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RATE FUNCTIONS FOR RANDOM WALKS ON RANDOM
CONDUCTANCE MODELS AND RELATED TOPICS

CHIKARA NAKAMURA

Abstract

We consider laws of the iterated logarithm and the rate function for sample paths of
random walks on random conductance models under the assumption that the random
walks enjoy long time sub-Gaussian heat kernel estimates.

1. Introduction

The random conductance model (RCM) is a pair of a graph and a family
of non-negative random variables (random conductances) which are indexed by
edges of the graph. The RCM includes various important examples such as the
supercritical percolation cluster, whose random conductances are i.i.d. Bernoulli
random variables. In the recent progress on the RCM, various asymptotic
behaviors of random walks are obtained on a class of RCM such as invariance
principle, functional CLT, local CLT and long time heat kernel estimates. Here
is a partial list of examples of the RCM;

1. Uniform elliptic case [14],

2. The supercritical percolation cluster [3],

3. Li.d. unbounded conductance bounded from below [5],

4. 1.i.d. bounded conductance under some tail conditions near 0 [10],

5. The level sets of Gaussian free field and the random interlacements [34].
We refer to [8], [32], [36] for the invariance principle for random walks on the
supercritical percolation cluster, [6] for the local limit theorem for random walks
on the supercritical percolation cluster, [1] for the invariance principle on general
ii.d. RCMs, [2] for the Gaussian heat kernel upper bound on the possibly
degenerate RCMs. We also refer to [9] and [29] for more details about the
RCM.

In [31], we discussed the laws of the iterated logarithms (LILs) for discrete
time random walks on a class of RCM under the assumption on long time heat
kernel estimates. The aims of this paper are to establish the laws of the iterated
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logarithm and to describe the rate functions for the sample paths of continuous
time random walks on the RCM.

The LILs describe the fluctuation of stochastic processes, which was orig-
inally obtained by Khinchin [24] for a random walk. We establish the LIL w.r.t.
both supy_,, d(Yy’, Y”) and d(Y’,Y), and another LIL, which describes
liminf behavior of supy. ., d(Ys’, Y), where {Y”},, is a continuous time
random walk on the random environment .

The rate function describes the sample path ranges of stochastic processes.
For d-dimensional Brownian motion B = {B,},.,, the Kolmogorov test tells us
that

P(|B,| > t'/?h(¢) for sufficiently large )

%h(t)de‘h(’)z/2 dz{

@© <

1
= { according as J
07 1

?

where /() is a positive function such that i(r) /o0 as t — oo. For d > 3, the
Dvoretzky and Erdés test tells us that

(L.1) P(|B| = t'%h(r) for sufficiently large )

{0 according as J %h(r)d*2 dt{ *

| —

)

where h(r) is a positive function such that /(7) \,0 as ¢ — oo. These results
were extended to various frameworks such as symmetric stable processes on
RY, Brownian motions on Riemannian manifolds, symmetric Markov chains
on weighted graphs and f stable like processes (f > 2). We refer to [21], [25],
[26], [39], [41] for stable processes on R? [18], [19] for Brownian motions on
Riemannian manifolds, [22], [23] for symmetric Markov chains on weighted
graphs, [35] for f stable like processes. We establish an analogue of (1.1) w.r.t.
random walks on the RCM.

Our approach is as follows; We assume quenched heat kernel estimates and
establish both quenched LILs and an analogue of the Dvoretzky and Erdés test.
As we will see in Section 1.2, our results are applicable for various models since
heat kernel estimates are obtained for random walks on various RCMs. The
concrete examples are given in Section 1.2.

The organization of this paper is as follows. First, we give the framework
and main results of this paper in Section 1.1 and examples in Section 1.2. In
Section 2 we establish some preliminary results. In Section 3 we give the proof
of the LILs. In Section 4 we establish an analogue of (1.1). Finally in Section
5 we discuss the case where G = Z¢ and the media is ergodic.

In this paper, we use the following notation.

NortaTtioN. (1) We use ¢,C,cy,ca,... as the deterministic positive constants.
These constants do not depend on the random environment w, time para-
meters t,s..., distance parameters r,..., and vertices of graphs.

(2) We define av b := max{a,b} and anb:= min{a,b}.
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1.1. Framework and main results

Let G=(V,E)=(V(G),E(G)) be a countable and connected graph of
bounded degree, ie. M :=sup, .y degx <oco. We write x~ y iff (x,y)e
E(G). A sequence 7y, :X =Xy, Xi,...,X, =y on G is called a path from x
to y if x; ~x; for all i=0,1,...,n—1. We write d(-,-) as the usual graph
distance, that is, the length of a shortest path in G, and denote B(x,r) =
{ve V(G)]d(x,y) < r}.

Throughout this paper we assume that there exist o > 1, ¢, ¢y > 0 such that

(1.2) cr® < #B(x,r) < car®

for any x e V(G) and r > 1.

We introduce the random conductance model below. Let o=
{we = 0xy}o_(x y)ep(G) be a family of non-negative weight which is defined on
a probability space (Q,F,P). We call w the random conductance. For non-
negative weights o = {w,},, we define n¥(x) =3  _ oy and v(x)=1. We
fix a base point xo € V(G), and define graphs G* = (V(G?), E(G?)) as

VG ):{ye V(G) Wyx., >0 for all i=0,1,....n—1.

There exists a path ¢, : xo,x1,...,%, = » such that}
)

E(G?)={e=(x,y) € E(G)|x,ye V(G?”) and w,, > 0}.

We denote d®(-,-) as the graph distance of G®. Note that G® = G and d® =d
if conductance w is strictly positive.

We will consider two types of random walks, constant speed random walk
(CSRW) and variable speed random walk (VSRW) associated with w € Q.
Both CSRW and VSRW are continuous time random walks whose transition

probability is given by P®(x,y) = wzy 7 For the CSRW, the holding time

Tl (x
distribution at x € V(G®) is Exp (1), whereas for the VSRW, the holding time
distribution at x € V(G®) is Exp (n”(x)). We write £ for the generator which
is given by

£7100 = gy O (10 = S,

yiy~x
and we also write the corresponding heat kernel as
Pe(x, y)
q; (%, ) = —Fa >

where 0° = n® for the CSRW case and 0“ =1 for the VSRW case. We write
Y® ={Y/},5, as either the CSRW or the VSRW, P¢ as the law of the random
walk Y® which starts at x, and

(1.3) 1=t =inf{r=0|Y*"¢F}, or=o0p=inf{t>0]Y"€eF},

ot = 0@ =inf{r>0]Y® e F}.
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We denote F®=FnNV(G”), V(F)=23,rpuqc 0 (y) for FCV(G) and
Ve(x,r)=V®(B(x,r)). We write T’ =0 and T, =inf{t > T,”| Y # Y7.},
and introduce a discrete time random walk {X;”:= Y7}, ..

First, we state the results about the LILs. To do this, we need the following
assumptions.

ASSUMPTION 1.1. There exist positive constants &, § such that ¢ +1 < f§ and a
Sfamily of non-negative random variables {N, = Nx.,s}er(G) such that the following

hold,
(1) There exist positive constants cy1, 12, €13, Cla4 such that

1/(p=1)
s d X, b .
L exp (—01.2 <<ty>> ) o ifrzdy),
(14)  ¢/(x,y) <

Q3exp<—fLuﬂx,y)<lvlogdcﬁjﬁ>>, if t<d(x,y),

for almost all w e Q, all x,y e V(G?®) and t > N(o).
(2) There exist positive constants ¢y, ¢y such that

A\ (=D
o €21 d(x7 y)
(1.5) a7 (%, y) = 75 exp (-Cz.z <f

for almost all w € Q, all x,y e V(G?) and t >0 with d(x, y)" " v Ny(w)
<t
(3) There exist positive constants 31, c32 such that

(1.6) c3ar* < VO (x,r) < c3or®

for almost all w € Q, all xe V(G®) and r > Ny(o).
(4) There exist positive constants cs.1, €42, C43, Caa, Cas Such that

(L.7) 4/ (x,)

2
m exp <—C4.2 @), if t>ca3d(x,y),
d(x,y)

mexp(—m.sd(x,y)(lvlogf», if t<ca3d(x,y),

Sfor almost all w € Q, all t >0 and x,y € V(G®) with d(x,y) = Ny(®) A
Ny(o).

Note that (1.4) holds for # > N,(w) while (1.7) holds for all #>0. (1.7) is
called the Carne-Varopoulos bound. This type of bound was originally obtained
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by [11], [43]. It is known that (1.7) holds under general conditions which will be
described in the following Proposition (see [17, Theorems 2.1 and 2.2]).

PROPOSITION 1.2.  Let {N.} be as in Assumption 1.1 and dy(-,-) be a metric
on G” = (V(G?),E(G?)) which satisfies

1 w
(18) w(x) Z d() (.X7 y)zwxy < l
yev(G)

If there exists a positive constant ¢ such that df’(x,y) > cd(x,y) for all x,ye
V(G®) with d(x,y) > Ni(w) AN,(w), then (1.7) holds.

Next we assume the following three types of integrability conditions.

