X. YAO, Q. MA AND L. XU
KODAI MATH. J.
40 (2017), 63-78

GLOBAL ATTRACTORS FOR A KIRCHHOFF TYPE PLATE
EQUATION WITH MEMORY

XIAOBIN YAO, QIAOZHEN MA* aND LING XU

Abstract

A Kirchhoff type plate equation with memory is investigated. Under the suitable
assumptions, we establish the existence of a global attractor by using the contraction
function method.

1. Introduction

In this paper, we are concerned with the following Kirchhoff type plate
equation with memory:

(L.1) u,l+ocu,+A2u7J w(8)Au(t — s) ds + Ju
0

+(p— BIIVul3)Au+ f(u) = g(x) in Q xR,

where Q C RY(N > 1) is a bounded domain with smooth boundary T' = 0Q.
Here o, f and / are given positive constants, p € R, u is the memory kernel, and
ge L*(Q) is a forcing term.

Equation (1.1) with the memory term |;° u(s)A*u(t — s) ds, where the func-
tion u is called kernel, can be regarded as a fourth order viscoelastic plate
equation with a lower order perturbation, and it can be also regarded as an
elastoplastic flow equation with some kind of memory effect ([3], [14], [15]).

In this paper, we consider (1.1) with boundary condition
ou
1.2 =—=0 I'xR
(1.2) u=- on I' xR,

and initial conditions

(1.3) u(x,7) =up(x,7), ulx,7)=0m(x,7), (x,7)el x (—o0,0],
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where v is the unit outer normal on T, u: Q x (—00,0] — R is the prescribed
past history of wu.

Fourth order equations with lower order perturbation are related to models
of elastoplastic microstructure flows. Woinowsky-Krieger [18] first proposed the
one-dimensional nonlinear equation of vibration of beams, which is given by

L
(1.4) Ust + Oy — <ﬂ+yj |ux|2 dx>uxx0,
0

where L is the length of the beam, o, y are positive physical constants and f§ € R.
The nonlinear part of (1.4) represents for the extensible effect for the beam whose
ends are restrained to remain in a fixed distance apart in its transverse vibrations.
The global existence and the global attractors of solutions for the plate equa-
tion were studied in [1, 15, 16, 19, 20] and references therein. Yang [20] proved
the existence of a uniform attractor for non-autonomous plate equations with
a localized damping and critical nonlinearity when u(s) =0 and p=p=0.
Wu [19] proved the existence and uniqueness of global solutions as well as
the existence of a global attractor for a nonlinear plate equation with thermal
memory. Barbosa and Ma [1] obtained the existence of a finite-dimensional
global attractor as well as the existence of exponential attractors for an extensible
plate equation with thermal memory under the case that p =0 and M (||Vu||*)
satisfies the proper conditions. Silva and Ma [15, 16] proved the exponential
stability and global attractor of plate equations with memory and perturbation of
p-Laplacian type. Kang [12] showed the existence of global attractors to the
following suspension bridge equation with memory

Uy + o u — [ () A%u(t — s) ds + kut + f(u) = g(x) in QxRT,
u=0,Au=0 on I xR,
u(x,7) = uo(x, 1), u(x,7) = dup(x,7), (x,7) €I’ x (—00,0].

Motivated by above results, A natural question is to determine whether or
not the system (1.1) admits a global attractor. Our objective in the present paper
is to show (1.1) does have a global attractor when the growth of f(u) are up to
the critical range and the memory kernel u > 0 decays exponentially. The main
result is Theorem 2.2.

We end this section by introducing the relative displacement memory that
will transform (1.1) into an autonomous system. Following the arguments from
Dafermos [5] and Giorgi et al. [6, 8, 10], we add a new variable # to the system
corresponding to the relative displacement memory, namely
(1.5) n=n'(x,s) =u(x,t) —u(x,t—s), (x,5)eQxR* 1>0.

