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CRITERIA FOR SINGULARITIES FOR MAPPINGS
FROM TWO-MANIFOLD TO THE PLANE.
THE NUMBER AND SIGNS OF CUSPS

IwoNA KRZYZANOWSKA AND ALEKSANDRA NOWEL

Abstract

Let M C R" be a two-dimensional complete intersection. We show how to
check whether a mapping f: M — R? is l-generic with only folds and cusps as
singularities. In this case we give an effective method to count the number of positive
and negative cusps of a polynomial f, using the signatures of some quadratic forms.

1. Introduction

In [13], Whitney investigated a smooth mapping between two surfaces. He
proved that for a generic mapping the only possible types of singular points are
folds and simple cusps. With smooth oriented 2-dimensional manifolds M and
N, and a smooth mapping f: M — N with a simple cusp pe M one can
associate a sign u(p) = +1 defined as the local topological degree of the germ of
f at p.

In [6], the authors studied smooth mappings from the plane to the plane, and
they presented methods of checking whether a map is a generic one with only
folds and simple cusps as singular points. They also gave the effective formulas
to determine the number of positive and negative cusps in therms of signatures of
quadratic forms.

Criteria for types of Morin singularities of mappings from R” to R” (in case
m # n) were presented in [9, 10]. In case m = n = 2 Morin singularities are folds
and cusps. Some results concerning the algebraic sum of cusps are contained in
[2], [8], and in [3] in the complex case. ~

In this paper we investigate properties of mappings f = f|,,: M — R?,
where M = h~'(0) is a 2-dimensional complete intersection, /:R""? — R”,
f:R"™? — R?. We give methods for checking whether f is I-generic (in sense
of [4]) and whether a given singular point p € M of f is a fold point or a simple
cusp (Theorem 3.3, Propositions 3.4, 3.5). We define F : R"*? — R? associated
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SINGULARITIES FOR MAPPINGS FROM TWO-MANIFOLD TO THE PLANE 201

with f and £ such that for a simple cusp p of f the sign of it u(p) =

DF(p)
Dh(p)} (Theorem 4.2).

In the case where f and / are polynomial mappings, we construct an ideal
S C R[x] = R[xy, ..., Xy42] such that if S =R[x] then f is 1-generic with only
folds and simple cusps as singular points (Proposition 5.1). Then we define
an ideal J such that the set of its real zeros V(J) is the set of simple cusps of
f. If S=RJx] and dimg R[x]/J < oo then the number of simple cusps and the
algebraic sum of them can be expressed in terms of signatures of some associated
quadratic forms (Proposition 5.2).

In the whole article by smooth we will mean C* class.

sgn det [

2. Preliminaries

Let M, N be smooth manifolds such that m = dim M and n = dim N. Take
pe M. For smooth mappings f,g: M — N such that f(p) = g(p) = ¢, we say
that f has first order contact with g at p if Df(p) = Dg(p), as mappings
T,M — T,N. Then J'(M,N) (p.q denotes the set of equivalence classes of map-
pings f : M — N, where f(p) = ¢, having the same first order contact at p. Let

JI'MN)= | JMN),,
(p,g) e MXN

denote the 1-jet bundle of smooth mappings from M to N.

With any smooth f:M — N we can associate a canonical mapping
JY M — JYM,N). Take e J'(M,N), represented by f. Then by corank o
we denote the corank Df(p). Put S, = {ceJ!(M,N)|corank ¢ =r}. Accord-
ing to [4, II, Theorem 5.4], S, is a submanifold of J'(M,N), with codim S, =
r(lm—n|+r). Put S,(f) = {xe M |corank Df (p) = r} = (j'f) ' (S)).

DerINITION 2.1, We say that f: M — N is 1-generic if j'f S, for all .

According to [4, II, Theorem 4.4], if j'f M S, then either S,(f) = 0 or S,(f)
is a submanifold of M, with codim S,(f) = codim S,.
In the remaining we will need the following useful fact.

Lemma 2.2. Let M, N and P be smooth manifolds, and let f: M — N,
a:P— M, b:P— N be such that b= foa. If ais a smooth surjective sub-
mersion, b is smooth, then f is also smooth. If in addition b is a submersion, then
so is f.

