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GLOBAL ATTRACTORS FOR A KIRCHHOFF TYPE PLATE

EQUATION WITH MEMORY

Xiaobin Yao, Qiaozhen Ma* and Ling Xu

Abstract

A Kirchho¤ type plate equation with memory is investigated. Under the suitable

assumptions, we establish the existence of a global attractor by using the contraction

function method.

1. Introduction

In this paper, we are concerned with the following Kirchho¤ type plate
equation with memory:

utt þ aut þ D2u�
ðy
0

mðsÞD2uðt� sÞ dsþ luð1:1Þ

þ ðp� bk‘uk22ÞDuþ f ðuÞ ¼ gðxÞ in W� Rþ;

where W � RNðNb 1Þ is a bounded domain with smooth boundary G ¼ qW.
Here a, b and l are given positive constants, p A R, m is the memory kernel, and
g A L2ðWÞ is a forcing term.

Equation (1.1) with the memory term
Ðy
0 mðsÞD2uðt� sÞ ds, where the func-

tion m is called kernel, can be regarded as a fourth order viscoelastic plate
equation with a lower order perturbation, and it can be also regarded as an
elastoplastic flow equation with some kind of memory e¤ect ([3], [14], [15]).

In this paper, we consider (1.1) with boundary condition

u ¼ qu

qn
¼ 0 on G� R;ð1:2Þ

and initial conditions

uðx; tÞ ¼ u0ðx; tÞ; utðx; tÞ ¼ qtu0ðx; tÞ; ðx; tÞ A G� ð�y; 0�;ð1:3Þ
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where n is the unit outer normal on G, u0 : W� ð�y; 0� ! R is the prescribed
past history of u.

Fourth order equations with lower order perturbation are related to models
of elastoplastic microstructure flows. Woinowsky-Krieger [18] first proposed the
one-dimensional nonlinear equation of vibration of beams, which is given by

utt þ auxxxx � b þ g

ðL
0

juxj2 dx
� �

uxx ¼ 0;ð1:4Þ

where L is the length of the beam, a, g are positive physical constants and b A R.
The nonlinear part of (1.4) represents for the extensible e¤ect for the beam whose
ends are restrained to remain in a fixed distance apart in its transverse vibrations.
The global existence and the global attractors of solutions for the plate equa-
tion were studied in [1, 15, 16, 19, 20] and references therein. Yang [20] proved
the existence of a uniform attractor for non-autonomous plate equations with
a localized damping and critical nonlinearity when mðsÞ1 0 and p ¼ b1 0.
Wu [19] proved the existence and uniqueness of global solutions as well as
the existence of a global attractor for a nonlinear plate equation with thermal
memory. Barbosa and Ma [1] obtained the existence of a finite-dimensional
global attractor as well as the existence of exponential attractors for an extensible
plate equation with thermal memory under the case that p ¼ 0 and Mðk‘uk2Þ
satisfies the proper conditions. Silva and Ma [15, 16] proved the exponential
stability and global attractor of plate equations with memory and perturbation of
p-Laplacian type. Kang [12] showed the existence of global attractors to the
following suspension bridge equation with memory

utt þ aD2u�
Ðy
0 mðsÞD2uðt� sÞ dsþ kuþ þ f ðuÞ ¼ gðxÞ in W� Rþ;

u ¼ 0; Du ¼ 0 on G� R;

uðx; tÞ ¼ u0ðx; tÞ; utðx; tÞ ¼ qtu0ðx; tÞ; ðx; tÞ A G� ð�y; 0�:

8><
>:

Motivated by above results, A natural question is to determine whether or
not the system (1.1) admits a global attractor. Our objective in the present paper
is to show (1.1) does have a global attractor when the growth of f ðuÞ are up to
the critical range and the memory kernel mb 0 decays exponentially. The main
result is Theorem 2.2.