By formal differentiation in (1.5) we have
n(x.s) = —n(x.s) +ulxd), (x.s)eQxRY, 120,
and we take as initial condition (# = 0)

7°(x,s) = up(x,0) — up(x, —s), (x,5) e QA x RF.
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Further, by assuming that z € L'(R™"), the original memory term can be rewritten
as

J w($)A*u(t — s) ds = (J u(s) ds)Azu - J v wu(s)A%n'(s) ds.
0 0 0
Thus, taking for simplicity o =1 — [, u(s) ds, the original problem (1.1)-(1.3)

can be transformed into the equivalent autonomous system

(1.6) Uy + oty + oA u + J v w(s)An'(s) ds + Ju
0

+(p— BIVul3)Au+ f(u) = g(x) in QxR
(1.7) n,=-n,+u, in QxR xR

with boundary conditions

(1.8) u:%:o on [xRY, 7=3'=0 onxR"xR",

and initial conditions

(1.9) u(x,0) =up(x), w(x,0)=wi(x), 7'(x,0)=0, n°(x,5)=1ny(x,s),
where
ug(x) = up(x,0), xeQ,
): (x t)lt 0 xeQ,
( ,8) = up(x,0) —up(x,—s), (x,5)eQxR".

Our analysis is made upon the system (1.6)—(1.9).

The remaining of the paper is organized as follows. In Sec. 2 we fix some
notations and present our assumptions and main results. We also discuss briefly
the methods used to prove the results. Section 3 contains a short account of the
abstract results in the theory of infinite dimensional dynamical systems that will
be used. Section 4 is dedicated to the proof of the results.

2. Assumptions and the main result

We begin with precise hypotheses on the problem (1.6)—(1.9). Concerning
the nonlinear term f : R — R, we assume that

2.1 f(0)=0, |f(u)—f()]<ko(1+[ul” +[v|]")u—v|, VYuveR,

where ky > 0 and

4
(2.2) 0<p< =y fN=5 and p>0 if 1<N <4,
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4
Condition (2.2) implies that HZ(Q) — L*»*1(Q). Also, we say that p = N4

is a critical exponent for the growth of f(u) when N >5. In addition, we
assume that

(2.3) lim inf @ > —A,

|s]— o0

where A; is the best constant in the Poincaré type inequality
2 , 2
J |Au|” dx = 4 J |u|” dx.
Q Q

Further, with respect to the memory component, we assume that

(24) uewmﬂmﬁmﬂ,Luwm=%>m o= 1— 1 >0,

(2.5) Wi(s) <0<pu(s), VseR™,
and that there exists a constant k; > 0 such that
(2.6) W (s) +ku(s) <0, VseR™.

In the sequel we fix some notations on the function spaces that will be used
throughout remainder of this paper. Let

H=Vy=L*Q), V=V =HQ),
equipped with respective inner products and norms,
(u,0) = (Au,Av) and |Jull} = [|Aul],.

As usual (-,-) denotes L>-inner product and | - |, denotes LP-norms.
In order to consider the relative displacement # as a new variable, we
introduce the weighted L2-space

e y) =R = v | [l ds < o .

which is nonempty due to the assumptions (2.4) and (2.5). In addition, it is a
Hilbert space endowed with inner product and norm

o0 o0
() = | 0N 0), 00y Nl = )y = | )1
Finally we introduce the phase space
H =V xHxL(R"; V),
equipped with the norm

2 2 2 2
[1(, 0, Ol5 = [[Aully + ol + 1], v
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In order to obtain the global attractors of the problem (1.6)—(1.9), we need
the following theorem. The well-posedness of the problem (1.6)—(1.9) is given by
Faedo-Galerkin method (see [2, 7, 9, 11, 13]).

THEOREM 2.1. Assume that assumptions (2.1)—(2.6) hold and consider g €
L*(Q).  Then we have
(i) If initial data (uy,u,ny) € #, then problem (1.6)—(1.9) has a weak solution

(w,ur,n) € C([0, T); ), VT >0,
satisfying
ue L*(0,T; V), wueL™(0,T;H), nelL”(0,T;LX(R*;V)).

(i) Let z; = (u',ul,n") be weak solutions of problem (1.6)—(1.9) corresponding
to initial data z;,(0) = (u},ui,n}), i=1,2. Then one has

121(2) = 22(D) [ < €“[121(0) = 22(0)|l , 2€[0, T,

for some constant ¢ > 0.

Remark 2.1. The well-posedness of problem (1.6)—(1.9) given by Theorem
2.1 implies that the one-parameter family of operators S(¢) : # — # defined by

(2.7) S(0) (uo, ur,1m9) = (u(2), us(1),n"), 120,

where (u(?),u,(t),n") is the unique weak solution of the system (1.6)—(1.9), and
satisfies the semigroup properties

S(0)=1 and S(t+s)=S()oS(s), ts=0,

and defines a nonlinear Cy-semigroup, which is locally Lipschitz continuous on
the phase space . Then the dynamics of problem (1.6)—(1.9) can be studied
through the dynamical system (#,S(7)).