Let

h=(hy,... ,h,):R"™  R"

f=,.... i) : R SR/
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be C!' maps, M :=h~'(0). Suppose that each point p € M is a regular point of
h, i.e. rank Dh(p) =n in each pe M. Then M is an orientable C' k-manifold
called a complete intersection. It is easy to verify that for each point pe M

Df(p) } .
Dh(p)

Assume that N =R? and M = h~'(0), where /:R""> — R" is a smooth
mapping such that rank Di(x) =n for all xe M. In that case M is a smooth
2-manifold.

We have J!(R""2 R?) ~ R"" x R? x M(2,n+2), where M(2,n+2) is the
space of real 2 x (n 4+ 2)-matrices.

Let us define

G={o=(x,y,A)eJ'R"ZR)|[xeM}y= ] J'RZR),,
(p,q) e MxR?
Then G is a submanifold of J'(R"" R?), and dim G = 2n + 8.
We define a relation ~ in G : (x1, y1,41) = 01 ~ g3 = (X2, ¥2, 4>) if and only

if x; =x; and y; = y;, and A1|TX M= A2|TX y considered as linear mappings on
T\ M C Ty R". ‘ 1

(1) rank Df|,,(p) rank[

PROPOSITION 2.3.  G/_ is a smooth manifold diffeomorphic to J'(M,R?) such
that the projection pr: G — G/_ is a submersion.

Proof.  Using [11, Part 11, Chap. III, Sec. 12, Th. 1 and Th. 2], to verify
that G/_ is a smooth manifold such that the projection pr: G — G/_ is a
submersion, it is enough to show that

a) the set R={(01,02) € G x G|o] ~ 02} is a submanifold of G x G,

b) the projection #: R — G is a submersion.

Take x € M, then in a neighbourhood of x in R"*? there exists a smooth non-
vanishing vector field (vy,v7) € R"? x R""? such that

Span{v,v,} = (Span{Vhy,...,Vi,})"

at every point of this neighbourhood. Then at points of M vectors vy, v, span
the tangent space to M.
Let us define y:J'(R"™ R?) x J'(R""? R?) — R*""® by

y(0-170-2) = V((XI,J/IaAl)7 (X2>J/2a/42))
= (x1 — X2, y1 — y2, Aiv1(x1) — Aav1 (1), A1va(x1) — Aava(x1), h(x1)).

Hence 7(o1,00) =0 if and only if (oy,02) € R. Then locally y~!(0) = R.
Moreover y is a submersion at points from R, so R is a submanifold of G x G,
and a) is proven.

Using equation (1) it is easy to see that rank Dz =2n+ 8 = dim G, so 7 is a
submersion and we have b).
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Now we will prove that G/_ is diffeomorphic to J'(M,R?). Since M is a
submanifold of R""2, there exists a tubular neighbourhood U of M in R""? with
a smooth retraction r: U — M, which is also a submersion.

Let us define ¥ :J'(M,R?) — G/_ by

(o) =¥(lg)) =lgorleG/..
Note that ¥ is a well-defined bljectlon and W' is given by G/~ 9] — (9], €
J'(M,R?). The mapping ¥ ' o pr: G — J'(M,R?) can be given by G5 [g] —
[g],/] € J'(M,R?) and we see that it is a smooth submersion. So according to
Lemma 2.2, ¥~! is also a smooth submersion. Since W~! is bijective, it is a
diffeomorphism. O

3. Checking 1-genericity and recognizing folds and cusps

Let f : R"*? — R? be smooth and put f = f|M M — R?, where M = h~'(0)
is a 2-dimensional complete intersection. Using mappings h and f defined on
R"*2, we will present an effective method to check whether f is l-generic.

Put ®: G/ — R as

D([(x,y,4)]) = det{mix)} .

Notice that if [(x, y,4)] € G/_ is represented by ¢ defined near x € R"*?, then
g(x)

() det
() = det| it .

LemMA 3.1. @ is well-defined.

Proof. Take (x,y,4;) and (x, y, A2) representing the same element in G/_.
Then A,v; = A>v; and A;vy = Arvs, where vy, v, € R"? span TyM, and so they
both are orthogonal to all vectors V/;(x).

