for all x A M. If pb 2 and

a <
4ðp� 1þ kÞ

p2

then there is no non trivial (weakly) p-harmonic function on M with finite Lp

energy, where

k ¼ min
ðp� 1Þ2

n� 1
; 1

( )
:

Note that our condition on the range of a is better than that in Chang-Chen-
Wei’s paper (see [3]). Therefore, this theorem can be considered as a refinement
of Theorem 1.1 in [3] (See Remark 2.2).

The second main theorem in this paper is an application of Theorem 1.2 to
prove a property regarding to connectedness at infinity of submanifolds immersed
in a Riemannian manifold. The statement of the result is as follows.

Theorem 1.3. Suppose that M is an immersed stable minimal hypersurface
in a Riemannian manifold N with sectional curvature KN bounded from below by
�c, where c > 0 is a fixed constant. If M has positive spectrum l1 then M has at
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most one p-non parabolic end provided that

l1ðMÞ > 2ðn� 1Þc
4ðp� 1þ kÞ

p2
� n� 1

n

;

for any 2a p <
2ðnþ

ffiffiffiffiffi
2n

p
Þ

n� 1
.

The paper has three sections. In the section 2, we will give a proof of
Theorem 1.2. The application of Theorem 1.2 is given in the section 3. In the
section 3, we will prove Theorem 1.3.

2. Vanishing theorems

Lemma 2.1. Let o be a p-harmonic 1-form on Mðp > 1Þ. Let h be a
compactly supported nonnegative smooth function in Mþ :¼ MnS, where S :¼
fx A M : oðxÞ1 0 on TxMg and j ¼ h � jojq�1, for q A R. Thenð

M

j2hDo;oi ¼ ðp� 2Þð2q� pÞ
4

ð
M

h2 � joj2q�6 � hdjoj2;oi2ð2:2Þ

þ ðp� 2Þ
ð
M

h � joj2q�4 � hdjoj2;oi � hdh;oi

It is worth to notice that, in [21], Zhang proved Lemma 2.1 with di¤erent
coe‰cient in the first term of the right hand side. But due to the proof of
Lemma 2.1 in [21], this coe‰cient should be corrected as in (2.2). Here we will
give a di¤erent proof of Lemma 2.1. We think that our proof is more simple
than that in Zhang’s paper.

Proof. Observe that for any smooth function f and smooth 1-form o, we
have

d �ð foÞ ¼ fd �oþ hdf ;oi:

Since o is p-harmonic, the above equation implies

jojp�2
d �o ¼ �hdjojp�2;oi;

d �ðh2joj2ðq�1Þ
oÞ ¼ hdðh2joj2q�pÞ; jojp�2

oi;

on Mþ. In fact, we will use that h has compact support in Mþ to di¤erentiate
jojp�2 and joj2q�p. Therefore,ð

M

j2hDo;oi ¼ �
ð
M

hDo; h2joj2ðq�1Þoi

¼ �
ð
M

hdd �o; h2joj2ðq�1Þoi
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¼ �
ð
M

d �o � d �ðh2joj2ðq�1ÞoÞ

¼ �
ð
M

d �o � hdðh2joj2q�pÞ; jojp�2oi

¼ �
ð
M

jojp�2
d �o � hdðh2joj2q�pÞ;oi

¼
ð
M

hdjojp�2;oi � hdðh2joj2q�pÞ;oi

¼ ðp� 2Þð2q� pÞ
ð
M

h2joj2q�4hdjoj;oi2

þ 2ðp� 2Þ
ð
M

hjoj2q�3hdh;oi � hdjoj;oi

¼ ðp� 2Þð2q� pÞ
4

ð
M

h2joj2q�6hdjoj2;oi2

þ ðp� 2Þ
ð
M

hjoj2q�4hdh;oi � hdjoj2;oi:

The proof is complete. r

For smooth p-harmonic 1-form, we have the following Kato inequality
proved by Chang et al., in [3].

Lemma 2.2. Let o be a smooth p-harmonic 1-form on a complete manifold

Mn, p > 1 and k ¼ min
ðp� 1Þ2

n� 1
; 1

( )
. Then at any x A M with oðxÞ0 0, we

have

j‘oj2 b ð1þ kÞj‘joj j2:ð2:3Þ

In fact, in [3], the authors proved Kato inequalities for p-harmonic functions
u A C3ðMÞ but their proof is still valid for smooth p-harmonic 1-forms.

