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Abstract

In this paper, we deal with complete linear Weingarten submanifolds M”" immersed
with parallel normalized mean curvature vector field in a Riemannian space form Q/*”
of constant sectional curvature ¢. Under an appropriated restriction on the norm of
the traceless part of the second fundamental form, we show that such a submanifold
M" must be either totally umbilical or isometric to a Clifford torus, if ¢ =1, a circular
cylinder, if ¢ = 0, or a hyperbolic cylinder, if c = —1. We point out that our results are

natural generalizations of those ones obtained in [2] and [6].

1. Introduction

The problem of characterizing hypersurfaces immersed with constant mean
curvature or with constant scalar curvature in a Riemannian space form Q' of
constant sectional curvature ¢ constitutes an important thematic into the theory
of isometric immersions. In the seminal work [5], Cheng and Yau introduced
a new self-adjoint differential operator, the so-called square operator, acting on
smooth functions defined on Riemannian manifolds and used it to classify closed
hypersurfaces with constant normalized scalar curvature R satisfying R > ¢ and
nonnegative sectional curvature immersed in Q"' Later on, Li [9] extended the
results due to Cheng and Yau [5] in terms of the squared norm of the second
fundamental form of the hypersurface M".

In [10], Li studied the rigidity of compact hypersurfaces with nonnegative
sectional curvature immersed a unit sphere with scalar curvature proportional to
the mean curvature. Next, Li et al. [11] extended the result of [5] and [10] by
considering closed linear Weingarten hypersurfaces immersed in the unit sphere

S™*!  that is, closed hypersurfaces of S"*! whose mean curvature and normalized

2010 Mathematics Subject Classification. Primary 53C42; Secondary 53A10, 53C20, 53C50.

Key words and phrases. Riemannian space forms; complete submanifolds; parallel normalized
mean curvature vector field; linear Weingarten submanifolds; Clifford torus; circular and hyperbolic
cylinders.

*Corresponding author.

Received April 20, 2016; revised August 3, 2016.

214



LINEAR WEINGARTEN SUBMANIFOLDS IMMERSED IN A SPACE FORM 215

scalar curvature are linearly related. In this setting, they showed that if M” is
a closed linear Weingarten hypersurface with nonnegative sectional curvature
immersed in 8", then M” is either totally umbilical or isometric to a Clifford
torus.

Afterwards, Guo and Li [6] studied submanifolds in the unit sphere S"7
with constant scalar curvature and parallel normalized mean curvature vector
field (that is, the normalized mean curvature vector field is parallel as a section
of the normal bundle) and, in this setting, they generalized the results of [9].
Meanwhile, the first and fourth authors jointly with Aquino [2], working with a
suitable Cheng-Yau’s modified operator, extended the results of [11] to the context
of complete linear Weingarten hypersurfaces immersed in a Riemannian space
form Qf“. More precisely, under the assumption that the mean curvature
attains its maximum and supposing an appropriated restriction on the norm of
the traceless part of the second fundamental form, they proved that such a
hypersurface must be either totally umbilical or isometric to a Clifford torus, if
¢ =1, a circular cylinder, if ¢ =0, or a hyperbolic cylinder, if ¢ = —1.

Here, we deal with complete linear Weingarten submanifolds immersed with
parallel normalized mean curvature vector field in a Riemannian space form
Q*?. In this setting, we extend the technique developed in [2] in order to
characterize such submanifolds under an appropriated restriction on the norm of
the traceless part of the second fundamental form, obtaining natural generaliza-
tions of the main results of [2] and [6].

This manuscript is organized in the following way: In Section 2 we recall
some basic facts concerning submanifolds immersed in a Riemannian space form
Q7. Next, in Section 3 we develop a Simon’s type formula for submanifolds
with parallel normalized mean curvature vector field in Q”*” (cf. Proposition 3.1).
Afterwards, in Section 4 we present some auxiliary lemmas. Finally, in Section 5
we establish our characterization theorems concerning complete linear Weingarten
submanifolds immersed with parallel normalized mean curvature vector field in
Q!*? (cf. Theorems 5.1 and 5.2).