Hence we have

det({D:(l)}[vl vy Vhi(x) - th(x)]>

Alvl Alvz *
[ Dh(x)Dh(x)" }
_ et|:A2U1 szz *k :|
0 Dh(x)Dh(x)"

det({ A(Z ] v vy Vhi(x) - Vh,,(x)]).
)

Since det[v; v, Vhi(x Vh,(x)] # 0, we obtain

et g | =9 | =
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LemMa 3.2. ® is a submersion at every |[(x,y,A) e G/_ such that

rank{ }211—&—1.

A
Dh(x)

- - A -
Proof. Put ®:G— R as ®(x,y,4) = det{Dh(x)]‘ Then ®(x,y,A4) can

be expressed as a linear combination of elements of one of rows of the matrix 4,

. . . . A .
whose coefficients are appropriates (n + 1)-minors of the matrix {D i )} Since
X
at least one of these minors is not 0, ® is a submersion at (x, , A). Notice that
® =do pr, so by Lemma 2.2, ® is a submersion at [(x, y,4)]. O

For a smooth mapping f : R"? — R? we define d : R"*> — R as
d(x) = det {Df (x)} .
Dh(x)
According to (1) for f:f|M : M — R? we have x e S;(f) if and only if

rank{gf}:g” 42— for i=1,2, and so Si(f)USH(f) =d-1(0) N M.

THEOREM 3.3. A mapping f:f|M : M — R? is 1-generic if and only if

Dd(x) i, f
Di(x) =n+1, for
xed ' (0)NM. If that is the case, then Si(f)=d '(0)N M.

d|,, is a submersion at points from d='(0)N M, ie. rank[

Proof. Let xe S|(f). According to Lemma 3.2, ® is a submersion at
W(j'f(x)). Notice that there exists a small enough neighbourhood U of
W(j'f(x)) such that ®|, is a submersion and

UN¥(S) = @[ (0).

We have j!f h S! at x if and only if W(j!f) h WP(S') at x. According to [4, II,
Lemma 4.3], W(;'f) m ¥(S!) at x if and only if @[, 0¥ o jlf is a submersion
at x.

Let us see that @, oWo jlif(x) =d(x) for xe M. We get that for xe
Si(f), jif mS! at x if and only if d|,,: M — R is a submersion at x, i.e.
rank Dd(x)] _ +1

Dh(x) -

Note that since codim S> =4, j!f S, if and only if S>(f) =0. On the

other hand, if x € S>(f), then

]

X
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the elements of Dd(x) = D(det{Df (x)}) are linear combinations of (n+ 1)-

Dh(x)
minors of this matrix, and so Dd(x) = (0,...,0). We get that if d|,, is a
submersion at points from d~1(0) N M, then Sy(f) = 0. O

From now on we assume that f :f|M : M — R? is l-generic. Then by

Theorem 3.3, for x near S;(f), the vectors Vi (x),...,Vh,(x),Vd(x) are linearly
independent and S;(f) is 1-dimensional submanifold of M.
Dd(x)
Dh(x)
min(z)rs obtained by removing i-th column. We define a vector field v: R"? —
R"* as

For x e R"? and the matrix [ ], by w;(x) we will denote its (n+ 1)-

(x) = (—wi(x), wa(x), ..., (= 1) Pwin(x)).
Then for x e S;(f) the vector v(x) is a generator of
T.S1(f) = (Span{Vh(x),...,Vh,(x),Vd(x)})".
Put F = (F,F) : R"™? = R? as

F(x) = Df(x)(v(x)).
We will call peS;(f) a fold point if it is a regular point of f| Si/)-

ProOPOSITION 3.4.  For a l-generic f and a point p € S\(f) the following are
equivalent:
(@) p is a fold point;
Df (p)
(b) rank | Dh(p) | =n+2;
Dd(p)
(c) F(p) #0.