We end this section by introducing the relative displacement memory that
will transform (1.1) into an autonomous system. Following the arguments from
Dafermos [5] and Giorgi et al. [6, 8, 10], we add a new variable h to the system
corresponding to the relative displacement memory, namely

h ¼ h tðx; sÞ ¼ uðx; tÞ � uðx; t� sÞ; ðx; sÞ A W� Rþ; tb 0:ð1:5Þ
By formal di¤erentiation in (1.5) we have

h t
t ðx; sÞ ¼ �h t

sðx; sÞ þ utðx; tÞ; ðx; sÞ A W� Rþ; tb 0;

and we take as initial condition (t ¼ 0)

h0ðx; sÞ ¼ u0ðx; 0Þ � u0ðx;�sÞ; ðx; sÞ A W� Rþ:
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Further, by assuming that m A L1ðRþÞ, the original memory term can be rewritten
as ðy

0

mðsÞD2uðt� sÞ ds ¼
ðy
0

mðsÞ ds
� �

D2u�
ðy
0

mðsÞD2h tðsÞ ds:

Thus, taking for simplicity % ¼ 1�
Ðy
0 mðsÞ ds, the original problem (1.1)–(1.3)

can be transformed into the equivalent autonomous system

utt þ aut þ %D2uþ
ðy
0

mðsÞD2h tðsÞ dsþ luð1:6Þ

þ ðp� bk‘uk22ÞDuþ f ðuÞ ¼ gðxÞ in W� Rþ;

ht ¼ �hs þ ut; in W� Rþ � Rþ;ð1:7Þ

with boundary conditions

u ¼ qu

qn
¼ 0 on G� Rþ; h ¼ qh

qn
¼ 0; on G� Rþ � Rþ;ð1:8Þ

and initial conditions

uðx; 0Þ ¼ u0ðxÞ; utðx; 0Þ ¼ u1ðxÞ; h tðx; 0Þ ¼ 0; h0ðx; sÞ ¼ h0ðx; sÞ;ð1:9Þ

where

u0ðxÞ ¼ u0ðx; 0Þ; x A W;

u1ðxÞ ¼ qtu0ðx; tÞjt¼0; x A W;

h0ðx; sÞ ¼ u0ðx; 0Þ � u0ðx;�sÞ; ðx; sÞ A W� Rþ:

8><
>:

Our analysis is made upon the system (1.6)–(1.9).
The remaining of the paper is organized as follows. In Sec. 2 we fix some

notations and present our assumptions and main results. We also discuss briefly
the methods used to prove the results. Section 3 contains a short account of the
abstract results in the theory of infinite dimensional dynamical systems that will
be used. Section 4 is dedicated to the proof of the results.

2. Assumptions and the main result

We begin with precise hypotheses on the problem (1.6)–(1.9). Concerning
the nonlinear term f : R ! R, we assume that

f ð0Þ ¼ 0; j f ðuÞ � f ðvÞja k0ð1þ jujr þ jvjrÞju� vj; Eu; v A R;ð2:1Þ

where k0 > 0 and

0 < ra
4

N � 4
if Nb 5 and r > 0 if 1aNa 4:ð2:2Þ
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Condition (2.2) implies that H 2
0 ðWÞ ,! L2ðrþ1ÞðWÞ. Also, we say that r ¼ 4

N � 4
is a critical exponent for the growth of f ðuÞ when Nb 5. In addition, we
assume that

lim inf
jsj!y

f ðsÞ
s

> �l1;ð2:3Þ

where l1 is the best constant in the Poincaré type inequalityð
W

jDuj2 dxb l1

ð
W

juj2 dx:

Further, with respect to the memory component, we assume that

m A C1ðRþÞ \ L1ðRþÞ;
ðy
0

mðsÞ ds ¼ m0 > 0; % ¼ 1� m0 > 0;ð2:4Þ

m 0ðsÞa 0a mðsÞ; Es A Rþ;ð2:5Þ

and that there exists a constant k1 > 0 such that

m 0ðsÞ þ k1mðsÞa 0; Es A Rþ:ð2:6Þ

In the sequel we fix some notations on the function spaces that will be used
throughout remainder of this paper. Let

H ¼ V0 ¼ L2ðWÞ; V ¼ V1 ¼ H 2
0 ðWÞ;

equipped with respective inner products and norms,

ðu; vÞV ¼ ðDu;DvÞ and kukV ¼ kDuk2:
As usual ð� ; �Þ denotes L2-inner product and k � kp denotes Lp-norms.