2. Preliminaries

Let M" be an n-dimensional connected submanifold immersed in a Rieman-
nian space form Q!”, with constant sectional curvature ¢. Let {wg} be the

corresponding dual coframe, and {wpc} the connection 1-forms on Q7. We

choose a local field of orthonormal frame {e;,..., e, ,} in Q7. with dual
coframe {wi,...,wu4p}, such that, at each point of M", ey,..., e, are tangent to
M" and e,41,..., e, are normal to M". We will use the following convection

for indices
1<A4,B,C,...<n+p, 1<ijk,...<n and n+1<o/pf,y,...n+ p.

With restricting on M”, the second fundamental form, the curvature tensor
of M" and the normal curvature tensor of M" are given by
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Z hl CO], A= Z h,/wz ® Wj€y,

i,j,o

dwj; = ; Wik N Wpj — %; R A oy,
dw,p = ; Wy A Wy — %; Rjﬁk,wk A Q).
The components A of the covariant derivative VA satisfy
(2.1) S hor = dhi+ > hoy+ > hon+ > hlog,
k k k 8
The Gauss equation is
(2.2) Ris = ¢(0w 0y — ad) + > _(hihj — hihy).
o

In particular, the components of the Ricci tensor R and the normalized scalar
curvature R are given, respectively, by

(2.3) Ry =(n—1) ,ﬁnZH Zh,] 5
and

(2.4)

i

From (2.3) and (2.4), we get the following relation
(2.5) n(n—1)R=nn—1c+n’H*— |4,
where |4|* =2 j(h?‘)2 is the norm square of the second fundamental form

ij
. 1

and, being H=3 H%, == (3, h%)e, the mean curvature vector field,
n

H = |H| is the mean curvature function of M".
By exterior differentiation of (2.1), we have the following Ricci identity

(2.6) iy — iy = Z D Ryt + Z iy, Rkt + Z hUR[Md

m
The Codazzi equation and the Ricci equation are given by

27 Iy = Wiy =
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1 _ up B «pB
(2~8) Rocﬂij - Z(hikhkj - hjkhki)-
k

3. A Simon’s type formula

From now on, we will deal with submanifolds M" of Q!*” having parallel
normalized mean curvature vector field, which means that the mean curvature
function H is positive and that the corresponding normalized mean curvature

H . .
vector field s parallel as a section of the normal bundle.
In this context, we can choose a local orthonormal frame {ej,...,e,;,} such

that ¢, = Thus,

I
(3.1) H"! :% tr(h"Y=H and H* :% tr(h*) =0, a>n+2.
We will also consider the following symmetric tensor
D= Z(D;wi ® wje,,
%)
where q)j =hj — H"6;. Consequently, we have that
(3.2) Ot =pftt — Hoy; and ®F =hi, n+2<a<n+p.

Let |@|* = Zw‘j(tbf;)z be the square of the length of ®. It is easy to check
that @ is traceless with’

(3.3) |®|? = |4]> — nH>.

Now, we are in position to show the following suitable Simon-type formula

PRrOPOSITION 3.1.  Let M" be an n-dimensional (n > 2) submanifold immersed
with parallel normalized mean curvature vector field in a Riemannian space form
QP Then, we have

1 2 2 ‘ 2
SAIAP = VAP + > nHjhi; + cn|®) +nﬁZthg+'hJ§h,{i
L% Ve

2
-5 () - 3w
i,j k0 \ « i.j,op

Proof. Taking into account that

1 o o o
(3.4) EA|A|2 = Zh;jAhUi—k > ()2

o, i,j o, i, j, k
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where the Laplacian Ah} of hf is defined by Ahj =73, hi,, using Codazzi
equation (2.7) into (3.4) we have

(3.5) 5A|A| => h (Zh,,kk>+ Z/(hg?k)zz VAl + Zkh;h,g,k.
o, i, o,i,j,k o,i,J,
Thus, from (2.6) and (3.5) we conclude that
1 9{ o o oo
(36) §A|A|2 = |VA|2 + Z hkk[ Z hljjhkkl + Z hljhml

o,i,j,k o, i, j,k o, j,m

+ > B R+ Y IR
o, i, j k,m Booi,j k

Hence, observing that 3, , ;  hishi, = n2|VH|?, where |[V2H|* = ZW(Hi“)z,
from (3.6) we get