AsSUMPTION 1.3, Let {Ny},y ) be as in Assumption 1.1 and define f(1) =
f:(t) =P(N, = t). We impose one of the following three types of integrability
conditions on f(t).

(1) anln“f.(n) < @,

(2) 2um1nf(n) < oo,

(3) For positive and non-increasing function h(t), >, n*f(nh(n”)) < co.
We now state the main results of this paper.

THEOREM 1.4. (1) Under Assumptions 1.1 (1) (2) (3) and 1.3 (1), for almost
all w e Q there exists positive numbers ¢ = c{’, ¢ = c5 such that

, d(Ye, Ye
lim su (5 11)-1/3:
—x 1/B(log log 1)~/
supy<s<, d(Yy", Y¥,”)

N

ci, PZ-as. for all xe V(G?),

(1.9)

lim su

=cy, PP-as. for all xe V(G?).
= 11/(loglog 1) ~/* ’ )

(2) Under Assumptions 1.1 (1) (2) (3) and 1.3 (2), for almost all w € Q there
exist a positive number c3 = ¢y’ such that

SUPg <5<t d( Yowv Yw)

S

(1.10)  liminf

=c¢3, P%-as. for all xe V(G?).
= f1/B(log log )~ /* (G)

THEOREM 1.5. Suppose Assumption 1.1 (1) (2) (3) (4) and o/f > 1. In
addition 0°(x) =n®(x) = ¢ for a positive constant ¢ >0 in the case of CSRW.
Let h:(1,00) — (0,00) be a function such that h(t) \,0 as t— oo and the
function ¢(t) == t'/Ph(t) is increasing. If h(t) satisfies Assumption 1.3 (3), then

PO(d(x, Y?) = tYPn(z) for all sufficiently large t) =1,
Sfor almost all weQ and all x e V(G?),
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or
PO(d(x, Y”) = tYPn(z) for all sufficiently large t) =0,
Sfor almost all weQ and all xe V(G?),

o1 _
according as ff;h(l)“ Pdt < o or = oo respectively.

Note that the condition «/f > 1 implies the transience of {Y°},_.

Finally we discuss the constants ¢;, ¢z, ¢z in (1.9) and (1.10). When we
consider a case of G = Z", we can take ¢, ¢» as deterministic constants under
some appropriate assumptions. To state this, we take the base point xo = 0 € Z¢
and we write shift operators as 7., (x € Zd), where 7, is given by

(1.11) (fxa))yz = Wiy iz

We assume the following conditions.

ASSUMPTION 1.6.  Assume that (Q,F,P) satisfies the following conditions;

(1) P is ergodic with respect to the translation operators 1, namely Po 1, =P
and if ©.(A) = A for all xeZ® and for all A€ F then P(4) =0 or 1.
(2) For almost all environment w, V(G®) contains a unique infinite connected

component.
[ ] € (0, 00).

(3) (VSRW case) E nwl(O)

THEOREM 1.7. Suppose that the same assumptions as in Theorem 1.4 are
fulfilled and suppose in addition Assumption 1.6. Then we can take c|, ¢, c3 in
(1.9) and (1.10) as deterministic constants (i.e. do not depend on w).

1.2. Example
In this subsection, we give some examples for which our results are
applicable.

Example 1.8 (Bernoulli supercritical percolation cluster). Let G = (Z9, E,;)
be a graph, where E; = {{x, y}|x, y € Z¢ |x — y|, = 1}. Put a Bernoulli random
variable @, with P(y, = 1) = p on each edge. This model is called the bond
percolation. We write p.(d) as the critical probability. It is known that there
exists a unique infinite connected component when p > p.(d). See [20] for more
details about the percolation.

Barlow [3] proved that heat kernels of CSRWs on the super-critical per-
colation cluster (that is, when p > p.(d)) on Z“, d > 2 satisfy Assumptions 1.1
(1) (2) (3) (4) and 1.3 (1) (2) with « =d, B =2 and f,(t) = c exp(—c't’) for some
¢,¢';0 > 0. Since the media is i.i.d. and there exists a unique infinite con-
nected component, we can obtain Theorem 1.4 with deterministic constants by
Theorem 1.7.
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In addition, we can easily check that /(¢) = ) for x > 0 satisfy the

1
(log t)zc/(d72
conditions in Assumption 1.3 (3) and the assumptions of Theorem 1.5 in the
case of d>2. Thus P?(d(x,Y®) > t"Ph(t) for all sufficiently large )= 1,0
according as k¥ > d — 2, < d — 2 respectively by Theorem 1.5.

Note that (1.9) for the supercritical percolation cluster was already obtained

by [16, Theorem 1.1].

Example 1.9 (Gaussian free fields and random interlacements). The Gaus-
sian free field on a graph G = (V,E) is a family of centered Gaussian variables
{09, }.cq with covariance E[p.¢,| = g(x, y), where g(x, y) is the Green function of
a random walk on G. Here we are interested in the level sets of the Gaussian
free field E, = {xe V|p, = h}. We can regard the level sets as one of the
percolation models which has correlation among the vertices in V. See [38] for
the details.

The random interlacements concern geometries of random walk trajectories,
e.g. how many random walk trajectories are needed to make the underlying graph
disconnected? Sznitman [37] formulated the model of random interlacements.
Although the model of random interlacements is defined through Poisson point
process on a trajectory space, we can also regard this model as the percolation
model with long range correlation. From the viewpoint of the RCM, we can
regard the model of random interlacements as one of the RCM whose conduc-
tances take the value 0 or 1 and the conductances are not independent. See [15]
for the details.

Sapozhnikov [34, Theorem 1.15] proved that for Z¢, d > 3, the CSRWs on
(i) certain level sets of the Gaussian free fields; (ii) random interlacements at
level u > 0; (iii) vacant sets of random interlacements for suitable level sets,
satisfy our Assumption 1.1 (1) (2) (3) with « =d, =2 and the tail estimates
of N.(w) as f,(1) =cexp(—c'(log £)'*°) for some ¢,¢’,6>0. As the same
reason with the case of Bernoulli supercritical percolation cluster, Assumption
1.1 (3) is also satisfied in these models. This subexponential tail estimate is

sufficient for Assumption 1.3 (3) with A(¢) = ) for x > 0. Since the

media is ergodic and there is a unique infinite connected components (see [33],
[37, Corollary 2.3] and [42, Theorem 1.1]), Theorem 1.4 holds with deterministic

. 1
constants by Theorem 1.7, and Theorem 1.5 holds with h(f) = ——— for

J(d—2
K>d—2, <d-—2 respectively. (log 1)/

Example 1.10 (Uniform elliptic case). Suppose that a graph G = (V,E) is
endowed with weight 1 on each edge and satisfies (1.2) and the scaled Poincaré
inequalities. Take ¢, ¢, as positive constants and put random conductances on
all edges so that ¢; < w(e) < ¢; for all e € E and for almost all . Delmotte [14]
obtained Gaussian heat kernel estimates for CSRWs in this framework. Thus
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Assumption 1.1 (1) (2) (3) hold with f =2 and N, =1. Hence Theorem 1.4
holds.

In addition, this model satisfies Assumption 1.1 by [13, Corollaries 11 and 12].
(See also Proposition 1.2, note that the graph distance satisfies (1.8) for CSRW

case.) Thus Theorem 1.5 holds with A(f) = % (k=>d-2, <d-2
respectively). (log 1)

Example 1.11 (Unbounded conductance bounded from below). Let G = Z¢
(d = 2) and put random conductances @ = {wyy},, . Which take the value [1, ).
Barlow and Deuschel [5, Theorem 1.2] proved that the heat kernels of VSRW
satisfy Assumptions 1.1 (1) (2) and 1.3 (1) (2) with o =d, f=2 and f(7) =
c1 exp(—cat®) for some c¢,¢3,6 > 0. (Note that Assumption 1.1 (3) is trivial
since V®(x,r) = #B(x,r) for the VSRW case.) Hence Theorem 1.4 holds.

In addition, this model satisfies Assumption 1.1 (4) by either [5, Theorems
2.3 and 4.3 (b)] or [17, Theorems 2.1 and 2.2]. Thus Theorem 1.5 for the VSRW

holds with A(¢) = Kk >d—2, <d—?2 respectively).

L
(log t)l(/(de)

Moreover, if the conductances {w.}, satisfy Assumption 1.6 (3) then
Theorem 1.4 holds with deterministic constants.

2. Consequences of Assumption 1.1
In this section we give some preliminary results of our assumptions.
2.1. Consequences of heat kernel estimates

In this subsection, we give preliminary results of Assumption 1.1 (1) (2) (3).
Recall the notations in (1.4).

LemMma 2.1.  Suppose Assumption 1.1 (1) (3). For all 6 € (0,¢12Ac14) there
exist positive constants c¢; = ¢1(0), ¢2 = ¢2(9), ¢3 = ¢3(0) such that

B/(B-1)
(2.1) P2(d(x,Y”)=r) <cpexp [—(01‘2 —0) (t‘%) + ¢ exp(—c3t)

Sor almost all w e Q, all xe V(G?), r > Ny(®) and t > N(w).