In order to consider the relative displacement h as a new variable, we
introduce the weighted L2-space

L2
mðRþ;VÞ ¼ h : Rþ ! V

����
ðy
0

mðsÞkhðsÞk2V ds < y

� �
;

which is nonempty due to the assumptions (2.4) and (2.5). In addition, it is a
Hilbert space endowed with inner product and norm

ðu; vÞm;V ¼
ðy
0

mðrÞðuðrÞ; vðrÞÞV dr; kuk2m;V ¼ ðu; uÞm;V ¼
ðy
0

mðrÞkuðrÞk2V dr;

Finally we introduce the phase space

H ¼ V �H � L2
mðRþ;VÞ;

equipped with the norm

kðu; v; xÞk2H ¼ kDuk22 þ kvk22 þ kxk2m;V :
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In order to obtain the global attractors of the problem (1.6)–(1.9), we need
the following theorem. The well-posedness of the problem (1.6)–(1.9) is given by
Faedo-Galerkin method (see [2, 7, 9, 11, 13]).

Theorem 2.1. Assume that assumptions (2.1)–(2.6) hold and consider g A
L2ðWÞ. Then we have

(i) If initial data ðu0; u1; h0Þ A H, then problem (1.6)–(1.9) has a weak solution

ðu; ut; hÞ A Cð½0;T �;HÞ; ET > 0;

satisfying

u A Lyð0;T ;VÞ; ut A Lyð0;T ;HÞ; h A Lyð0;T ;L2
mðRþ;VÞÞ:

(ii) Let zi ¼ ðui; ui
t ; h

iÞ be weak solutions of problem (1.6)–(1.9) corresponding
to initial data zið0Þ ¼ ðui

0; u
i
1; h

i
0Þ, i ¼ 1; 2. Then one has

kz1ðtÞ � z2ðtÞkH a ectkz1ð0Þ � z2ð0ÞkH; t A ½0;T �;

for some constant c > 0.

Remark 2.1. The well-posedness of problem (1.6)–(1.9) given by Theorem
2.1 implies that the one-parameter family of operators SðtÞ : H ! H defined by

SðtÞðu0; u1; h0Þ ¼ ðuðtÞ; utðtÞ; h tÞ; tb 0;ð2:7Þ

where ðuðtÞ; utðtÞ; h tÞ is the unique weak solution of the system (1.6)–(1.9), and
satisfies the semigroup properties

Sð0Þ ¼ I and Sðtþ sÞ ¼ SðtÞ � SðsÞ; t; sb 0;

and defines a nonlinear C0-semigroup, which is locally Lipschitz continuous on
the phase space H. Then the dynamics of problem (1.6)–(1.9) can be studied
through the dynamical system ðH;SðtÞÞ.

Our main result in the present paper is the following.

Theorem 2.2. Assume that assumptions (2.1)–(2.6) hold and g A L2ðWÞ, then
the dynamical system ðH;SðtÞÞ corresponding to the system (1.6)–(1.9) has a
compact global attractor A � H.

The proof of Theorem 2.2 is given in Sec. 4.

3. Infinite-dimensional dynamical systems

To make the paper more self contained we recall some fundamentals of
the theory of infinite dimensional dynamical systems in mathematical physics.
Below we follow more closely the book by Chueshov and Lasiecka [4] (Chap. 7).
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Let SðtÞ be a C0-semigroup defined in a Banach space H. A global
attractor for ðH;SðtÞÞ is a bounded closed set A � H which is fully invariant
and uniformly attracting, that is, SðtÞA ¼ A for all tb 0 and for every bounded
subset B � H,

lim
t!y

distHðSðtÞB;AÞ ¼ 0;

where distH is the Hausdor¤ semidistance in H. We say that a dynamical
system ðH;SðtÞÞ is dissipative if it possesses a bounded absorbing set, that is, a
bounded set B � H such that for any bounded set B � H there exists tB b 0
satisfying

SðtÞB � B; Etb tB:

In addition, we say that ðH;SðtÞÞ is asymptotically smooth if for any bounded
positively invariant set B � H, there exists a compact set K � B such that

lim
t!y

distHðSðtÞB;KÞ ¼ 0:

The following result is well-known. See for instance Chueshov and Lasiecka [4]
(Theorem 7.2.3).