1 2 2
(1) AP = VAP VP Y g+ Y B R
o, i, j, k o, i, j k,m
+ > BhL R+ > B R
o,i,j,m o, By, j,k

But, using once more Codazzi equation (2.7) we obtain that
2 o og, o
(3.8) —n?\VIHP + > (hihp), =Y nHh.
o, i, ),k ijo

From (2.2) and (2.3) we also conclude that

(39) > LR+ Y hihi R+ > Wi Rg,

o, i, j k,m o, i, j,m Booi,j k
=clo®— > mihlnihl o +n > HERD IR,
o, f,0, ), k,m o, f, 0, j,m
D A U 17 A L8 A N ET 1 T
o, f,0,j,m,l o, fi,j,k,m o, fi, ).k
On the other hand, from (3.1) we get
(3.10) > HPRhzhL, = > HA A,
o, f,i,j,m Biijk

and
Gay ST mElnkal =S (Zh iyl hl, ) > (Zh hk,> :

o, f,0, ), k,m i,j,k,l i,j,k,l o

Furthermore, using (2.8) we have



LINEAR WEINGARTEN SUBMANIFOLDS IMMERSED IN A SPACE FORM 219

2 B B
G1) Y Ry Y [z< 1~ )| Ri
o, f, ),k o, f, ),k i
= > WhiRiu — Y iR,
o, f,0, ),k o, f, 0,7,k
= D> Wk = Y b,
o, By, j,m, 1 o, f0,j k,m
ar.f pl
- Z hjihikR/}ocjk'
o, fi, ).k
Therefore, considering (3.8), (3.9), (3.10), (3.11) and (3.12) in (3.7), we
conclude the proof. O

4. Key lemmas

In order to establish our main results, we devote this section to present some
auxiliary lemmas. The first one can be proven reasoning in a similar way of that
in Proposition 2.2 of [14] (see also Lemma 3.2 of [2]).

Lemma 4.1. Let M" be a linear Weingarten submanifold immersed in a
Riemannian space form Q!*?, with R = aH + b for some a,beR. Suppose that

4.1) (n—1)a*+4n(b—c) > 0.
Then
(4.2) \VA|* > n?|VH|.

Moreover, the equality holds in (4.2) on M" if, and only if, M" is an isoparametric
submanifold of Q7.

We will also need the following algebraic lemma, whose proof can be found
in [12].

LemmA 4.2. Let B,C : R" — R" be symmetric linear maps that BC — CB =0
and tr B=tr C =0, then

n—2 n—2
vnn—1) vnn—1)

Consider the following algebraic lemma, whose proof can be found in [§].

(4.3) - |B|*|C| < tr(B*C) < |B]|C].

Lemma 4.3. Let B' B%,...,B" be symmetric (n x n)-matrices. Set S,5 =

tr(B*BP), S, = Syy, S=13,S,, then
2

(4.4) > BB - BPB*P +) " S) <
o, f o, f

N W
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Now, let ¢ = Zi,j ¢,wiw; be a symmetric tensor on M" defined by
¢y = nHoy — hi*'.

Following Cheng-Yau [5], we introduce a operator [] associated to ¢ acting on
any smooth function f by

(45) OF = ¢pfy = Y _(nHoy — i) £y
iJj ij
Here, in order to study linear Weingarten submanifolds, we will consider, for
each a € R, an appropriated Cheng-Yau’s modified operator, which is given by
n—1
2
By taking a local orthonormal frame field e,...,e, at g€ X" such that

h;}“ = )»l-"ﬂé,-j, we can show the following sufficient criterion of ellipticity in a
similar way of Lemma 3.3 in [2].

(4.6) L=- aA.

Lemma 4.4. Let M" be a linear Weingarten submanifold immersed with
parallel normalized mean curvature vector field in a Riemannian space form QI*?,
such that R=aH + b with b > c. Then, L is elliptic.