This lemma is standard except for the part of estimates of Poissonian regime
(the bottom line of (1.4)). For the sake of completeness we give the proof here.

Proof. We first prepare some preliminary facts to estimate P (d(x, Y,”) > r).
Set 1y (1, s) = exp[—ns?/(F=V] and hy(n,s) = exp[—ns]. For hi(y,s), we can easily
see that there exists a constant {, > 1 such that

(22) hl(’%CS) < hl(;77 1)h1(’775)
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for all { >y, # >0 and s> 1. (We can take {, as the positive number which
satisfies Cg/(ﬁfl) —-1=1)

(2.3) ha(n,Cs) < ha(n, 1)ha(1, )

forall {>2,7>0and s > 1. Next, we easily see that for all { > 1 there exists
¢ = ¢1({) such that for almost all w € Q

For hy(n,s), we can easily see that

(2.4) Ve(x,ril) <V (x,r)

, o

for all xe V(G) and for all r > N.(w). (Use (1.6) and take c; :62.25 )
3.1

Thirdly, it is also easy to see that for all 0 € (0,c;,) there exists ¢;(d) such

that

(2.5) s* exp[—cl,zsﬁ/(l’)_l)] < ¢2(3) exp[—(c12 —5)sﬁ/(ﬁ_1>]

for all s > 1, where ¢, is the same constant as in (1.4). We can also see that
for all 0 € (0,c;4) there exists a positive constant ¢3 = ¢3(d) such that

(2.6) s* exp[—c1.as] < ¢3(9) exp[—(c14 — 0)s]

for all s> 1. Using (2.5), we can see that for d(x,z) > s>t/ and 5 € (0, ¢1,)

SNA/B-D)
e Senl-ax( %)
cr. d(x,z)\" d(x,z)\//P=1
s (22 x| s (12
¢ MRS
d(;fi))a exp [—(6142 —0) (d(tl/’ﬁ )> ] (use (2.5))

¢ RN
%f) exp [—(01.2 —9) (W) ], (use d(x,z) >s).

IA

Now we estimate P¢(d(x,Y”) >r). We first consider the case r < ¢!/~
Since s +— hi(n,s), (n > 0) is non-increasing, we have

r
2.8 PO(d(x, YO) > <1<hl<m’m> h !
(2.8) c(d(x, Y?) =r) < —m—651 61427m,

where we set ¢s = 1/h(c12,1). So we may and do assume r>1tYF. Take
{={yv?2 so that (2.2), (2.3) and (2.4) hold. We divide P?(d(x,Y”) = r) into
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( > + > )th(x’ 2)0%(2),
(x,1C"%)

=0 ZGB“’(X,;{H])\B“’(X, er) ze B (x, |1])\B®(x, K

>

=

(2.9)

o0

>+ Y > 47’ (x,2)0°(2),
e B )\ B, 1) |

k=K+1 zeB‘“(x,r(Hl)\B“’(x,er

where K is the positive integer which satisfies /(% << (X! and [7] is the
greatest integer which is less than or equal to 7. We have for > N,(w),
r > Ny(w) and using (1.4)

(2.10) (The first term of (2.9))
K B/(B-1)
¢ d(x,z o
< E tal/; exp [—cl'z (%) 10 (z)

k=0 ze Bo (x, it 1)\ Bo (x,r¥)

© A\ BB-D)
< Z 1) exp {—(01.2 —0) <Zr§w> } (rg*

k=0 (")
(use (2.7) and (1.6))

K er
<> (6,0 (Cu —0, m)

k=0

K
= C7((5,C)/’11(C‘1,2 5 1//),> Zhl C12—5 1 (use (2.2))

k=0
N .
< ¢3(0,() exp|—(c12 —9) <W) ,  (since hi(c12—0,1) < 1).

For the second term of (2.9), using (1.4), 1 > Ny(w) and r > N.(w) we have
(2.11) (The second term of (2.9))

0

< Z c13 eXp [cmd(x7 z) (1 v log d(); Z))} 0°(z)

k=K ze Bo(x, i)\ B (x, %)

[M]s

<

Z 13 exp[—c1.4d(x, 2)]0”(z)

ze B (x, 1M\ B (x, (%)

>

/N

since 1 v log M > 1>

8

<3 e expl—cra(rEN () (use (1.6))

T
>
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< ¢10(¢,9) i exp[—(cr4 — )¢t (use (2.6))

k=K

= ¢10(¢,9) th(cm — 0,1k
=K

0

< en(Go)h(era —6,1%) > (e =0, 1) (use (23))

k=0

< ¢12(¢,0) exp[—c13(,0)t], (since Wk <i< rCK“).

Therefore, by (2.8), (2.10), (2.11) and adjusting the constants, we obtain
(2.1). We thus complete the proof. O

Again recall the notations ¢, and ¢y4 in (1.4).

LemmaA 2.2.  Suppose Assumption 1.1 (1) (3). Then for all 6 € (0,c12Ac14)
there exist positive constants c¢; = ¢1(0), ¢2 = ¢2(0), ¢3 = ¢3(0) such that

(2.12) Pﬁ,’( sup d(x,Y”) = Zr)

0<s<t

; B/(p-1)
<crexp|—(c12—9) ((Zt)l/ﬁ> + ¢ exp|—c3i]

a3 pe( s d v =)

0<s<t

; B/(p-1)
< ¢ exp [—(cl,z —0) (W) + ¢2 exp[—csi]

for almost all we Q, all x,ye V(G®), t>1 and r>1 with d(x,y) <2r, t>
maxye p(x,2r) Nu(®) and r = max,cp(x,2r) Nu(®).

Proof. This is standard (see the proof of [4, Lemma 3.9 (c)]), so we omit
the proof. O

Lemma 2.3.  Suppose Assumption 1.1 (1) (2) (3). Then there exist positive
constants n > 1, c¢y,¢; > 0 such that

(2.14) P;"( sup d(x,Y”) < 3;7r> > ¢) exp {—cz ri/f]

0<s<t

for almost all weQ, all xe V(G®), t>r>1 with r'/f > max.c p(y, 3y N:z(0).
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Proof. The proof is quite similar to that of [30, Proposition 3.3], so we omit
the proof. O

Let ¢1, ¢, be as in Lemma 2.3. Note that we can assume that ¢; < 1 (and
therefore ¢; exp[—cy] € (0,1)). We define p,, ax, b, Ak, ug, o as
pr=crexpl-cl, af =€, b =eF,
(2.15) k-1

) 2 4
A ==—— log(1 + k), uk:/lkalc, ok = u;.
3|log py | (1+8) ! ;

COROLLARY 2.4 (Corollary of Lemma 2.3). Let 5 > 1 be as in Lemma 2.3.
Then under Assumption 1.1 (1) (2) (3) we have

zeB®(x,ax) 0<s<uy

(2.16) inf Pf)< sup d(z, Y”) < 3;7ak> > pi
Sor almost all w e Q, all k with max.c (. 4yq,) No(®) < a,l//j.

Proof. We can see from Lemma 2.3 that

P_“'( sup d(z,Y”) < 377ak> > ¢ exp l—cz u—;} > p];"’
ay

0<s<uy
for all k> 1 with max,cp(- 34,) No(®) < a,i/ﬂ. Hence (2.16) holds for k& with
1
max; e p(x,a,) MaAXye B(z, 3na;) Nv(w) < ak/ﬁ- Ll

Lemma 2.5. Suppose Assumption 1.1 (1) (3). Then there exist positive con-
stants ¢y, ¢ such that

t
P;”( sup d(x,Y”) < r> <c exp(cz _/f>
" \o<s<t “ r
for almost all environment ®weQ, all xeV(G?®), t=1 and r=1 with

max, ¢ gy, ;) Ny(w) < 2r.

Proof. The proof is quite similar to that of [30, Lemma 3.2], so we omit it.

O

We will need the following version of 0-1 law.

THEOREM 2.6 (0—1 law for tail events). For almost all environment o € Q,
the following holds; Let A® be a tail event, i.e. A” € (\Zyo{Y?:s>1t}. Then
either P®(A”) =0 for all x or P?(A®) =1 for all x.

The proof of the above theorem is quite similar to that of [7, Proposition 2.3]
(see also [3, Theorem 4]), so we omit the proof here.



RATE FUNCTIONS FOR RANDOM WALKS ON RANDOM CONDUCTANCE MODELS 301

2.2. Green function
In this subsection, we deduce the Green function estimates. We define the
Green function as

o0

(2.17) g% (x,y) = Jo q?(x,y) dt.
Recall that 0“(x) = z®(x) in the case of CSRW and 0”(x) =1 in the case
of VSRW.

PropOSITION 2.7. Let o> f and suppose Assumption 1.1 (1) (2) 4). In
addition we assume there exists a positive constant ¢ > 0 such that 0(x) > ¢ for
all xe V(G®) in the case of CSRW. Then there exist positive constants ci, ¢
such that

(2.18) L <) s

d(x, y)" d(x, y)*™"
Sor almost all @€ Q, all x,y e V(G®) with d(x,y) = Nx(w) A Ny(w).