Theorem 3.1. A dissipative dynamical system ðH;SðtÞÞ has a compact global
attractor if and only if it is asymptotically smooth.

Theorem 3.2. Suppose that for any bounded positively invariant set B � H
and for Ee > 0, there exists T ¼ Tðe;BÞ such that

kSðTÞx� SðTÞykH a eþ fTðx; yÞ; Ex; y A B;

where fT : B� B ! R satisfies

lim inf
n!y

lim inf
m!y

fT ðzn; zmÞ ¼ 0;ð3:1Þ

for any sequence fzng in B. Then SðtÞ is asymptotically smooth in H.

4. Proof of the main result

In order to prove Theorem 2.2 we will apply the abstract results presented
in Sec. 3. The first step is to show that the dynamical system ðH;SðtÞÞ is
dissipative. The second step is to verify the asymptotic smoothness. Then the
existence of a compact global attractor is guaranteed by Theorem 3.1.

In this section, we first prove the existence of the bounded absorbing set
in H.

Lemma 4.1. Under assumptions (2.1)–(2.6), the semigroup fSðtÞgtb0 corre-
sponding to problems (1.6)–(1.9) has a bounded absorbing set in H.

68 xiaobin yao, qiaozhen ma and ling xu



Proof. We set v ¼ ut þ du and rewrite the equation of (1.6) as follows:

vt þ ða� dÞut þ %D2uþ
ðy
0

mðsÞD2h tðsÞ dsþ luð4:1Þ

þ ðp� bk‘uk22ÞDuþ f ðuÞ ¼ gðxÞ in W� Rþ:

Taking the scalar product in H of (4.1) with v and integrating over W, we
obtain

d

dt

1

2
kvk22 þ

%

2
kDuk22 þ

l

2
kuk22 þ

ð
W

FðuðtÞÞ dx
� �

þ ða� dÞðut; vÞð4:2Þ

þ d%kDuk22 þ ððp� bk‘uk22ÞDu; vÞ þ ðh; utÞm;V
þ dðh; uÞm;V þ ldkuk22 þ dð f ðuÞ; uÞ ¼ ðg; vÞ;

where F ðsÞ ¼
Ð s
0 f ðtÞ dt.

Exploiting (1.7), (2.4), (2.6) and Hölder inequality, we have

ða� dÞðut; vÞ ¼ ða� dÞkvk22 � dða� dÞðu; vÞ;

ðh; utÞm;V ¼ ðh; ht þ hsÞm;V ¼ 1

2

d

dt
khk2m;V þ

ðy
0

mðsÞðhðsÞ; hsðsÞÞV ds

¼ 1

2

d

dt
khk2m;V þ 1

2

ðy
0

mðsÞdkhðsÞk2V

¼ 1

2

d

dt
khk2m;V � 1

2

ðy
0

m 0ðsÞkhðsÞk2V ds

b
1

2

d

dt
khk2m;V þ k1

2

ðy
0

mðsÞkhðsÞk2V ds

¼ 1

2

d

dt
khk2m;V þ k1

2
khk2m;V ;

dðh; uÞm;V b� k1

4
khk2m;V � m0d

2

k1
kDuk22:

ððp� bk‘uk22ÞDu; vÞ ¼ ððp� bk‘uk22ÞDu; ut þ duÞ

¼ ðp� bk‘uk22ÞðDu; utÞ þ ðp� bk‘uk22ÞðDu; duÞ

b
1

2

d

dt

bffiffiffiffiffi
2b

p k‘uk22 �
pffiffiffiffiffi
2b

p
 !2

þ d
bffiffiffiffiffi
2b

p k‘uk22 �
pffiffiffiffiffi
2b

p
 !2

� dp2

2b
:
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By the assumption (2.3) we know that there are l > l 0 > 0 and C0 such that

ð f ðuÞ; uÞ > �l 0kuk22 � C0 measðWÞ;
ð
W

FðuÞ dx > � l 0

2
kuk22 � C0 measðWÞ:

Hence we conclude from (4.2) that

d

dt

"
1

2
kvk22 þ

%

2
kDuk22 þ

l

2
kuk22 �

l 0

2
kuk22 þ

1

2
khk2m;Vð4:3Þ

þ 1

2

bffiffiffiffiffi
2b

p k‘uk22 �
pffiffiffiffiffi
2b

p
 !2#

þ ða� dÞkvk22 � dða� dÞðu; vÞ þ d%kDuk22

þ d
bffiffiffiffiffi
2b

p k‘uk22 �
pffiffiffiffiffi
2b

p
 !2

� dp2

2b
þ k1

2
khk2m;V � k1

4
khk2m;V � m0d

2

k1
kDuk22

þ ldkuk22 � l 0dkuk22 � C0d measðWÞa ðg; vÞ:

Moreover using Poincaré inequality in Sec. 2, Hölder inequality and Young
inequality, when d small enough, such that

a

2
� d >

a

4
; 1� m0d

k1%
� da

2l1%
> 1� d:

Then we obtain

ða� dÞkvk22 � dða� dÞðu; vÞ þ d%� m0d
2

k1

 !
kDuk22ð4:4Þ

b ða� dÞkvk22 �
d2a

2l1
kDuk22 þ

a

2
kvk22

 !
þ d% 1� m0d

k1%

� �
kDuk22

b
a

2
� d

� �
kvk22 þ d% 1� m0d

k1%
� da

2l1%

� �
kDuk22

b
a

4
kvk22 þ d%ð1� dÞkDuk22

and

ðg; vÞa kgk2kvk2 a
2

a
kgk22 þ

a

8
kvk22:ð4:5Þ

Combining with (4.4) and (4.5), we deduce from (4.3)
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d

dt

1

2
kvk22 þ

%

2
kDuk22 þ

1

2
khk2m;V þ 1

2

bffiffiffiffiffi
2b

p k‘uk22 �
pffiffiffiffiffi
2b

p
 !22

4
3
5

þ a

8
kvk22 þ d%ð1� dÞkDuk22 þ

k1

4
khk2m;V þ d

bffiffiffiffiffi
2b

p k‘uk22 �
pffiffiffiffiffi
2b

p
 !2

aC0d measðWÞ þ 2

a
kgk22 þ

dp2

2b
:

Setting

a1 ¼ min
a

4
; 2dð1� dÞ; k1

2

� �
:

We conclude that

d

dt
WðtÞ þ a1WðtÞa 4

a
kgk22 þ

dp2

b
þ 2C0d measðWÞ :¼ C1;

where

WðtÞ ¼ kvk22 þ %kDuk22 þ khk2m;V þ bffiffiffiffiffi
2b

p k‘uk22 �
pffiffiffiffiffi
2b

p
 !2

b 0:

By the Gronwall Lemma, we get

WðtÞaWð0Þe�a1t þ C1

a1
ð1� e�a1tÞ:

In view of (2.4), we conclude

kðu; v; hÞk2H ¼ kDuk22 þ kvk22 þ khk2m;V a
1

%
Wð0Þe�a1t þ C1

a1%
ð1� e�a1tÞ;

This shows that any closed ball B ¼ Bð0;RÞ with R >

ffiffiffiffiffiffiffi
C1

a1%

r
is a bounded

absorbing set of ðH;SðtÞÞ. r

Remark 4.1. The existence of a bounded absorbing set implies that for
initial data lying in bounded sets B � H, the solutions of problem (1.6)–(1.9) are
globally bounded. More precisely, let ðu; ut; hÞ be a solution of (1.6)–(1.9) with
initial data ðu0; u1; h0Þ in a bounded set B, then one has

kðuðtÞ; utðtÞ; h tÞkH aCB; Etb 0;ð4:6Þ

where CB > 0 is a constant depending on B. Lemma 4.1 also ensures the
existence of bounded positively invariant sets.
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We show an essential inequality to our proof of Theorem 2.2.

Lemma 4.2. Under the hypotheses of Theorem 2.2, given a bounded set
B � H, let z1 ¼ ðu; ut; hÞ and z2 ¼ ðv; vt; xÞ be two weak solutions of problem
(1.6)–(1.9) such that z1ð0Þ ¼ ðu0; u1; h0Þ and z2ð0Þ ¼ ðv0; v1; x0Þ are in B. Then

kz1ðtÞ � z2ðtÞk2H aCe�a2t þ C

ð t
0

e�a2ðt�sÞðkwtðsÞk22 þ kwðsÞk22ðrþ1ÞÞ ds;ð4:7Þ

for any tb 0, where C > 0 and a2 > 0 are constants.