We will also use the following result obtained by Caminha [3], which extends
a previous one due to Yau in [16] (cf. Proposition 2.1 of [3]). In what follows,
let #'(M") denote the space of Lebesgue integrable functions on M".

Lemma 4.5. Let X be a smooth vector field on an n-dimensional complete
oriented Riemannian manifold M" such that div X does not change sign on M".
If | X| e L1 (M), then div X = 0.

5. Main results

In this section we present our characterization results concerning complete
linear Weingarten submanifolds immersed in a space form. The first one will be
obtained applying the Hopf’s strong maximum principle and it is a natural
extension of Theorem 1.1 of [2].

THEOREM 5.1. Let M" be a complete linear Weingarten submanifold im-
mersed with parallel normalized mean curvature vector field in a Riemannian
space form QP (¢ =1,0,—1 and n > 4), such that R =aH + b with a >0 and
b > c. In the case that ¢ = —1, assume in addition that R > 0. If H attains its
maximum on M" and

n(n—1)R?
(n—2)(nR—(n—2)c)’

(5.1) sup |®|* <
M
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then
i. either |®| =0 and M" is 2tolally umbilical,
.. 2 n(n—1)R
ioor [0 = o R (1= 2)0)
(a) Clifford torus S'(V1 —12) x 8" 1(r) < 8™ < 8" when ¢ =1,
(b) circular cylinder R x S"'(r) < R™! < R"? when ¢ =0,
(c) hyperbolic cylinder H'(—v1+r2) x 8" '(r) — H"™' — H"?, when
c=—1, )

. n
where r is constant and equal to R
n

and M" is isometric to a

Proof. From (2.5), (4.5), (4.6) and Proposition 3.1 that

n—1

(5.2) L(nH) = (nHo; — hi*')(nH),; — aA(nH)
i,j

-1
" 3 aA(nH) —nZh;“H!j
ij

1
= §n2AHZ — n?|VH|* —

= (IVA]> = ?|VH?) + cn|®|* +n > HA Wy B
Bijk
2
a 2
-3 (D) -
VAN 0 p.ij
From (3.1) and (3.2) we have
]
(53) > HF'RGA
ij k. p
n+p P
= S Y S e,
ik f=n+2i,j.k
n+p n+p
= H (" + HI) + Y Y HOpofol + > 1ol
P=n+21i,jk p=n+2
n+p
:Htr((I)”+1)3+3H2|(I)”+1|2+nH4+ Z H2|(I)/>’|2
p=n+2
n+p
¢ $ 5 oy iafal,
P=n+21i,j.k

Noticing that tr ®* = 0 and ®""'®* — 0" =0, n+2 < p <n+ p, from
Lemma 4.2 we obtain
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n+p n+p
(54) Hu(@"") 43520 P 4nmt + Y B0+ Y Y Hoptlohof,
p=n+2 P=n+21i,j.k
-2
> ——”( . HIO™ P 4 2820 2 + H|®|? + nH
nn—

n_2 n+p
———— " H|o | |0f?
n(n — l)/)’:n+2
n—2

vnn—=1)

= 2H%®" > + H?|®)* + nH* — H|D"™!| |0

Hence, from (5.3) and (5.4) we have

(5.5) Z HR Rl > 21?0 + B @ + nH* —

Biijk \/n(n_l)

From Ricci equation (2.3) we get

56 > (Zh k[) + D (Ryy)®

Lk, I\ o B,i,j

= (w4 + > (Ryy)’

% f aFntl, f#n+1,ij

_ [tr(An+1An+l)]2 +2 Z [tr(AnJrlAﬁ)]Z
p#n+1

+ > (A AP - AP

a#n+1,f#n+1 a#n+1,f#n+1

H|®" | |®|?.