Proof. This proof is similar to [6, Proposition 6.2]. We first prove the
upper bound of (2.18).

(ca3d(x,y))ANx(@) Ny(w)

4®(x, ) di + j q”(x, y) di
(ca3d(x,y)) ANx(o)

219 ¢°(x,) =j

0

o0

d(x,y)
+ j 40 (x,y) di + j 4©(x, ) di
Ni(w) d(x,y)

=Ji+h+J3+ Js.
We estimate Ji, J>, J3, J4 as follows.
(ca3d(x,) AN () Ca
; VOT0° ()
< cld(x, y) exp[—c2d(x, y)],

(2.20) J; < exp[—casd(x,y)] dt (use (1.7))

(@) x )2
J2 = (414‘(}’ ( ( )aw( ) eXp l64.2 d( 7y) ] dt (use (17))
< 3Ny(w l ] < c3d(x, y) exp[—cad(x, y)]
(use d(x,y) = N.

d(x,y)
J3 < J c13 expl—cirad(x, y)] dt  (use (1.4))
Ni(w)
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< c13d(x, y) exp[—crad(x, y)],

e , d(x,y) P Cs
Jy < J 1/[), CXp|—Ci12 (/B dt < W

By (2.19) and (2.20) we have g“(x,y) < ﬁ for d(x,y) > Ny(w). Note
X, )
that g®(x, y) = g®(y,x). Thus we complete the upper bound of (2.18).
Next we prove the lower bound of (2.18). We can obtain the lower bound

in the following way.

w ® B/(B-1)
o €21 o (4xp)
g(x,y) = L(”) q;(x, y) di = L(X’y)ﬁta/ﬂ eXp[ ‘“( (178 dt

7
> —.
d(x, y)*”
We thus complete the proof. O

2.3. Consequences of the Green function and Assumption 1.1

In this subsection we give some preliminary results of Assumption 1.1 (1) (2)
(3) (4) in the case of o > . This subsection is based on [35, Section 4.1]. In
this subsection we assume the following conditions.

AssumPTION 2.8. (1) o > f3,
(2) (CSRW case) There exists a positive constant ¢ such that 0°(x) = ¢ for
almost all w e Q and all x e V(G?).

Recall that Proposition 2.7 holds under Assumptions 1.1 (1) (2) (4) and 2.8.

We write e@(x) = P?(6}“ = c0)1p(x) as the equilibrium measure of F C
V(G?), and define Cap®(F) = _re@(x)0”(x) as the capacity of F C V(G?).
Then we have

(2.21) P& (a1 < o0) Zg x, y)ex(»)0%(y)
yeF

for any finite set F and for any x e V(G®) since

P& (a1 < o)

J ZP“’ Y?=y,Y?¢F for any s > t) dt (last exit decomposition)
0 yeF

(%, )07 (y) Py () ;@ =o0)dt (by the Markov property)

X
Z (x, »)eR(1)0° ().
eF
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LemMmA 2.9.  Under Assumptions 1.1 (1) (2) (3) (4) and 2.8, there exists a
positive constant ¢ such that

Cap®(B®(x,2r)) = cr*F
for almost all weQ, all xe V(G®) and r > 1 with r > maX,cp(x,» No(®).

Proof. Recall the notations in (1.3).

= 2 Ve < ©)00)

veBo(x)

:m > BZ(: 9° (¥, 2)€Go( 20 (2)07(2)0”(y)  (we use (2.21))

yeB®(x,r) ze B”(x,2r)
d(x,z)=2r

Z Z eB” (x, 2r (Z)Hw(y)

zeB?(x,2r) ye B®(x,r)
d(x,z)=2r

_9”((

(since d(y,z) >r > N,(w) and Proposition 2.7)

c 0“(B(x,r » »
= H(U(B(IX, r)) <V“(_); )) Z eB”’(xﬁZr)(Z)e (Z)

zeB®(x,2r)
d(x,z)=2r
= L Cap”(B®(x,2r))
po—p T
We thus complete the proof. O

Recall the notations in (1.3) and set
y0 p(Ki) = PO(YS € Ko),
ny p(dt, K>) = PY( ;’; € Ky,of edr)

for F,Ki,K, C V(G”). Note that ["n2,(dt,K)=y?p(K) and %, (F)=
P?(gt < o0).

Lemma 2.10.  For almost all w € Q,

(2.22) 975, ¥) = > 4“0, )7 po(v)
veF®
for any finite set F® C V(G®), x¢ F® and y e F®. In particular we have

9 (x, ) )
2.23 P Y e F® for some t >0 < inf [ ———————F——).
( ) x( f ) }’6F1)<1nszF“’ gw(z, y)
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Proof. We write F = F” and o = op. =inf{st > 0| Y” € F} for notational
simplification. Then for any x ¢ F, y e F we have

P2(Y’ =y = [I{G<I}P()fw(yw = ZE l{a’<l}1{Y“‘—b}PY (Y2, =)
veF

t
= | petre, = g s,
veF J0

Hence we have

o0 t o0 o0
g‘“(x,y)=J Zj 42 (v, y)n p(ds,v) drzj Zj 4° (v, y) din® p(ds, v)
0 yerJo 0 yerds
ng (v, )7 p(ds,0) = > g”(v, )78 p(v).
veF veF

We thus complete the proof of (2.22). (2.23) is immediate from (2.22). O

Lemma 2.11. Under Assumptions 1.1 (1) (2) (3) (4) and 2.8 there exist
positive constants cy, ¢ such that for almost all w e Q the following hold.

a—f
(1) P¢ (o Blvo,2r) < 0) < clr—H Sor all x,xy e V(G®), r>1 with
(d(x,x0) —r)
d(x,x0) = 2r+1 and r = max,cp(y,,» No(®).
2P
(2) P‘“(JB(X0 2 < 0) = d 7 Sor all x,xo € V(G?), r =1 with

(d(x, x0) +2r)"
d(x,x0) = 2r, r > Ny(w) and r > maX,c (v, No(®).

Proof. We first prove (1) by using (2.23). Let x,xye V(G?®) satisfy
d(x,x9) > 2r+1. For any ye B(xp,r) we have

d(x,y) =d(x,x0) —d(x0,y) =d(x,x0) —r=2r—r=r.
By Proposition 2.7, for any y € B”(xo,r) and for any r with r > max ¢ g(y,,») Ny(®)
we have

1 9!

(2.24) g9°(x,y) < A )P = exe) —n)* P

Next note that B(xp,2r) C B(y,3r) for any ye B(xp,r). Since ¢g®(-,y) is a
superharmonic function, using the minimum principle and Proposition 2.7 we
have

(2.25) inf = g“(z,y)> inf g“(z,y)>  inf  ¢“(z,y) >

zeB®(xp,2r) zeB*(y,3r) z;(B‘”()y‘ 3r41) ’ re=h
y,z)=3r+1

2
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for all r>1 and ye B”(xo,r) with 3r+1 > max,cp(,, ) No(w). Hence by
(2.23), (2.24) and (2.25) we have

0] a—p
T o L L S [l
veB(v,) \Inf ¢ po(xy 2r) 9(2, ») (d(x,x0) —1)*

for all r with r > max,cp(y, ) No(®). Thus we complete the proof of (1).
Next we prove (2). Note that

P05 2 < ) = BZ(: 2)9“’(}6, P)€Ro020(10(3)  (use (2.21))
yeB(xg,2r

z(im wwﬂ S el (1070

) @ ( -
yeB(xo,2r) y€B®(xq,2r)

= ( inf  g“(x, y)) Cap®(B(xo,2r)).

o/ +
Px (O-B(on, 2r

Ve BO(x0,2r)

By B(xo,2r) C B(x,d(x,x0) + 2r), the minimum principle for superharmonic
functions and our assumptions we have
inf “(x,y) > inf “(x,y) > inf g°(x,
y€B®(xq,2r) g ( y) yeB(x,d(x,xo)+2r) g ( y) y€eB?(x,d(x,x0)+2r+1) g ( y>
d(y,x)=d(x,x0)+2r+1
> 4

(d(x,x0) +2r)*F
for r > Ny(w). By Lemma 2.9 Cap®(B(xo,r)) > csr*# for r > max,c p(x,, ) No(®).
Hence

cer®F
(d(x,x0) +2r)* "

for r > Ny(w) and r > max,cp(y,, ) No(w). We thus complete the proof. O

PY(05(%, 2 < ) =

Lemma 2.12.  Under Assumptions 1.1 (1) (2) (3) (4) and 2.8 there exist
positive constants ¢, and Ty such that

e r Py
/B

PY(d(xo, Y.”) <2r for some s> 1t) <

for almost all w € Q, all t > Ty, r > 1 and x,xo € V(G®) with t'/F > r, d(x,x,) <r
and r > max.cp(y, ) N:(o).

Proof. First note that
P?(d(x0,Y,.”) < 2r for some s > 1)

= Z PY(Y” = y)P)(d(xo, Y{") <2r for some s> 0)
yev(Ge)
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= > PYY?”=yp)Pd(xo, Y") < 2r for some s> 0)
y;tV/B<d(xo,p)—r

+ Z PY(Y” = y)Py(d(x0, Y,”) < 2r for some 5> 0)
yir<d(xo,y)—r<t\/F

+ Z PY(Y” = y)Py(d(xo, Y,”) < 2r for some s> 0)
yid(x0,y)<2r

=J1+J+ J5.