Proof. Let us fix a bounded set B � H. We set w ¼ u� v and z ¼ h� x.
Then ðw; zÞ satisfy

wtt þ awt þ %D2wþ
ðy
0

mðsÞD2z tðsÞ dsþ lwþ ðp� bk‘uk22ÞDuð4:8Þ

� ðp� bk‘vk22ÞDvþ f ðuÞ � f ðvÞ ¼ 0;

zt ¼ �zs þ wt;ð4:9Þ
with initial condition

wð0Þ ¼ u0 � v0; wtð0Þ ¼ u1 � v1; z0 ¼ h0 � x0:

Taking the scalar product in H of (4.8) with j ¼ wt þ sw and integrating over W,
we obtain

d

dt

1

2
kjk22 þ

%

2
kDwk22

� �
þ ða� sÞðwt; jÞ þ s%kDwk22ð4:10Þ

þ ððp� bk‘uk22ÞDu; jÞ � ððp� bk‘vk22ÞDv; jÞ þ lðw; jÞ
þ ðz;wtÞm;V þ sðz;wÞm;V þ ð f ðuÞ � f ðvÞ; jÞ ¼ 0:

Noting that similar procedure used in Lemma 4.1 we obtain

ða� sÞðwt; jÞ ¼ ða� sÞkjk22 � sða� sÞðw; jÞ;

ðz;wtÞm;V b
1

2

d

dt
kzk2m;V þ k1

2
kzk2m;V ;

sðz;wÞm;V b� k1

4
kzk2m;V � m0s

2

k1
kDwk22:

Then

ða� sÞkjk22 � sða� sÞðw; jÞ þ s%� m0s
2

k1

� �
kDwk22 b

a

4
kjk22 þ

s%

2
kDwk22:ð4:11Þ

Combining with (4.11), we deduce from (4.10)
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d

dt

1

2
kjk22 þ

%

2
kDwk22 þ

1

2
kzk2m;V

� �
þ s%

2
kDwk22 þ

a

4
kjk22ð4:12Þ

þ k1

4
kzk2m;V þ ððp� bk‘uk22ÞDu; jÞ � ððp� bk‘vk22ÞDv; jÞ

a�lðw; jÞ � ð f ðuÞ � f ðvÞ; jÞ:

From the Young inequality, we obtain

j�lðw; jÞja l2

s
kwk22 þ

s

4
kjk22ð4:13Þ

a
l2c0

s
kwk22ðrþ1Þ þ

s

4
kjk22;

where c0 > 0 is an embedding constant for L2ðrþ1ÞðWÞ ,! L2ðWÞ.

Using generalized Hölder inequality with
r

2ðrþ 1Þ þ
1

2ðrþ 1Þ þ
1

2
¼ 1, as-

sumption (2.1), estimate (4.6) and Young inequality, we have

�
ð
W

ð f ðuðtÞÞ � f ðvðtÞÞÞjðtÞ dx
����

����
a k0

ð
W

ð1þ juðtÞjr þ jvðtÞjrÞjwðtÞj jjðtÞj dx

a k0ðjWjr=ð2ðrþ1ÞÞ þ kukr
2ðrþ1Þ þ kvkr

2ðrþ1ÞÞkwk2ðrþ1Þkjk2
aCBkwk2ðrþ1Þkjk2

a
C2

B

s
kwk22ðrþ1Þ þ

s

4
kjk22:

Now we estimate ððp� bk‘uk22ÞDu; jÞ � ððp� bk‘vk22ÞDv; jÞ.
Setting

ððp� bk‘uk22ÞDu; jÞ � ððp� bk‘vk22ÞDv; jÞð4:14Þ

¼
ð
W

½ðp� bk‘uk22ÞDu� ðp� bk‘vk22ÞDv�jðtÞ dx

¼ I1 þ I2;

where

I1 ¼
ð
W

ðpDu� pDvÞjðtÞ dx;