Using the Kato inequality for p-harmonic 1-forms and Lemma 2.1, we
obtain the following vanishing result which can be considered as a refinement of
Theorem 1.2 in [3]. Our proof is di¤erent from that in [3].

Theorem 2.3. Suppose that Mn is a complete noncompact Riemannian mani-
fold satisfying a weighted Poincaré inequality ðPrÞ and the Ricci curvature is
bounded by

RicMðxÞb�arðxÞ
for all x A M. If qb 2, q� 1þ kþ b > 0 and

a <
4ðq� 1þ kþ bÞ

q2
;
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where b ¼ minf0; ðp� 2Þðq� pÞg. Let o is a smooth p-harmonic 1-form on M
with finite Lq energy. Then

1. o is trivial if pb 2.
2. o does not exist if 1 < p < 2.

Proof. Let o be an arbitrary smooth p-harmonic 1-form with finite Lq

energy. To simply notations, let us denote p-harmonic 1-form and its dual
p-harmonic vector field by o. On Mþ ¼ MnS, the Bochner formula implies
that

1

2
Dðjoj2Þ ¼ hDo;oiþ j‘oj2 þRicMðo;oÞ

b hDo;oiþ ð1þ kÞj‘joj j2 � arjoj2:

Here we used Kato inequality (2.3) and the assumption on Ricci curvature in the
last inequality. Let h be a compactly supported nonnegative smooth function in

Mþ and let j ¼ hjojq�1, where q ¼ q

2
A R. Multiplying both sides of the above

Bochner type inequality by j2 and integrating over M gives

1

2

ð
M

j2Dðjoj2Þb
ð
M

j2hDo;oiþ ð1þ kÞ
ð
M

j2j‘joj j2 � a

ð
M

rj2joj2:

Therefore, integration by part implies

2

ð
M

jjojh‘j;‘jojiþ
ð
M

j2hDo;oiþ ð1þ kÞ
ð
M

j2j‘joj j2 � a

ð
M

rj2joj2 a 0:

Using Lemma 2.1, we haveð
Mþ

j2hDo;oibminf0; ðp� 2Þð2q� pÞg
ð
Mþ

h2 � joj2q�2 � jdjoj j2

� 2ðp� 2Þ
ð
Mþ

h � joj2q�1 � jdjoj j � jdhj:

Note that q ¼ 2q, two above inequalities imply

a

ð
M

rh2jojq þ 2ðp� 2Þ
ð
M

hjojq�1j dhj � j‘joj j

b 2

ð
M

hjojqh‘ðhjojq�1Þ;‘jojiþ ð1þ kþ bÞ
ð
M

h2joj2ðq�1Þ � j‘joj j2

¼ 2

ð
M

hjojq�1h‘h;‘jojiþ ðq� 2Þ
ð
M

h2jojq�2j‘joj j2

þ ð1þ kþ bÞ
ð
M

h2jojq�2 � j‘joj j2:
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Consequently,

a

ð
M

rh2jojq þ 2ðp� 1Þ
ð
M

hjojq�1jdhj � j‘joj jð2:4Þ

b ðq� 1þ kþ bÞ
ð
M

h2jojq�2j‘joj j2:

Since M satisfies a weighted Poincaré inequality, for e > 0, we haveð
M

rh2jojq a
ð
M

j‘ðhjojqÞj2ð2:5Þ

a ð1þ eÞq2
ð
M

h2jojq�2j‘joj j2 þ 1þ 1

e

� �ð
M

jojqj‘hj2:

Moreover, using the fundamental inequality 2ABa eA2 þ B2

e
, we infer

2hjojq�1jdhj � j‘joja ejojq�2j‘joj j2 þ 1

e
jojqj‘hj2ð2:6Þ

Combining (2.4), (2.5), (2.6), we conclude that there exist two constants Ae, Be

such that

Ae

ð
M

jojqj‘hj2 bBe

ð
M

h2jojq�2j‘joj j2;

where

Ae ¼ a 1þ 1

e

� �
þ p� 1

e

Be ¼ q� 1þ kþ b� að1þ eÞq2 � ðp� 1Þe:

Suppose that q ¼ 2q satisfies

q� 1þ kþ b� a
q2

4
> 0

then we can choose e > 0 small enough such that Be > 0. This implies that there
exists a constant Ce > 0 depending only on e satisfyingð