But, using (3.2) and Lemma 4.3 we obtain

(5.7) S wrah? 4 Yo jaral - APa?
oa#n+l, f#n+1 a#n+1,f#n+1
3
< E( > w(4la ) ( > |®ﬂ|>
p#n+1 B#n+1

Hence, from (5.6) and (5.7) we have

58) Y (Zh hk,> + > (Ryy)®

i,jok, I\ o, By, j

< [tr(A" AP 42 Y fr(Am ab))? < > |@f )

p#n+1 p#n+1
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_ |(I)n+l‘4—|—2nH2|(Dn+1|2—|—n2H4+2 Z [tr((Dn-H(D/})]Z
p#n+1

3
+35 (1) — @)

5
< §|(Dn+l‘4 + 2nH2|q)"+1|2 —+ n2H4 + 2|(Dn+1‘2(‘®|2 _ |q)n+l‘2)

3
P2l - 3o
1 3
:§|(Dn+l|4+2nH2|(Dn+l|2+n2H4_ ‘(D|2|q)n+1|2_~_§|q)‘4.
Therefore, from (5.2), (5.5) and (5.8) we get

n(n—2)

H|O" | |®|* + nH?|®|?
nn—1)

(59) L(nH) > cn|®|* —
L4 2l 2 D4
—§|(D I" + [®@]7[@""| —§\®|

— @ <|c1>|2 — MH|c1>| Fa(H? + c)>
nin—1)

+ (|of — o)

I’l(l’l—Z) 2_1 _ |@nt] n+1p\2
><< n(n_l)H\CDI 5 (1] = [0")(|@f + [P ))-

On the other hand, from (2.5) and (3.3) we obtain

(5.10) HZ:n(n1_1)|d>|2+(R—c).
Thus, from (5.9) and (5.10) we get
(5.11) L(nH) = (@] - 1) %H@Z

I |d>"+‘|>2]

1 2
+ o |27 Or(|®)),

where Qg(x) is the function introduced by Alias, Garcia-Martinez and Rigoli in
[1] and which is given by

Qr(x) = —(n—2)x> — (n— 2)xy/x> + n(n — 1)(R—¢) +nln— DR
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On the other hand, we note that holds the following algebraic inequality
(3.5) of [6]

5.12 O — [@"N(|D| + @) < 2 0.
27

Moreover, since that a >0 and » > ¢ and using (2.5), we also have
n’H? > n*H? —n(n—1)aH = |A|> + n(n — 1)(b — ¢) > |4|* = |®|* + nH?,

which give us

1
5.13 H> —rn=|0|.
(5.13) = —rlol

Thus, from (5.12) and (5.13) we conclude that

n(n—2) 2 1 2 n—2 16 3
514) ——"H|®|” — = (|®| — |@" ) (|®] + [@"1])* > —— ||,
(5.14) = HIOF = 5 (0] = (@01 + [0 > ((=5 - 37 ) ]
But, taking into account our assumption that n >4, we have that
n—2 16
1 T P S,
(5.15) p— 27>0

Consequently, from (5.11), (5.14) and (5.15) we get that

\Y

(516 Lint) > L 0POx() + (0] - [0 (2] - 2 of

1 27
1 2
> |11 Or(0))

We will observe that, from ours hypothesis on a, » and M" be linear
Weingarten, we get

(5.17) R=aH+b>b>c.

Hence, when ¢=0,1, from (5.17) we must have R>0. Thus, Qg(0)=
n(n—1)R >0 and the function Qg(x) is strictly decreasing for x >0, with
Or(x*) =0 at

X* = I’l(i’l*l)
- R\/(n SR = (=20~ "

once

nR— (n—2)c=naH +n(b—c)+2c > 2c
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and, consequently, if ¢ = 0,1, we get nR — (n —2)c > 0. Moreover, since we are
assuming that R > 0 when ¢ = —1, we also have that nR+ (n —2) > 0.

Thus, from our restriction (5.1) on the norm of @, we obtain that
Or(|®]) = 0. Hence, from (5.16)

LinH) = [0 Qx(|®]) = 0.