We estimate Ji, J, and J3 in the following way.
For #,r > 1 with t > N,(w) and r > max.cp(y,, N- (note that > Ny(w)
follows from our assumptions), using (1.4), Lemma 2.11, (1.6) we have

o b

yitB<d(xg,y)—r (d(y7 xO) - r) =p

L d(x, y) B/(p-1)
.{[“/ﬁ eXp[—Cyz( ll/ﬁ

(use (1.4) and Lemma 2.11)
) a—p 1

cor
r) B ra/f

J1 <

+ c1.3 exp[—ci4d(X, J’)]}H(/)(J’)

IA

(=1 yid(xo,p) €[(tV/P+r, (£+1) V4] (d<ya XO) -

d(.x0) — r\P/#D
X €xXp |‘—c1.2 <%> Hw(y)

+ Z Z W exp|—c14(d(y,x0) — 1)]0”(y)
1= yid(so,y) el e, (et (9D X0

(since d(x,y) > d(y,x0) — d(x0,x) and d(xp,x) <r)

2ot h 1
— (/11/8)*7F /B

IA

exp[—c12P/P7V10°(B(xo, (¢ + 1)1/ + 1))

© a—p
C3}" _ 1/p1pw 1/p
+ E /tl/ﬂ exp[ 14t 'P10°(B(xo, (¢ + 1)t7F + 1))

IA

iijﬁlz/ﬁexp [—er2PP1] 4+ m/ “”Zﬂ*exp [~crat1')

(use 0”(B(xo, (£ + 1)t'P + 7)) < c(/t'/P)* since 1'/F > r)

CGV“_B

= (1 (since 7 +— l“/ﬁZ/ﬁ exp[—c1471t"/"] is bounded).

/=1
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Next we see J,. First note that for r > Ny (w) we have
w
0" (»)
a—f
yir<d(xp,y)—r<tl/p (d(y, XO) - r)

0% (B(x0, k)\B(x0,k — 1))

(2.26)

5
ke 2r,r+t1/h] (k - r)l /
- 0°(B(xo,k)\B(x9,k — 1))
< o
/e(0,log,y (118 /r)] ke [r42r,r+2(+ 1] (k - },.)J /
2/ +1,)%
<c7 u < Cgrﬁ Z 2P < col.

reptegimm @17 10,1081 )

We go back to estimate J,. Note that for y with r < d(xo, y) — r < t'/F we see
d(x,y) < d(x,x0) +d(xo,y) <3t'/F. Forr>1,t>1with t > Ty := 3#/F-1 (s0
that 3¢'/# <t for t > Ty) and r > max.cp(, ) N-(w) (in particular ¢ > N(w)),
using Lemma 2.11, (1.4) and (2.26) we have
Jy < clor””? ] 0”(y)
yir<d(xo,y)—r<t'/f (d(% XO) - r)a N

_ar” 0°(y)

el yir<d(xo,y)-r<t'/# (d(y, Xo) — r)“*ﬁ
enr® Pt
P (use (2.26)).

Finally we see J3. For t > Ty :=3#/(F-1) N (w) <t and N, (w) <r, using
(1.4) we have

< Y PYYP =y = ) ql(x0)0°(0)
yid(vov) <2 yid(om) <2r

® ” car®  epr® P
< 9" (00" () < —r < =g

We thus complete the proof. O

Lemma 2.13.  Under Assumptions 1.1 (1) (2) (3) (4) and 2.8 there exist
constants ¢y > 0,c3, Ty > 1 such that

crt Pt

PP (d(xo, Y”) < 2r for some s>t) > T

for almost all weQ, all r>1, t> Ty, x,x9€ V(G”) with d(x,xo) <r, t>rP,
R LD S ) N. (o).
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Proof. Take a constant ¢, such that ¢3¢} —c322* > 0. Note that by
(1.6) we have 0°({y € V(G)|d(xo,y) € 2t"F, 2t /P]}) = (e31¢% — ¢322%)t*/F, and
for y and sufficiently large ¢ (say t > Tp) with d(xo, y) € [2t'/#,c2t'/%] we have
d(x, y)" < (d(x,x0) + d(x0, )" < {(ca+ D'} <t since 1+e<f (see
Assumption 1.1). Then by Lemma 2.11 (2), (1.5), (1.6), for ¢, r as in the
statement above we have

P?(d(x0, Y?) < 2r for some s > 1)

= Z g, (x,y)0”(y) P} (d(xo, Y;”) < 2r for some s> 0)
yeV(G®)

Y

g, (x,»)0”(y) P} (d(xo, Y;”) < 2r for some s> 0)

vid(xo,y) € [2tVF cyt/F]
B/(B-1) 20— f
€21 d(x,y) w car
— 0
/P eXp[ C“( 1/ ) Gy 42077

(use (1.5), Lemma 2.11 and d(x, y)'™ < ¢, note that 1 > Ny(w)

Y

yid(xo,y) €218 cpt'/h)

follows from our assumptions)
C4 r“_ﬁ
S - M
P 2=
}’!d(xo,y)6[2“//;762“”]t " (r1/7)”
(use d(x,y) < d(x,x0) +d(xo, p) < (c2 + 1)¢"/# for y e B(xo, cat'?))
C5(C3'IC% — C3‘221)}’a7ﬁl
>
/B

We thus complete the proof by taking c; = c¢s(c3cf — ¢322%). O

Lemma 2.14.  Under Assumptions 1.1 (1) (2) (3) (4) and 2.8 there exist
positive constants ci, ¢z, 1y, To such that for any n >wn, the following holds;

crr Pt
/P

P (d(xo, Y) < 2r for some s € (t,nt]) >

Jor almost all w e Q, all r=1, t= Ty, x,x0 € V(G”) with d(x,x0) <r, t =17,
r= max:eB(X(),sz]/ﬂ) Nz(w)

Proof. By Lemmas 2.12 and 2.13 there exist positive constants ¢, ¢a, ¢3, Tp
such that for almost all w € Q

clr“‘ﬁl CZra_ﬁ[
- < P?(d(xo, Y?) < 2r for some s> 1) < ol
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for r>1, 1> To, x,x0€ V(G®) with d(x,x0) <r, t >rF, r >max,_p(,, .0 N:().
Cl

Take #, such that ¢, — 75T >% for all # >#,. Then we have
—

P?(d(x0,Y”) < 2r for some s € (¢,nt))
> P?(d(x, Y) < 2r for some s > 1) — P¥(d(x9, Y”) < 2r for some s > #t)

r*Pt rPnt) r“'gl( o >
(&) .

=y T4 AN R

We complete the proof by adjusting the constants. O

2.4. Consequences of Assumption 1.3
In this subsection, we give easy consequences of Assumption 1.3. We use
0(q) = pc(q) = Cq'/P(log log ¢)' /7 in this subsection.

LemMma 2.15. (1) Under Assumption 1.3 (1), for all y;,y, >0, ¢ > 1 and for

. i 1
almost all w e Q there exists a positive number L (w) = Liﬂlm-,yz,q(w)
such that

P> max  Ny(o), ") = max  N,(o),
e yeB(x,7,4"F) @) neld’) yeB(x,7,0(q")) ()
for all n > LW (w).
(2) Under Assumption 1.3 (2), for all y,,y, >0, ¢ >1 and for almost all

w e Q there exists a positive number L® (w) = Ly(fg’y]‘yzyq(w) such that

ng"? = max N,(o)
YeB(x,729")
for all n> L®(w).

(3) Set (1) := t'Ph(t), where h(t) is non-increasing and (t) is increasing
Sfunction.  Under Assumption 1.3 (3), for all y,,y, >0, ¢ >1 and for
almost all w e Q there exists a positive number L% (w) = Lfg,yhyzyq(w)
such that

ny(g") = max Ny(o)
: yeB(x.ygh)

for all n> LB (w).

Proof. We can prove (1) (2) (3) similarly, so we prove only the first
inequality in (1). Since

P<qun/ﬂ < max ) Ny) = Z P(yg"" < N,)

e B(x. n/f
yeBlx.ng yeB(x,724"/F)

< c(ng"")f (nq"P),
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where we use union bound in the first inequality and use (1.2) in the second

inequality. The conclusion follows by the Borel-Cantelli lemma. O

3. Proof of Theorem 1.4

In this section we give the proof of Theorem 1.4.

3.1. Proof of the LIL
We follow the strategy as in [16].

TueoreM 3.1 Let  ¢(1) = po(f) = Ci'/P(loglog ©)' ", where C >
21 b PP Then under Assumptions 1.1 (1) (2) (3) and 1.3 (1) the following
hold for almost all w e Q;

SupOsxsz d( YOw’ st)

(3.1) lim sup <1, PP-as. for all xeV(G®),

t—0 (ﬂ(l)
(3.2) P;f’( sup d(x,Y”) < o(t) for all sufficiently large t) =1,
0<s<t

for all xe V(G?).