M

h2jojq�2j‘joj j2 aCe

ð
M

jojqj‘hj2ð2:7Þ

provided that

a <
4ðq� 1þ kþ bÞ

q2
:

We now want to show that (2.7) holds true for any c A Cy
0 ðMÞ. To do this,

we will use a version of the Duzaar-Fuchs cut-o¤ technique (see also [6, 13, 19]).
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Indeed, we define

je ¼ min
joj
e
; 1

� �

for e > 0, then set he ¼ c2je. Note that, when e ! 0, je ! 1 pointwisely in M.
It is easy to see that he is a compactly supported continuous function and he ¼ 0
on MnMþ. Since qb 2 and jojq A L1ðMÞ, using an argument of Veronelli (see
[19], page 22), we can replace h by he in (2.11) and getð

M

c4ðjeÞ
2jojq�2j‘joj j2ð2:8Þ

a 6C

ð
M

jojqj‘cj2c2ðjeÞ
2 þ 3C

ð
M

jojqj‘jej
2
c4:

Observe that ð
M

jojqj‘hej
2c4

a eq�2

ð
M

j‘joj j2c4wfjojaegð2:9Þ

and the right hand side vanishes by dominated convergence as e ! 0, because
joj A CyðMÞ. Now, letting e ! 0 and applying Fatou Lemma to the integral
on the left hand side and dominated convergence to the first integral in the right
hand side of (2.8), we obtainð

M

c4jojq�2j‘joj j2 a 6C

ð
M

jojqj‘cj2c2;ð2:10Þ

where c A Cy
0 ðMÞ.

Now, choose the test function c such that 0aca 1 on M

c ¼ 1 on BðRÞ
0 on MnBðRÞ

�
and j‘cja 2

R
:

Letting R tends to infinity in (2.10), we conclude that joj is constant. Note that
M satisfies a weighted Poincaré inequality, hence M must have infinite volume.
Since o has finite Lq energy, this implies that o is trivial.

On the other hand, if 1 < p < 2, since the trivial 1-form is not a p-harmonic
form, then such form does not exist. The proof is complete. r

Recall that a p-harmonic function u is said to be strong if u A C3ðMÞ.
Hence, if u is a strongly p-harmonic function then o ¼ du is a C2 p-harmonic
1-form. By the proof of Theorem 2.3, we obtain the following result.

Corollary 2.4. Suppose that Mn is a complete noncompact Riemannian
manifold satisfying a weighted Poincaré inequality ðPrÞ and the Ricci curvature is
bounded by

RicMðxÞb�arðxÞ
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for all x A M. Let u be a strongly p-harmonic function on M with finite Lq

energy. If qb 2, q� 1þ kþ b > 0 and

a <
4ðq� 1þ kþ bÞ

q2

then
1. If pb 2 then u is constant.
2. If 1 < p < 2 then u does not exist.

Remark 2.1. It is worth to notice that the conclusion of Corollary covers
a part of Theorem 1.2 in [3]. In fact, to obtain the conclusion as in Corollary,
Chang-Chen-Wei had to require an extra assumption on the value of q.

Now, we show that the above vanishing properties still hold true for
p-harmonic functions with finite Lp energy without the condition on smoothness
of p-harmonic functions. To begin with, let us recall some facts on regularity
of p-harmonic functions. It is known that the regularity of (weakly) p-harmonic
function u is not better than C1;a

loc (see [11, 18, 20] and the references therein).

Moreover it is also known that u A W 2;2
loc if pb 2; u A W

2;p
loc if 1 < p < 2 by

Tolksdorf [18]. In fact, any nontrivial (weakly) p-harmonic function u on M is
smooth away from the set S ¼ f‘u ¼ 0g (see [12, 20] for example). Hence, the
Kato inequality (2.3) is valid outside the set S for o :¼ du.

Theorem 2.5. Suppose that Mn is a complete noncompact Riemannian mani-
fold satisfying a weighted Poincaré inequality ðPrÞ and the Ricci curvature is
bounded by

RicMðxÞb�arðxÞ
for all x A M. If pb 2 and

a <
4ðp� 1þ kÞ

p2

then there is no non trivial weakly p-harmonic function on M with finite Lp energy.