Proof. Since f is 1-generic, Si(f) = (h,d)”'(0) is a complete intersection,
and so the equivalence of the first two conditions is a simple consequence of the
equation (1). B

We see that F(p) # 0 iff <Vf,(p),v(p))> # 0 or <V (p),v(p)> # 0 iff at least
one of Vfl( ), Vf,(p) does not belong to Span{Vh(x),...,Vh,(x),Vd(x)} iff

Df(p)
rank | Di(p) | =n+2. So we get (b) < (c). O
)

Dd(p

If f=(fi,f,): M — R? is l-generic, then for p € S|(f) one of the following
two conditions can occur.

2) T,S1(f) +ker Df (p) = R,
3) T,81(/) = ker Df (p).
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It is easy to see that p € S|(f) satisfies (2) if and only if F(p) # 0, and then p is a
fold point.

Assume that condition (3) holds at p e S|(f). By the previous Proposition
this is equivalent to the condition F(p) = 0.

Take a smooth function & on M such that k =0 on S;(f) and Dk(p) #0
(our mapping d|,, satisfies both these conditions). Let ¢ be a non-vanishing
vector field along S)(f) such that & is in the kernel of Df at each point of S|(f)
near p. Then Dk(&) is a function on S;(f) having a zero at p. The order of
this zero does not depend on the choice of ¢ or k (see [4, p. 146]), so in our
case it equals the order of Dd|, (&) at p. Following [4] we will say that p is a
simple cusp (or cusp for short) if p is a simple zero of Dd|,,(£). If this is the
case, then locally near p the mapping f has a form (xj,x;) — (xl,x23 + x1x72) (see

[13], [4]).

PrROPOSITION 3.5.  Assume that f is l-generic and p € Si(f). Then p is a
DF(p)
simple cusp if and only if F(p) =0 and rank | Dh(p) | =n+2.
Dd(p)

Proof. Take pe Si(f). Note that F(p) =0 is equivalent to the condition
T,S:(f) = ker Df(p). So we assume that F(p)=0.

Let us take a small neighbourhood U c R"*? of p and a smooth vector field
w: U — R"? such that

Span{w(x)} = (Span{V/h(x), ..., Vh,(x),0(x)})" and (Vd(x),w(x)) # 0,

for xe U. We define a smooth vector field & : S;(f)NU — R"*? for i=1,2
by

Fi(x)

_ (), w(x))
Vd(x),w(x))

&i(x) m

w(x)

v(x).

By our assumptions

= Df(p)
Df(p)] _ Dd(p)
rank[Dh(pJ = rank{Dh(p)] = rank 22183 =n+1,

and then there exist «, 8 € R such that o® + % # 0, Vd(p) = aVf,(p) + BVAH(p) +
some linear combination of Vi;(p). So

0 # <Vd(p), w(p)> = alVfi(p), w(p)> + BV, w(p)),
and then <Vfl(p),w(p)>¢0 or (Vf(p),w(p)> #0. Hence at least one of
s () — _ YED) ()

Vd(p),w(p)>
Span{uv(p)}.

v(p) is different from 0. Of course &(p) e T,S1(f) =
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Since for xeS|(f)NU we have &(x)e(Span{Vh(x),...,Vh,(x)})",

<Vfi(x)7fi(x)> =0, and rank{ ((XH n—+1. It is easy to see that
h(x

{D (x)] () =0,
Dh(x)
and so &;(x) € ker(Df (x)) for i=1,2.

Notice that Dd|,,(x)&;(x) = <Vd(x),&(x)) = Fi(x) for xe S;(f) N U. Take
i such that &;(p) #0. We get that p is a simple cusp if and only if p is a simple

DF(p)
zero of Filg s, then rank| Dh(p) | =n+2.
Dd(p) DFj(p)
On the other hand, if for j = 1,2, rank | Dh(p) | =n+ 2, then p is a simple
Dd(p) DF(p)
zero of Filg,s). So let us assume, that for example rank | Dh(p) | =n+1 and
Dd
DF\(p) DF( () ?)
rank | Dh(p) |=n+2. Since for xe S| (f)NU, rank{ } =n+1, there
Dd(p) P

exist smooth a, f such that o?(x)+ f%(x) #0 and a(x)Fi(x) + B(x)F2(x) =0

for xe Si(f)NU. Then differentiating the above equality in S;(f) N U we get

B(p) # 0 and we obtain <Vf;(p),w(p)> =0. So &(p) =0, that means i must be
DF;(p)

1, and rank | Dh(p) | =n+2 implies that p is a simple zero of Filg, - O
Dd(p)

4. Signs of cusps

Let /: M — R? be a smooth map on a smooth oriented 2-dimensional
manifold. For a simple cusp p of f we denote by u(p) the local topological
degree deg, f of the germ f: (M, p)— (R, f(p)). From the local form of
f near p it is easy to see that u(p)=+1. We will call it the sign of the
cusp p.