In particular, we have

) dye, ye
lim sup a(¥y’, ¥") <1,
t—0 (P(t>

P2(d(x,Y”) < o(t) for all sufficient large t) =1, for all x € V(G®).

P?-a.s. for all xe V(G?),

Proof. Take n >0 and 0 € (0,c;2 A c14) sufficiently small constants which

N
—5> . Set £, = (1+47)".

satisfy C > 21/4(1 +f7)l/ﬂ<c
12—
First we estimate P (supy.,., , d(x, Y") = 2¢c(t,)). For all 6 € (0,c12n

c14), using Lemma 2.2 we have

0<s<ty1

(3.3) P?( sup  d(x,Y{) > 2q)(tn)>

(1) B/(B-1)
< ciexp|—(cr2—9) (w—nl/,}> + ¢2 exp[—c3tyi1]
(2ln+1)

o(t) B/(B=1)
< cpexp|—(cia—9) (m) + ¢ exp[—c3tyii]
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for sup. c gy 2(1,)) N:(@) < @(tn) Atur1. Note that sup.c g, 290, V() < o(tn) A
tpy1 for all n larger than a certain constant L = L(w) by Lemma 2.15 (1).
(3.1) is immediate from (3.3) and the Borel-Cantelli Lemma.

AN _
We prove (3.2). Let C > 2VA(1 +y)1/P (6(5> be as above. Since
12—

Pi’( sup d(x,Y”) > 2(p(t)> < Pi’( sup d(x,Y") = Z(p(tn))
0<s<ty 0<s<tys

for t€[t,,1,41) and the last term of (3.3) is summable by the definition of #
and 6. By the Borel-Cantelli lemma we have

(3.4) Pi"( sup d(Yy’,Y”) <2¢(t) for all sufficiently large t) =1,

0<s<t ’
for all xe V(G?).
We thus complete the (3.2) by adjusting the constants. O

THEOREM 3.2. Let ¢(1) = po(1) = Ci'/P(loglog 1) ™VE, where 0< C <

1 31 Ve s \B-1D/B
s o) \an - T 4 jons 1.1 (1) (2 13 (1
1176 <c3_2> (c2<2> hen under Assumptions (1) (2) (3) and 1.3 (1)
the following holds;
d(yey, vy
limsup(o”)>1

t— o0 gﬂ(l) -

In particular, we have

P?-a.s. for all xe V(G?).

P2(d(Yy", YY) = ¢(t) for sufficiently large t) =1, for all x € V(G*),

lim sup SupOSsgz d( YOw’ wa)

>1, P%-as. for all xe V(G?).

Proof. Define ®(q) = ¢'/#(loglog q)'""/# and let C be as above. Take
n >0 as a sufficiently small constant such that

co L)l (an N A
216 )2 \¢3 g €22 '

1 1 1/a .
Set I = 5 (?—1) /B Note that C3,1)~d —322% >0 and c2,2(21//fCi)ﬁ/(ﬁ*1> < 1.
32
We prove that
(35) > PU(AY | F5) = o,

n

where A? = {d(Y3, Y{2.,) > 202"} and F” = o(Y|s <1). To prove (3.5),
first note that by Theorem 3.1 there exists a sufficiently large constant C; such
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that for almost all w e Q
d(x, Y52) < C;®(2") for sufficiently large n (say n > N;), P%-as.
Set BY = AP N{d(Yy’, Y57) < C;®(2")}. Then we have
(3.6)  PU(AY|FL) = PY(BY| F)
= Latrg, vy <cioeny Py (d(Y3, Yin ) = 29(2")

> . f P(l) d Yw YQ])x 2 2 2n+l
- (ueB‘“()lc,nQ(D(Z")) W (d(Yg", Y37) = 29/ )))

Mg, voy<coeny,  PY-as.

We consider the first term of (3.6). Take ue B®(x, Ci®(2")). Since 1 +¢& <,
there exists a positive integer N» = N,(1) (which does not depend on u, w) such
that d(u,v)'™ < 2" for all n > N, and ve B®(u,ip(2"1)). So for all n > N,
with 2" A2¢p(2"") > N,(w), using (1.5) and (1.6) we have

POd(Y, Y5) = 2p(2")
> PY(2p(2") <d(Yy, Y5) < Ap(2"*))
= > g5 (1, 0)0° (v)

e V(G)
2021 <d(u,v) < Ap(2"+1)

B/(p-1)
) 2 exp [ —can (—d(u’ U)> 0“(v)
ve V(G) (211)“/ﬁ . (2,,)1/,3

202" <d(u,v) < Ap(2"+)

S €21 exp | —c 2’“rl
= amy 2.2 1/p

x 0°({v e V(G?) | 20(2"") < d(u,v) < Jp(2")})

\Y

—

e22(21187.C) P/
) (log log 2"'”)(/)’*1)0(/[)’.

> 314" — 322" C¥| ——
> ca1(esn €322"%) ((n 1) log2
By the above estimate we have

37 : f Pw d Yw Ya,: >2 2n+1
37 “EB”J(EICch(zn)) (Y5, Y3n) = 20(2"7))
1 "Z.Z(ZIM/ALC)”/(/"’”

= 2= 322" C*

> e21(c31A" — €322%) <(n oz 2)

x (log log 2+ P=D=/F
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for n > N, with max,e p(x, c,0(27)) Nu(@) < 2" A2¢p(2"1). By Lemma 2.15 (1),
MAaX, e p(x, C,0(2")) Nu(w) < 2" A2¢(2"+1) holds for sufficiently large n (say n > N;

= N3(w)). Hence by (3.6) and (3.7) we have
DAL | FO o o 1 e22(2VP5C) PP
(38) Px (An |-7:2n) > C2'1(C3_1}V — C3‘22 )C <(’1—H)1c)g2)

% (log lOg 2/1+1)(/3*1)1/ﬁ

for n> N;vN,vN;. We thus complete to show (3.5).

By (3.5) and the second Borel-Cantelli lemma, we have d(Yj), Y;.,) >
2p(2"*1) for infinitely many n. This implies d(x, Y32) > ¢(2") or d(x, Y%.,) >

@(2"1) for infinitely many n. Hence

Y Ye
lim sup 761( R
t—w (ﬂ(t)

We thus complete the proof. O

> 1.

By Theorems 3.1, 3.2 and 2.6 we obtain (1.9).

3.2. Another law of the iterated logarithm

The proof of Theorem 1.4 (2) is quite similar to that of [31, Theorem 4.1]
by using Lemmas 2.2, 2.5, 2.15 (2), Corollary 2.4 and Theorem 2.6. So we omit
the proof.

4. Lower rate function

In this section we give the proof of Theorem 1.5. We follow the strategy
as in [35, Section 4.1].

THEOREM 4.1.  Suppose Assumption 1.1 (1) (2) (3) (4). In addition suppose
that there exists a positive constant ¢ such that 0”(x) = ¢ for all xe V(G®) in
the case of CSRW. Let a/f > 1, h:[0,00)— (0,00) be a function such that
h(t) \, 0 as t — oo, ¢(t) :=t'/Ph(t) be increasing for all sufficiently large t and
satisfy Assumption 1.3 (3). If the function h(t) satisfies

(4.1) J %h(t)‘“’” dt < o
1

then for almost all w € Q and all x € V(G®) we have

Pe(d(x, Y?) = tYPh(t) for all sufficiently large t) = 1.

Proof.  Set ¢(t) == t'Ph(t), t,:=2" and A2 := {d(x, Y) < ¢(s) for some
s € (ty,t, + 1]}. Note that there exists a constant ¢; such that ¢(s) < 2¢;p(t,) for
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all sufficiently large n (say n > N;) and for all s e (,,%,41]. Then by Lemma
2.12 we have

CZ(ﬂ(tn)aiﬂtn

P;U(A;u) < Pi"(d(x, st) < zcl(ﬂ([n) for some s > tn) < Z‘Z(/'B

for n with

n>N;, 2">Ty, where T; is as in Lemma 2.12, t,ll/ﬂ > c19(ty),

(4.2) c1p(ty) = max N (o).

zeB(x,c19(t,))

Note that (4.2) is satisfied for sufficiently large n (say n > N, = N>(w)) by
Assumption 1.3 (3) and Lemma 2.15 (3). Thus

o—p o—f
0] 1) 62(00") In CZh(tn) ty
YoYU < Y S Y T
n>N>(w) n>N>(w) In n>N>(w) n
a—f _ o o—p
< Z c3h(ty) t(zn h-1) < C4J h(s) s,
n>Ns(w) n et S

Since the last expression above is integrable by (4.1), by the Borel-Cantelli lemma
we have

P(d(x,Y”) = tYPh(z) for all sufficiently large 7) = 1.
We thus complete the proof. ]

THEOREM 4.2. Under the same setting as in Theorem 4.1, if the function h(t)
satisfies

(4.3) ij %h(z)“’ﬁ dt = o

then for almost all @ € Q and all x e V(G?)
(4.4) P2(d(x,Y) = ¢(t) for all sufficiently large t) =0.