Proof. Let u be a p-harmonic function on M and let o ¼ du then the
regularity of p-harmonic function implies that u is smooth outside the singular
set S :¼ fdu ¼ 0g. Therefore, o is a smooth p-harmonic form on Mþ :¼ MnS.
Choose a nonnegative smooth function h with compact support on Mþ. By
(2.7), for q ¼ p, there exists a constant C > 0 such thatð

Mþ

h2jojp�2j‘joj j2 aC

ð
Mþ

jojpj‘hj2ð2:11Þ

provided that

a <
4ðp� 1þ kÞ

p2
:
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Following the proof of Theorem 2.3, we want to show that (2.11) holds true
for every c A Cy

0 ðMÞ by using a version of the Duzaar-Fuchs cut-o¤ technique
(see also [6, 13, 19]). We define

je ¼ min
jduj
e

; 1

� �

for e > 0, then set he ¼ c2je. It is easy to see that he is a compactly supported
continuous function and he ¼ 0 on MnMþ. By regularity of p-harmonic func-
tion, we know that he A W 1;2

0 ðMþÞ. As e ! 0, je ! 1 pointwisely in Mþ.
Using an argument of Veronelli (see [19], page 20), we can replace h by he
in (2.11) and getð

Mþ

c4ðjeÞ
2jdujp�2j‘jduj j2ð2:12Þ

a 6C

ð
Mþ

jdujpj‘cj2c2ðjeÞ
2 þ 3C

ð
Mþ

jdujpj‘jej
2c4:

Observe that ð
Mþ

jdujpj‘jej
2
c4

a ep�2

ð
Mþ

j‘jduj j2c4wfjdujaegð2:13Þ

and the right hand side vanishes by dominated convergence as e ! 0, because
j‘jduj j A L2

locðMÞ. Now, letting e ! 0 and applying Fatou Lemma to the
integral on the left hand side and dominated convergence to the first integral
in the right hand side of (2.12), we obtainð

Mþ

c4jdujp�2j‘jduj j2 a 6C

ð
Mþ

jdujpj‘cj2c2;ð2:14Þ

where c A Cy
0 ðMÞ. Choose a nonnegative smooth function c such that

c ¼ 1 on BðRÞ
0 on MnBð2RÞ

�

and j‘cja 2

R
. Then the inequality (2.14) implies

ð
Mþ

jdujp�2j‘jduj j2 a 4C

R2

ð
Mþ

jdujp:

Letting R ! y, we see that jduj is constant, since jduj A LpðMÞ. Note that
u A C1ðMÞ, du ¼ 0 on qMþ. Therefore, if qMþ 0j then we have du ¼ 0 on
Mþ. This is a contradiction. So that Mþ ¼ M, consequently, du is constant
on M. Since M satisfies a weighted Poincaré inequality, M must have infinity
volume. Therefore du ¼ 0 because jduj A LpðMÞ. This implies that u is con-
stant, which completes the proof. r
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Remark 2.2. 1. In [3], for pb 2, Chang et al. proved that every weakly
p-harmonic function u with finite Lp-energy is constant when M satisfies
a weighted Poincaré inequality ðPrÞ with Ricb�ar, where

a <
4ðp� 1þ kCÞ

p2

and

kC ¼ max
1

m� 1
;min

ðp� 1Þ2

m
; 1

( )( )
:

It is easy to see that kC a k. Therefore, the range of values of a we
obtained are better than those in [3].

2. Recently, using a di¤erent method, Seo and the second author prove in [5]
that if p; qb 2 and

a <
4ðq� 1þ kÞ

q2

then there is no non trivial weakly p-harmonic function on M with finite
Lq energy. This improves Chang-Chen-Wei’s results in case that pb 2.

3. Applications

Let us recall the following curvature estimate given by Leung ([8]).

Lemma 3.1 ([8]). Let M be an n-dimensional submanifold immersed in a
Riemannian manifold N with sectional curvature KN satisfying that KN b�c,
where cb 0. Then the Ricci curvature RicM of M satisfies

RicM b�ðn� 1Þcþ 1

n2
f2ðn� 1ÞjHj2 � ðn� 2Þ

ffiffiffiffiffiffiffiffiffiffiffi
n� 1

p
jHj

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
njAj2 � jHj2

q
g

� n� 1

n
jAj2:

To show a geometric application of Theorem 2.5, let us recall the following
result about the existence of p-harmonic function on a Riemannian manifold.