I2 ¼
ð
W

ð�bk‘uk22Duþ bk‘vk22DvÞjðtÞ dx:
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We derive from Hölder inequality, Young inequality and the estimate (4.6) the
following estimates:

jI1j ¼
ð
W

ðpDu� pDvÞjðtÞ dx
����

����
a

ð
W

jpj jDwj jjðtÞj dx

a s2p2kDwk22 þ
1

4s2
kjk22

a s2p2kDwk22 þ
1

4s2
kwt þ swk22

a s2p2kDwk22 þ
1

2s2
kwtk22 þ

1

2
kwk22

a s2p2kDwk22 þ
1

2s2
kwtk22 þ

c0

2
kwk22ðrþ1Þ;

jI2j ¼
ð
W

ðbk‘uk22Du� bk‘vk22DvÞjðtÞ dx
����

����
a

ð
W

jðbk‘uk22Du� bk‘uk22Dvþ bk‘uk22Dv� bk‘vk22DvÞjðtÞj dx

a b

ð
W

k‘uk22jDwj jjðtÞj dxþ b

ð
W

ðk‘uk22 þ k‘vk22ÞjDvj jjðtÞj dx

a
CBb

2

ð
W

jDwj jjðtÞj dxþ
ffiffiffiffiffiffi
CB

2

r
b

ð
W

jDvj jjðtÞj dx

a
CBb

2
kDwk2kjk2 þ

ffiffiffiffiffiffi
CB

2

r
bkDvk2kjk2

aCBb s2kDwk22 þ
1

4s2
kjk22

� �

aCBbs
2kDwk22 þ

CBb

2s2
kwtk22 þ

CBbc0

2
kwk22ðrþ1Þ;

where we have used the fact that ksvk2 ¼ ksu�swk2 a ksuk2 þ kswk2 affiffiffiffiffiffi
CB

2

r
kswk2. Inserting above two inequalities into (4.14) we obtain

ððp� bk‘uk22ÞDu; jÞ � ððp� bk‘vk22ÞDv; jÞð4:15Þ

b�ðs2p2 þ CBbs
2ÞkDwk22 �

1

2s2
þ CBb

2s2

� �
kwtk22

� c0

2
þ CBbc0

2

� �
kwk22ðrþ1Þ:
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Combining with (4.13), (4.14) and (4.15), we deduce from (4.12)

d

dt

1

2
kjk22 þ

%

2
kDwk22 þ

1

2
kzk2m;V

� �

þ s%

2
� s2p2 � CBbs

2

� �
kDwk22 þ

a

4
� s

2

� �
kjk22 þ

k1

4
kzk2m;V

a
1

2s2
þ CBb

2s2

� �
kwtk22 þ

l2c0

s
þ C2

B

s
þ c0

2
þ CBbc0

2

 !
kwk22ðrþ1Þ:

We can choose s so small such that

s%

2
� s2p2 � CBbs

2 ¼ s
%

2
� sp2 � CBbs

� �
> 0;

a

4
� s

2
> 0:

Then we set

EW ðtÞ ¼ kjk22 þ %kDwk22 þ kzk2m;V ;
and we have

d

dt
EW ðtÞ þ a2EW ðtÞaC2ðkwtk22 þ kwk22ðrþ1ÞÞ;

where

a2 ¼ min s� 2s2p2

%
� 2CBbs

2

%
;
a

2
� s;

k1

2

� �
;

and

C2 ¼ max
1

s2
þ CBb

s2
;
2l2c0
s

þ 2C 2
B

s
þ c0 þ CBbc0

( )
:

By the Gronwall Lemma, we get

EW ðtÞaEW ð0Þe�a2t þ C2

ð t
0

e�a2ðt�sÞðkwtðsÞk22 þ kwðsÞk22ðrþ1ÞÞ ds:

Since

kz1ðtÞ � z2ðtÞk2H ¼ kDwk22 þ kwtk22 þ kzk2m;V
¼ kDwk22 þ kj� swk22 þ kzk2m;V
a kDwk22 þ 2kjk22 þ 2s2kwk22 þ kzk2m;V

a 1þ 2s2

l1

� �
kDwk22 þ 2kjk22 þ kzk2m;V

aC3ðkjk22 þ %kDwk22 þ kzk2m;V Þ;

where C3 ¼ max
1

%
þ 2s2

%l1
; 2

� �
.
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Namely

kz1ðtÞ � z2ðtÞk2H aC3EW ðtÞ:
Hence

kz1ðtÞ � z2ðtÞk2H aC3EW ð0Þe�a2t þ C2C3

ð t
0

e�a2ðt�sÞðkwtðsÞk22 þ kwðsÞk22ðrþ1ÞÞ ds;

we have (4.7) with C ¼ maxfC3EW ð0Þ;C2C3g. r

Lemma 4.3. Under assumptions of Theorem 2.2, the dynamical system
ðH;SðtÞÞ is asymptotically smooth.

Proof. Let B be a bounded subset of H positively invariant with respect to
SðtÞ. Denote by CB several positive constants that are dependent on B but
not on t. For z10 ; z

2
0 A B, SðtÞz10 ¼ ðuðtÞ; utðtÞ; h tÞ and SðtÞz20 ¼ ðvðtÞ; vtðtÞ; x tÞ are

the solutions of (1.6)–(1.9). Then given e > 0, from inequality (4.7), we take

T > 0 such that Ceð�a2TÞ=2 < e and

kSðTÞz10 � SðTÞz20kHð4:16Þ

a eþ CB

ðT
0

ðkuðsÞ � vðsÞk22ðrþ1Þ þ kðutðsÞ � vtðsÞÞk22Þ ds
� �1=2

;

where CB > 0 is a constant which depends only on the size of B.
Now we note that condition (2.2) implies that 2 < 2ðrþ 1Þ < y if 1aNa 4

and 2 < 2ðrþ 1Þa 2N

N � 4
if Nb 5. Taking y ¼ N

4
1� 1

rþ 1

� �
we obtain from

interpolation theorem

kuðtÞ � vðtÞk2ðrþ1Þ aCkDðuðtÞ � vðtÞÞky
2kuðtÞ � vðtÞk1�y

2 aCBkuðtÞ � vðtÞk1�y
2 :

Since kDuðtÞk2 and kDvðtÞk2 are uniformly bounded, there exists a constant
CB > 0 such that

kuðtÞ � vðtÞk22ðrþ1Þ aCBkuðtÞ � vðtÞk2ð1�yÞ
2 :

Then we can rewrite (4.16) as

kSðTÞz10 � SðTÞz20kH a eþFT ðz10 ; z20Þ;
with

FTðz10 ; z20Þ ¼ CB

ðT
0

ðkuðsÞ � vðsÞk2ð1�yÞ
2 þ kðutðsÞ � vtðsÞÞk22Þ ds

� �1=2
:

Let us show that FT satisfies (3.1). Indeed, given a sequence of initial data
zn ¼ ðun

0 ; u
n
1 ; h

n
0 Þ in B, as before, we write SðtÞzn ¼ ðunðtÞ; un

t ðtÞ; hn; tÞ. Since B is
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invariant by SðtÞ, tb 0, it follows that ðunðtÞ; un
t ðtÞ; hn; tÞ are uniformly bounded

in H. In particular,

ðun; un
t Þ is bounded in Cð½0;T �;V �HÞ; T > 0:

Then from the compact embedding of V into H, the Aubins lemma (see Simon
[17] (Corollary 4)) implies that there exist subsequences funkg and funk

t g that
converge strongly in Cð½0;T �;HÞ. Therefore, we see that

lim
k!y

lim
l!y

ðT
0

ðkunk ðsÞ � unl ðsÞk2ð1�yÞ
2 þ kðunk

t ðsÞ � unl
t ðsÞÞk

2
2Þ ds ¼ 0;

and consequently (3.1) holds. The asymptotic smoothness property of ðH;SðtÞÞ
follows from Theorem 3.2. r

Proof of Theorem 2.2. We note that Lemmas 4.1 and 4.3 imply that
ðH;SðtÞÞ is a dissipative dynamical system which is asymptotically smooth.
Then from Theorem 3.1 it has compact global attractor A in the phase space
H. r
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