In [6], the authors investigated the algebraic sum of cusps of a 1-generic
mapping g = (g1,92) : R> = R%>. They defined G : R?> — R? as G(x) = Dg(x){(x),

where {(x) = ({1(x),{(x)) = (—i det Dg(x),i det Dg(x)) is tangent to
Si(g) for x e Si(q). 0x 0x1
According to [6, Proposition 1], for a simple cusp g€ R* of g, we have
det DG(q) # 0 and u(g) = sgn det DG(q).
Using the facts and proofs from [6, Section 3.] it is easy to show the
following.
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Lemma 4.1.  Let n = (n,,7,) be a non-zero vector field on R?.  Assume that
in some neighbourhood of the simple cusp q of g there exists a smooth non-
vanishing function s such that on S\(g) we have s(x)n(x) = {(x). Then for G(x) =

Dy(x)n(x)
sgn det DG(q) = sgn det DG(q).

Proof. Following [6, Section 3.] we can assume that ¢ =0 and there exist
o, f # 0 such that

Do) =y o] Lo -k0. Fro -0

We can take a smooth ¢: (R,0) — (R,0) such that locally Si(g) = {(¢,0(2))}.
Then ¢’(0) =0 and

& S 00ma(e00)) = Sl p(0),

hence s(O)% (0) = giz (0). Easy computations show that det DG(0) =
0x 1
5%(0) det DG(0). O

Let us recall that f:R™2 —R? is smooth and f = f|,: M — R? is
l-generic, M = h~'(0) is a complete intersection. In the previous section we
have defined a vector field v: R"" — R"™? such that for x e S;(f) the vector
v(x) spans T,Si(f), and the mapping F(x) = Df(x)v(x).

THEOREM 4.2. Let us assume that p is a simple cusp of a 1-generic map
f M —R? where f=fl|,, and M =h"'(0) is a complete intersection. Then
DF (P)]

((p) = sgn det { Dh(p)

Proof We can choose a chart ¢ of R""? defined in some neighbourhood
of p such that both ¢ and the corresponding chart ¢,, of M, ie. ¢|, =
(¢4s,0) : M — R? x {0}, preserve the orientations. Put ¢ = ¢,,(p) and take G
as above for the mapping ¢ :fo¢;41 : (Rz,q) — R2.

For x e M we define 7 = (1,,7,) as Dg(x)v(x) = (1,(x),#,(x),0,...,0). Let
y € R? be such that ¢(x) = (»,0,...,0), i.e. ¢, (x) = y. Since 5(x) =n(dy, (»))
is a non-zero vector in the tangent space at y of ¢,,(S1(f)) = Si(g) C R?, as well
as {(y), there exists a smooth non-vanishing mapping s : (R, ¢) — R such that

L(y) = s()n(dy () for y e dp(Si(f))
According to [6, Proposition 1.],

u(p) = deg, [ = deg, g = sgn det DG(q) # 0.
Define G(y) = Dg(»)n(¢y; (¥)). Then from Lemma 4.1
sgn det DG(q) = sgn det DG(q).
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Notice that
F($y () = Df (¢~ (3,0))Dp " (y,0)Dg(¢p~" (,0))u(¢ " (»,0))

=D(f o ¢ )(»,0)(n(¢™"(5,0)),0) = Dg(») (n(43/ (¥) = G()-
According to [12, Lemma 3.1.]

sgn det DG(q) = sgn det D(F o ¢, )(¢) = sgn det [gi((ﬁ))} : =

5. Algebraic sum of cusps of a polynomial mapping

Now we recall a well-known fact. Take an ideal J C R[x] = R[xy, ..., x]
such that the R-algebra .7 = R[x]/J is finitely generated over R, i.e. dimg ./ < o0.
Denote by V(J) the set of real zeros of the ideal J.