We cite the following form of the Borel-Cantelli Lemma (see [35, Lemma
4.15], [40, Lemma B], [12, Theorem 1]).

Lemma 4.3. Let {Ar},-, be a family of event which satisfies the following
conditions; B
(1) ¥ PlAx) = o0,
(2) P(limsup Ax) =0 or 1,
(3) There exist two comstants ci, ¢y such that for each A; there exist
Aj, ... Aj e {Ak}s, such that
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(a) Xoimy P(4; 0 4;) < e P(4)),
(b) for any ke{j+1,j+2,... )\{ji,j2,---,Js} we have P(4;NAy) <
2 P(A;) P(Ay).
Then infinitely many events {Ay},~, occur with probability 1.

Proof of Theorem 4.2. First we prepare preliminary facts. Since /(f) \, 0
as t — oo, there exists a positive constant 7' such that A(f) <1 for all ¢ > T;.

So there exists a constant x e (0,1) such that ¢(f) < (xt)'# for t> T|. Take
1
n > 1vn, (where 7, is as in Lemma 2.14) with 1 ~ >k and ¢; = ci() € (0,1)

such that 2¢;("")'# < (y™)'F for all n. Note that for all s with " <s <
7"+t we have

(4.5) o) = " (™) = 201 (") Ph(s) = 2c10(s),

and for all sufficiently large i, j with i> j+2 and 5/ > T| (say j> N;) we
have
A 45 -l A :

(4.6) Qerpn™ N < o) <wn’ < pi—nt <yl -t

Now we prove (4.4). Set AP :={d(Y{, Y?) <2c1p(n"") for some se
(n",n"t1]}. We use Lemma 4.3 to show that infinitely many 4% occur with
probability 1.

Note that 7" > (c;p(n™"))” for sufficiently large n (say n > N> = Ny (7)) by
(4.6). By Lemma 2.14 we have

o go < . o™ )y
F)}C (An ) >c T

for  >#, (where 5, is as in Lemma 2.14) and n > N, with

(4.7) 5" = Ty, where Tj is as in Lemma 2.14, cjp(n""')> max N.(o).
ze B(x, canlF)

Note that (4.7) holds for sufficiently large n (say n > N3(w)) by Assumption
1.3 (3) and Lemma 2.15 (3). Hence

> PY4y)

n>N; n>Nj

Z 62(61(0('7%1))%/}’7" _ Z Cchfﬂna/ﬁh(ﬂnﬂ)rﬁ n+l1
,]mx//f . n - nn+1

\Y

- —p
— Z Cch /’71//} h(}?n+l)% ! (77”+2 _ 7]”+])
=1 gt

n>Nj 7/
et
n(n—1) VRN s

Thus we have ), P?(A?) = o by (4.5).
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The condition (2) in Lemma 4.3 is immediate from Theorem 2.6, since
limsup, A7 is a tail event.

Next we show the condition (3) in Lemma 4.3. Set ¢ := inf{7 € (", "] |
d(YP,Y?) <2c1p(n™1)}. Then for i > j+2 we have

(48)  PYAPNAR) = Po <o <y

X

= E7[lgzyiy Py, (d(x, Y7) < 2c10(n™")
for some ¢ (' — 57" — )]

< B2 {1y cq PY, (d(x, V) < 2e19(n"))
for some ¢ > 5’ — /T

< sup PO(d(x, Y,”) < 2c19(n"™")
z:d(x,z) <2e19(n/*1)

for some 7> 7' —71'j+1)> - P(0; < /™).
By Lemma 2.12, for any i > j+ 2 with

(4.9) n =" = (o™, 2107 < cp(n™h),

> max N.(w
o) zeB(x,p(n"t")) (@)

we have

(4.10) sup PP(d(x, Y?) < 2c1p(n™") for some ¢ >y’ — /™)
z:d(x,z) <2e19(n /)
_ alap@™) P =) alapl™) "y’
I T N (O
(4.9) holds for sufficiently large i, j with i > j+ 2 (say j > N4 = N4(w)) by (4.5),
(4.6), Assumption 1.3 (3) and Lemma 2.15 (3). By Lemma 2.14, for any i with

(411) 5’ > Ty, where T is as in Lemma 2.14, 75’ > (cip(n"")),

apn™) =  max  Ny(o)
ve B(x,csnilF)

we have

(crp(n™") "y’

4.12
gy

< PY(d(x, Y) < 2¢10(n™") for some te (n',n"])

= Py (A]).



RATE FUNCTIONS FOR RANDOM WALKS ON RANDOM CONDUCTANCE MODELS 317

(4.11) holds for sufficiently large j (say j=> Ns = Ns(w)) by (4.5), Assump-
tion 1.3 (3) and Lemma 2.15 (3). Hence by (4.8), (4.10) and (4.12) we have
PY(AP NAP) < cPY(AP)PY(A)) for sufficiently large j (j = Ng := Na v Ns) and
i>j+2. In the case of i=;+1 we have PY(4}, NAP) < PY(A). Thus
we obtain the condition (3) of Lemma 4.3 for {A{},. ..

By Lemma 4.3, we thus complete the proof. O

By Theorems 4.1 and 4.2 we complete the proof of Theorem 1.5.

5. Ergodic media

In this section, we consider the case G = (V,E) = Z¢ and obtain Theorem
1.7 under Assumption 1.6. We follow the strategy as in [16].

5.1. Ergodicity of the shift operator on Q7

We consider Markov chains on the random environment, which is called the
environment seen from the particle, according to Kipnis and Varadhan [28].

Let Q = [0,0)" and define # as the natural o-algebra (generated by coor-
dinate maps). We write Y = Q% & = %% 1If each conductance may take the
value 0, we regard 0 as the base point and define Co(w) = {xeZ4|0 S x} =
V(G®), where 0 & X means that there exists a path y =eje;---e; from 0 to x
such that w(e;) >0 for all i=1,2,...,k. Define Q)= {weQ|#C(w)= 0}
and P() = P( | Qo)

Next we consider the Markov chains seen from the particle. Recall that
{X},= is the discrete time random walk which is introduced in Section 1.1.
Let wu(-) =o(-+X?) =tyem() e Q. We can regard this Markov chain
{wn},>o as being defined on Y= QZ. We define a probability kernel

0:Qyx%—10,1] as
1
O(w, 4) =

Z o wOvl{rvweA}-
eltle’|=1 7€ 4ijy|=1

This is nothing but the transition probability of the Markov chain {w,}, .
Next we define the probability measure on (Y, %) as

ﬂ((wﬂh e 7wn) € B) = JB P()(dw,”)Q(w,”, dwfnﬁLl) T Q(wﬂfla dwn)

By the above definition, {tyew}, ., has the same law in Eo(Pg(-)) as (wo, o1, .. .)
has in u, that is,

(5.1) EO[PS)({TX,;”CU}kzo € B)] = u((wp, 1, ...) € B)

for any Be %.
We need the following Theorem. Let T:) — Y be a shift operator of Y,
that is,

(Tw)n = Wn1-
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THEOREM 5.1. Under Assumption 1.6, T is ergodic with respect to .

The proof is similar to [8, Proposition 3.5], so we omit it.
We also need the following Zero-One law (see Proposition 5.2).
and A{’(a), AP(a), A (a) be the events

Ai(a) ={we Q| A" (a) holds for P¥-a.s. and for all x € Co(w)}.

Let a>0

d(Xg’, X,")
\I-17F =

A (a) =< limsu
1( ) { nﬂoop nl//”(log logn

SUPo <k <n d(Xow7ka)
1-1/p

A5 (a) = {lim sup

n— o0

n'/F(log log n)

SUPy <k <, d(Xg”, X)
-1/p

n'/f(log log n)

Define

PROPOSITION 5.2. Py(A;(a)) is either 0 or 1.

Proof.  See [31, Proposition 5.2]. O
5.2. Proof of Theorem 1.7
In this subsection we discuss the proof of Theorem 1.7.
T¢, =inf{r> T | Y2 # Y} and X = Y{,.
First we consider the CSRW. {7, — T,’},., is a family of ii.d. random
variables whose distributions are exponential with mean 1, so the law of large
number gives us

Recall T =0,

w

n

n

—

Thus

w w
lim sup Ay, YY)

1V/6(log log 1)'~'/#

supy <, d( Yy, Y.°)

t— o0

lim sup
t—o0 tl/ﬂ(log ]og [)171/ﬁ
1151’1 lnf SupOSSSt d( YOw’ er)
—0

1V/6(log log 1)~ /*

By Assumption 1.6, Proposition 5.2 and Theorem 1.4 we obtain Theorem 1.7.