Theorem 3.2 ([3, 16]). Let M be a Riemannian manifold with at least two
p-nonparabolic ends. Then, there exists a non-constant, bounded p-harmonic func-
tion u A C1;aðMÞ for some a > 0 such that j‘uj A LpðMÞ.

Now, we prove a geometric property of stable minimal hypersurface via
p-harmonic function theory.

Theorem 3.3. Suppose that M is an immersed stable minimal hypersurface in
a Riemannian manifold N with sectional curvature KN bounded from below by �c,

353p-harmonic functions on complete manifolds



where c > 0 is a fixed constant. If M has positive spectrum l1 then M has at
most one p-non parabolic end provided that

l1ðMÞ > 2ðn� 1Þc
4ðp� 1þ kÞ

p2
� n� 1

n

for any 2a p <
2ðnþ

ffiffiffiffiffi
2n

p
Þ

n� 1
.

Proof. Suppose that M has at least two p-nonparabolic end then there
exists a nontrivial p-harmonic function u on M with finite Lp energy. Assume
that u is smooth and let o ¼ du, so o is a smooth p-harmonic 1-form. Since M
is minimal, Lemma 3.1 implies

RicM b�ðn� 1Þc� n� 1

n
jAj2:

Therefore, by Bochner formula, we have

1

2
Dðjoj2Þ ¼ hDo;oiþ j‘oj2 þRicMðo;oÞ

b hDo;oiþ ð1þ kÞj‘joj j2 � ðn� 1Þcþ n� 1

n
jAj2

� �
joj2:

For any j A Cy
0 ðMÞ, the stability of M meansð

M

ðjAj2 þRicðn; nÞÞja
ð
M

j‘jj2

where n donetes the unit normal vector of M, and Ricðn; nÞ is the Ricci curvature
of N in the direction n. Hence,ð

M

ðjAj2 � ncÞj2
a

ð
M

j‘jj2:

On the other hand, the variational principle of l1ðMÞ givesð
M

j2
a

1

l1ðMÞ

ð
M

j‘jj2:

This implies that M satisfies a weighted Poincaré inequality ðPrÞ with the
weighted function

r ¼
n� 1

n
ðjAj2 � ncÞ þ 2ðn� 1Þc
n� 1

n
þ 2ðn� 1Þc

l1ðMÞ

¼
n� 1

n
jAj2 þ ðn� 1Þc

n� 1

n
þ 2ðn� 1Þc

l1ðMÞ
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and

RicM b�ðn� 1Þc� n� 1

n
jAj2

¼ �ar

where

a ¼ n� 1

n
þ 2ðn� 1Þc

l1ðMÞ :

Now, we require that

a <

4 p� n� 2

n� 1

� �
p2

ð3:1Þ

then

a <
4ðp� 1þ kÞ

p2
:

Consequently, every smooth p-harmonic function u with finite Lp energy must be
constant provided that

2ðn� 1Þc
l1ðMÞ <

4ðp� 1þ kÞ
p2

� n� 1

n

or equivalently,

l1ðMÞ > 2ðn� 1Þc
4ðp� 1þ kÞ

p2
� n� 1

n

:

Note that the condition 2a p <
2ðnþ

ffiffiffiffiffi
2n

p
Þ

n� 1
implies

4ðp� 1þ kÞ
p2

� n� 1

n
b

4 p� n� 2

n� 1

� �
p2

� n� 1

n
> 0:

In conclusion, we have shown that u is trivial. This gives a contradiction.
Now if u is not smooth, by using a version of the Duzaar-Fuchs cut-o¤ trick

and repeating the proof of Lemma 2.3, we can show that u is constant if

l1ðMÞ > 2ðn� 1Þc
4ðp� 1þ kÞ

p2
� n� 1

n

:

The proof is complete. r
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If c ¼ 0, we can remove the condition on the spectrum l1ðMÞ to obtain the
following theorem.

Theorem 3.4. Suppose that M is an immersed stable minimal hypersurface in
a Riemannian manifold N with non negative sectional curvature KN. If

2a p <
2ðnþ

ffiffiffiffiffi
2n

p
Þ

n� 1

then M has at most one p-non parabolic end.

Since the proof of Theorem 3.4 is similar to the proof of Theorem 3.3, we
omit the details.
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