For he o/, we denote by T(h) the trace of the R-linear endomorphism
o davw h-aeo/. Then T :.o/ — Ris a linear functional. Take J € R[x]. Let
O : ./ — R be the quadratic form given by ®(a) = T(5 - a?).

According to [1], [7], the signature o(®) of ® equals

4) 5@ = 3 sendlp),
rev()
and if ® is non-degenerate then J(p) # 0 for each pe V(J).

In this Section we will present that the results from Sections 3, 4 can be
applied to compute the number and the algebraic sum of cusps in the polyno-
mial case. So take polynomial mappings f :R"™ — R? and h = (hy,...,h,):
R — R" such that M =h"'(0) is a complete intersection. Put f = f],, :
M — R% Let us recall that d(x)= det{gjggxﬂ, v(x) = (—wi(x), wa(x),...,

X

(=1)"w,12(x)), where w;(x) are (n+ 1)-minors obtained by removing i-th

{gigi], and F(x) = Df (x)o(x).

Let us define ideals I,S C R[x] = R[xy,...,X,12] as
I:<h1,...,hn,d,wl,...,w%z),

column from the matrix

DF, DF,
S=<h1,...7hn,d,F1,F2,det Dd |,det| Dd >
Dh Dh

One may check that S C 1.

ProposiTION 5.1. (a) If I = RIx] then f is l-generic.

(b) If S=R[x| then f is l-generic, and has only folds and simple cusps
as singular points. If that is the case, then the set of simple cusps
{xeR"™2|hy(x) = = hy(x) =d(x) = Fi(x) = Fo(x) =0} is an alge-
braic set of isolated points, so it is finite.
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Proof. 1If I = R]x] then the set V(I) of real zeros of I is empty. We have

V(I)={xeM|d(x) =wi(x) = =wy(x) =0}. Since the dimension of the
matrix {g;fgg } is (n+1)x (n+2), we obtain
_ _ Dd(x)
(Z)_V(I)_{xeM|d()_Orank Dh(x) <n+1}.
So we get that for all xed '(0)N M, rd k{ ] n+ 1. According to

Theorem 3.3, f is l-generic, so we get (

Since SC I, if S =R[x|, then I—R[x}, and so by (a) f is l-generic. By
Theorem 3.3, Sl(_f):d*I(O)ﬂM:d (0) Nh~'(0). Moreover if S =R[x],
then V(S) =0, and we obtain

DF(x)
0=V(S) D xeSi(f)|Fi(x) = F(x) =0,rank | Dd(x) | <n+2
Dh(x)
Hence for x e S|(f) we have either
F(x)#0
or
DF(x)
F(x)=0 and rank| Dd(x) |=n+2.
Dh(x)

According to Propositions 3.4, 3.5, f has only folds and simple cusps as singular
points. If that is the case, for x € S;(f), the point x is a simple cusp if and only
if F(x)=0, so we get (b). ]

Let us assume that S=R[x]. Put J=<h,...,h,,d, Fi,F>), and </ =
R([x]/J, and assume that dimgr ./ < co. Then according to the previous Prop-
osition, f is l-generic, and has only folds and simple cusps as singular points.
Moreover V(J) is the set of simple cusps of f, it is finite, and so we can
count the algebraic sum of cusps, ie. >, ;) u(p). Let us define quadratic

forms @1,0,:.«/ — R by Oi(a) = T(1-a?), Oy(a) =T a?), where 5(x)=

det[’f)igx”.

PrOPOSITION 5.2.  Assume that S = R[x] and dimg o/ < 0. Then for the
mapping  f

(@) the number of cusps #V (J) = a(0Oy),

(b) the algebraic sum of cusps 3.y 1(p) = o(02).
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Proof. Since S = R[x], according to Proposition 5.1, f is 1-generic, has only
folds and simple cusps as singular points, and the set V(J) of simple cusps of f is

finite.
By the formula (4) we get

o(®) = > sen(l) =#V(J).
pev(J)

Let us notice that by Theorem 4.2 for a simple cusp p of f, sgnd(p) = u(p).
Then using once again the formula (4) we obtain

o(@)= > sgnd(p)= > ulp). 0

peV({J) peV({J)

Using Propositions 5.1, 5.2, and SINGULAR ([5]) we computed the following

examples.
The first example we will present in details.