Since Lemma 4.4 guarantees that L is elliptic and as we are supposing that
H attains its maximum on M”", from (5.16) we conclude that H is constant
on M". Thus, returning to (5.2), we get that equality holds in (4.2). So,
Lemma 4.1 guarantees that M" is a isoparametric submanifold of Qf”’ and,
in particular, |®| is constant. Now, suppose that M" is not totally umbilical,
which means that |®| a positive constant. In this case, taking into account
(5.15), from (5.16) we conclude that |®| = |®"*!| and, consequently, ®* = 0, for
all n+2 <o <n+ p. Thus, since ¢, is parallel in the normal bundle of M",
we are in position to apply Theorem 1 of [15] to conclude that M" is, in fact,
isometrically immersed in a (n+ l)-dimensional totally geodesic submanifold
Q™! of Q!*?. Hence, by the classical results on isoparametric hypersurfaces of

c
real space forms [4, 7, 13] and taking into account that R > 0, we conclude that

2
either |®| = 0 and M”" is totally umbilical, or |®|* = n(n—1)R
M™ is isometric to a (n=2)(nR = (n = 2)c)
(a) Clifford torus S'(v1 —r2) x 8" !(r), whit 0 < r < 1, if ¢ =1,
(b) circular cylinder R x S"~!'(), whit r > 0, if ¢ =0,
(c) hyperbolic cylinder H'(—+v/1 4 %) x 8" !(r), whit r >0, if ¢ = —1.
When ¢ = 1, for a given radius 0 < r < 1, is a standard fact that the product
embedding S' (V1 —r2) x 8"7!(r) < S"*! has constant principal curvatures given
by

and

r V1—r2
I = R I _
V1-—r? r
Thus, in this case,
n?—(n—1) ) n—1
H=——_" d |P"=——.
nrv'l — r? and | nr3(l —r?)

When ¢=0, for a given radius >0, R x 8" !(r) = R""! has constant
principal curvatures given by

In this case,
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Finally, when ¢ = —1, for a given radius r > 0, H'(—v1 4 r2) x 8" 1(r) —
H"™! has constant principal curvatures given by

r , V1412
A= , === .
V142 r
Thus, in this case,
nr?+ (n—1) ) n—1
H=——+—+" and |®]"=———.
nrv'1+ r? [l nr2(1 +r2)

Therefore, in order to finish our proof, from equations (2.5) and (3.3) and
with algebraic computations it is not difficult to verify that in all these previously

n—2 0
nR

described situations we must have r =

We will close our paper applying Lemma 4.5 in order to get the following

THEOREM 5.2. Let M" be a complete linear Weingarten submanifold im-
mersed with parallel normalized mean curvature vector field in a Riemannian
space form QP (¢c=1,0,—1 and n>4), such that R=aH +b with a >0
and b > c. In the case that either b=c =0 or ¢ = —1, assume in addition that
R>0. If H is bounded on M", |VH| e £ (M") and

n(n—1)R?
(n—2)(nR - (n—2)c)’

sup |@]? <
M

then
i. either |®| =0 and M" is 2tolally umbilical,
.. 2 n(n—1)R
ioor [0 = o R (1= 2)0)
(a) Clifford torus S'(V1 —12) x 8" 1(r) < 8™ < 8" when ¢ =1,
(b) circular cylinder R x S"'(r) < R™! < R"? when ¢ =0,
(c) hyperbolic cylinder H'(—V1+r2) x 8" '(r) = H"™' — H"?, when
c=—1, )

. n
where r is constant and equal to R
n

and M" is isometric to a

Proof. We observe that from (4.5) and (4.6) it is not difficult to verify that

(5.18) L(nH) = div(P(VH)),
where
(519) P (=" e,

htl = (h;}“) stands for the second fundamental form of M" in direction e,
and I the identity in the algebra of smooth vector fields on M™.
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On the other hand, since R=aH +b and H is bounded on M"  from
equation (2.5) we have that 4 is bounded on M". Consequently, from (5.19) we
conclude that the operator P is bounded, that is, there exists a positive constant
C such that |[P| < C. Since we are also assuming that |[VH|e Z'(M"), we
obtain that

|P(VH)| < |P||VH| < C|VH| e ' (M").

Hence, we can apply Lemma 4.5 to obtain that L(nH) =0 on M". Thus,
since still holds (5.16), we can use once more Lemma 4.1 to get that M" is an
isoparametric submanifold of Q!*”. Therefore, at this point we can reason as
in the proof of Theorem 5.1 to conclude the result. O

Remark 5.3. Considering in Theorem 5.2 that case that M”" is compact,
a=0 and ¢ =1, we just reobtain Theorem 1.3 of [6].
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