1 Py-as.
) d X(U, X(U

= lim sup (X5 ")l_,/ )
n—c nl/B(log log n)'~/*

= lim sup *Poshsn d(Xowf )1(]?)) )
n—oo  nl/B(loglogn) ~ 1

— liminf SUPg<k<n d(X0w7 ‘j(kw) .
n=o pl/f(log log n)~'/*
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Next we consider the VSRW. {79

distribution of 7%,

o .
— T}, are non-iid., and the

Write S be a

n+1

— T is exponential with mean

1
nw(é/nw)
exponential random variable with parameter z®(x) and Sy(®) := S™, (@€ Y).
Then by (5.1) and the ergodicity we have

nl

_wa st“f ZSO (T*@) — E*[S)

. 1
_ E[EC[SC]] = J J 72(0) exp(—n®(0)x) dxdP — E[—}
alo n(0)
Thus
1/p
Yo, ve X0 xo
lim sup ATy, ’Bfl/ﬁ: 1 lim sup d(Xg, X, )171/ﬁ’
i~ t1/B(log log 1) E 1 n—wo  nl/f(log log n)
[7(0)
lim sup SUP <y VY% ¥57) R lim sup —Po<k<n d(Xy", X&)
—x 11/B(loglog 1) /* E 1 no nl/B(loglogn)'~VF "
[%(0)
lim inf “2P0=s=1 dxe, Y7) _ R lim inf SMPo<k<n d(Xovalfj)_
= (/B (log log 1)~ V/* E 1 = pl/B(log log n) " /*
[7(0)]

By Assumption 1.6, Proposition 5.2 and Theorem 1.4 we obtain Theorem 1.7.

Acknowledgment. This paper was written under the supervision of the
author’s Ph.D. advisor, Prof. Takashi Kumagai. The author thanks him for
suggesting me this problem, fruitful discussion and helpful comments. The
author also thanks Prof. Yuichi Shiozawa for meaningful discussion about this
paper, and the referee for careful reading. This research is partially supported
by JSPS KAKENHI 15J02838.

REFERENCES

[1] S. AnDrRES, M. T. BarLOw, J. D. DEUSCHEL AND B. M. HamBLY, Invariance principle for
the random conductance model, Probab. Theory Related Fields 156 (2013), 535-580.

[2] S. AnDRres, J. D. DEUSCHEL AND M. SLowik, Heat kernel estimates for random walks with
degenerate weights, Electron. J. Probab. 21 (2016), 1-21.

[3] M. T. Barrow, Random walks on supercritical percolation clusters, Ann. Probab. 32 (2004),
3024-3084.



320 CHIKARA NAKAMURA

[4] M. T. Barrow, Diffusions on fractals, Lecture notes in math. 1690, Springer, Berlin,
1998.

[5] M. T. BarLow AND J. D. DEUSCHEL, Invariance principle for the random conductance model
with unbounded conductances, Ann. Probab. 38 (2010), 234-276.

[6] M. T. BaARLow aND B. M. HamBLY, Parabolic Harnack inequality and local limit theorem
for percolation clusters, Electron. J. Probab. 14 (2009), 1-27.

[7] R. Bass anD T. Kumagal, Laws of the iterated logarithm for some symmetric diffusion
processes, Osaka J. Math. 37 (2000), 625-650.

[8] N. BERGER AND M. Biskup, Quenched invariance principle for simple random walk on
percolation clusters, Probab. Theory Related Fields 137 (2007), 83-120.

[9] M. Biskup, Recent progress on the random conductance model, Probab. Surv. 8 (2011),
294-373.

[10] O. BoukHADRA, T. KuMAGAI AND P. MATHIEU, Harnack inequalities and local central limit
theorem for the polynomial lower tail random conductance model, J. Math. Soc. Japan
67 (2015), 1413-1448.

[11] T. K. CArRNE, A transmutation formula for Markov chains, Bull. Sci. Math. 109 (1985),
399-405.

[12] K. L. CHUNG AND P. ERDGs, On the application of the Borel-Cantelli lemma, Trans. Amer.
Math. Soc. 72 (1952), 179-186.

[13] E. B. Davies, Large deviations for heat kernels on graphs, J. London Math. Soc. 47
(1993), 65-72.

[14] T. DELmOTTE, Parabolic Harnack inequality and estimates of Markov chains on graphs, Rev.
Mat. Iberoamericana 15 (1999), 181-232.

[15] A. Drewitz, B. RATH AND A. SAPOZHNIKOV, An introduction to random interlacements,
Springer Briefs in Mathematics, Springer, Cham, 2014.

[16] H. DumiNniL-copPIN, Law of the Iterated Logarithm for the random walk on the infinite
percolation cluster, Preprint, available at arXiv:0809.4380.

[17] M. Forz, Gaussian upper bounds for heat kernels of continuous time simple random
walks, Electron. J. Probab. 16 (2011), 1693-1722.

[18] A. GRIGOR’YAN, Escape rate of Brownian motion on Riemannian manifolds, Appl. Anal.
71 (1999), 63-89.

[19] A. GRIGOR’'YAN AND M. KELBERT, Range of fluctuation of Brownian motion on a complete
Riemannian manifold, Ann. Probab. 26 (1998), 78-111.

[20] G. GriMMETT, Percolation, 2nd ed., Grundlehren der mathematischen Wissenschaften [Fun-
damental principles of mathematical sciences] 321, Springer-Verlag, Berlin, 1999.

[21] W.J. HEnDRICKS, Lower envelopes near zero and infinity for processes with stable components,
Z. Wabhrscheinlichkeitstheorie und Verw. Gebiete 16 (1970), 261-278.

[22] X. Huang, Escape rate of Markov chains on infinite graphs, J. Theoret. Probab. 27 (2014),
634-682.

[23] X. HuaNG AND Y. SHiozawa, Upper escape rate of Markov chains on weighted graphs,
Stochastic Process. Appl. 124 (2014), 317-347.

[24] A. KuincHiN, Uber einen Satz der Wahrscheinlichkeitcrechnung, Funcamenta Mathematica
6 (1924), 9-20.

[25] A. KHINCHIN, Zwei Sitze {iber stochastische Prozesse mit stabilen Vereilungen, Rec. Math.
[Mat.Sbornik] N.S. 3 (1938), 577-584.

[26] D. KHOSHNEVISAN, Escape rates for Lévy processes, Studia Sci. Math. Hungar. 33 (1997),
177-183.

[27] P. KM, T. KuMAGAI AND J. WANG, Laws of the iterated logarithm for symmetric jump
processes, to appear in Bernoulli.



RATE FUNCTIONS FOR RANDOM WALKS ON RANDOM CONDUCTANCE MODELS 321

(28]

[29]
[30]
[31]
32)
[33]
[34]
[35]

(36]

(37)
38]
(39]
[40]
[41]
(42]

(43]

C.

Kipnis AND S. R. S. VARADHAN, A central limit theorem for additive functionals of
reversible markov processes and applications to simple exclusions, Commun. Math. Phys.
104 (1986), 1-19.

Kumagal, Random walks on disordered media and their scaling limits, Lecture notes
in math. 2101, Springer, New York, 2014.

. KumaGgar aND C. NAKAMURA, Lamplighter random walks on fractals, to appear in J.

Theoret. Probab.
KuMaGal AND C. NaAkKAMURA, Laws of the iterated logarithm for random walks on
random conductance models, RIMS Kokytroku Bessatsu B59, 2016, 141-156.

. MATHIEU AND A. PIATNITSKI, Quenched invariance principles for random walks on perco-

lation clusters, Proc. R. Soc. A. Math. Phys. Eng. Sci. 463, 2007, 2287-2307.

. F. RODRIGUEZ AND A. S. SzniTMAN, Phase transition and level-set percolation for the

Gaussian free field, Comm. Math. Phys. 320 (2013), 571-601.

. Sapozunikov, Random walks on infinite percolation clusters in models with long-range
correlations, to appear in Ann. Probab.

SHiozZAWA AND J. WANG, Rate functions for symmetric markov processes via heat
kernel, Potential Anal. 46 (2017), 23-53.

V. SIDORAvVICIUS AND A. S. SzNITMAN, Quenched invariance principles for walks on clusters

A.

A

1.

J.

J.

A

of percolation or among random conductances, Probab. Theory Related Fields 129 (2004),
219-244.

S. SzniTMAN, Vacant set of random interlacements and percolation, Ann. of Math
171 (2010), 2039-2087.
. S. SznitMAN, Topics in occupation times and Gaussian free fields, Zurich lectures in
advanced mathematics 16, European Mathematical Society, Ziirich, 2012.

TakeucHl, On the sample paths of the symmetric stable processes in spaces, J. Math.
Soc. Japan 16 (1964), 109-127.

TakeucHL, A local asymptotic law for the transient stable process, Proc. Japan Acad. 40,
1964, 141-144.

TAKEUCHI AND S. WATANABE, Spitzer’s test for the Cauchy process on the line,
Z. Wabhrscheinlichkeitstheorie und Verw. Gebiete 3 (1964), 204-210.
. TexeirRA, On the uniqueness of the infinite cluster of the vacant set of random inter-
lacements, Ann. Appl. Probab. 19 (2009), 454-466.

N. TH. Varopouros, Long range estimates for Markov chains, Bull. Sci. Math. 109 (1985),

225-252.

Chikara Nakamura

FACULTY OF SCIENCE

Kyoro UNIVERSITY

KITASHIRAKAWA OIMACHI-CHO, SAKYO-KU
Kyoto 606-8224

JAPAN

E-mail: chikaran@kurims.kyoto-u.ac.jp