Example 5.3. Put f = (x? = 2xy +x,22) : R*—>R? and h=x*+)y*+
22— 1:R* = R. Then 4 '(0) is a 2-dimensional sphere.
In this case the ideal S is generated by
h=x?+y?+22 -1,
d = —8x* — 8xy + 8y% — 4y,
F| = 96x%z — 64xyz + 64y°z + 32xz — 48yz + 8z,
F, = —32x% + 128xy 4 32y% — 16x,

DF,
det| Dd | =1536x* — 7168x>y + 3584x2y? — 3072xy° — 1024y* — 5120xz?
Dh
+ 10240xyz% + 1280x> — 3328x%y + 3072xy? + 768y° — 3584xz>
+ 768yz> + 384x? — 896xy — 128y% — 25622 + 64x,
DF,
det| Dd | = 5120x%z + 5120y%z + 768xz — 1536yz + 128z.
Dh

Using SINGULAR we compute the standard basis of S, which is {1}, i.e. S is the

whole RIx]. ~
From Proposition 5.1, f = f|,.1 is l-generic, and has only folds and

simple cusps as singular points.
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The ideal J = <(x>+ y>+22—1,—8x> —8xy+ 8y? —4y,96x%z — 64xyz +
64y2z + 32xz — 48yz + 8z, —32x% + 128xy + 32y — 16x).

SINGULAR computations shows that: the algebra .« = R[x]/J has dimension
6, its basis has a form ej =xz, ex=yz, e3=x, e4 =y, es=2z, e, =1, the
matrices of the forms ®;, ®, are

[—33/500 —81/500 0 0  —57/100 0
—81/500 297/1000 0 0 21/20 0
0 0 ~3/50 -9/50 0 -3/5
0 0 —9/50  9/25 0 6/5 ’
—57/100 21/20 0 0 57/10 0
0 0 ~3/5 65 0 6 |
[339408/3125 709344/3125 0 0 527616/625 0
709344/3125 —1178928/3125 0 0 ~891072/625 0
0 0 12672/125 31104/125 0 21888/25
0 0 31104/125 —57024/125 0 —8064/5 |
527616/625 —891072/625 0 0 —1050048/125 0
L0 0 21888/25 —8064/5 0 —43776/5 |

and their signatures are 2 and —2 respectively. According to Proposition 5.2 it
means that the mapping f has 2 simple cusps, both of them are negative.

The other examples are computed similarly and we present just the final
results.

Example 5.4. Put f = (xz22 —22 = 22,2x32 — 3+ 23+ 3yz— 22— p) : R® —
R? and h=x>+ y> +z2 —1:R* - R. Then 2~ '(0) is a 2-dimensional sphere,
and dimg ./ = 68. The mapping f = f|,. (0) 1s 1-generic, has 6 simple cusps, 3
of them are negative.

Example 5.5. Put f = (2xz2— y2 +2xz,—z +2xy — y* —x) : R? = R?
and h=x>+ > +22-1: R?® — R. In this case dimg ./ = 44, and the mapping
f=rf |h,1(0) is 1-generic, has 8 simple cusps, 6 of them are negative.

Example 5.6. Put f = (zw—2w? —2x,3x3 —2yz2 — yw+2zw — x) : R* = R?
and = (x> 4+ y*> — 1,22 +w? — 1) : R* = R% Then A '(0) is a 2-dimensional
torus, and dimg .o/ = 52. The mapping f = f1;-1(p is 1-generic, has 16 simple
cusps, 8 of them are negative.

Example 5.77. Put f = (323 +x*—xy,20%2 - 2234+ xy—2y? —x) : R* = R?
and h = x>+ y> —z:R* — R. Then /~'(0) is a 2-dimensional paraboloid, and
dimg .o/ =47. The mapping f = f |h,1<o) is 1-generic, has 3 simple cusps, all of
them are negative.



(11]
(12]

(13]
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