Our main result in the present paper is the following.

THEOREM 2.2. Assume that assumptions (2.1)—(2.6) hold and g € L*(Q), then
the dynamical system (H#,S(t)) corresponding to the system (1.6)—(1.9) has a
compact global attractor of C K.

The proof of Theorem 2.2 is given in Sec. 4.

3. Infinite-dimensional dynamical systems

To make the paper more self contained we recall some fundamentals of
the theory of infinite dimensional dynamical systems in mathematical physics.
Below we follow more closely the book by Chueshov and Lasiecka [4] (Chap. 7).
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Let S(f) be a Cjy-semigroup defined in a Banach space #. A global
attractor for (#,S(¢)) is a bounded closed set o/ C # which is fully invariant
and uniformly attracting, that is, S(¢).o/ = .o for all ¢+ > 0 and for every bounded
subset B C

tlim dist (S(#)B, /) = 0,
where dist,, is the Hausdorff semidistance in #. We say that a dynamical
system (A, S(t)) is dissipative if it possesses a bounded absorbing set, that is, a
bounded set # C # such that for any bounded set B C # there exists 15 >0
satisfying

S(t)BC B, Vt=tp.

In addition, we say that (#,S(t)) is asymptotically smooth if for any bounded
positively invariant set B C 2, there exists a compact set K C B such that

}im dist(S(¢)B,K) = 0.
—00

The following result is well-known. See for instance Chueshov and Lasiecka [4]
(Theorem 7.2.3).

THEOREM 3.1. A dissipative dynamical system (A, S(t)) has a compact global
attractor if and only if it is asymptotically smooth.

THEOREM 3.2. Suppose that for any bounded positively invariant set B C A
and for Ye > 0, there exists T = T(e, B) such that

||S(T)X_S(T)y||9{fS£+¢T(xay)7 anyeBa
where ¢ : B x B— R satisfies
(3.1) liminf liminf ¢,(z,,z,) =0,

n—oo m— o0

for any sequence {z,} in B. Then S(t) is asymptotically smooth in .

4. Proof of the main result

In order to prove Theorem 2.2 we will apply the abstract results presented
in Sec. 3. The first step is to show that the dynamical system (#,S(7)) is
dissipative. The second step is to verify the asymptotic smoothness. Then the
existence of a compact global attractor is guaranteed by Theorem 3.1.

In this section, we first prove the existence of the bounded absorbing set
in .

Lemma 4.1, Under assumptions (2.1)—(2.6), the semigroup {S(t)},5, corre-
sponding to problems (1.6)—(1.9) has a bounded absorbing set in H.
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Proof.  We set v =u, +ou and rewrite the equation of (1.6) as follows:

(4.1) v+ (00— O)uy + oA*u + J w(s)A* ' (s) ds + Ju
0

+(p - BIVulP)Au+ f(u) = g(x) in QxR*.

Taking the scalar product in H of (4.1) with v and integrating over Q, we
obtain

dll - o 2 Ay
(42) 3;ywb+gmm2+§wu+J;me>w]+w—®whw

+SollAullz + ((p — BlIVul3) Au, 0) + (n,ur),, y
+5(’77u)y, y T )“5”””% +5(f(u)7 u) = (9,0),

where F(s) = [; f(
Explomng (1. 7) (2 4), (2.6) and Holder inequality, we have

(ot = 8)(tr, 0) = (2= ) oll3 — (ot — 5) (u, v),

Oty = o0 =5 G0+ | 000605, s

o0

! :
=5 Gl 3 | wodnel

1 o0

2 2
=5 Gl =53] W@} a
ki
Edumuy+2

1d
=3 Sl + Sl

L ()% ds

kl ,u5
00n, ) = = Illy === 1wl

((p = BIVul2)Au,0) = ((p = BlIVaul3)Au, u; + Ju)
= (p = BIVull3) (Au, u) + (p = Bl Vul3) (Au, u)

1d
>,i

2
B 2 p
2 dr (m”v””z - m)

B oo P\ 0P’
+5<\/@|w||2 @) T
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By the assumption (2.3) we know that there are 2> 1" >0 and C, such that

(f (u),u) > =4

i/
ul|3 — Cp meas(Q), J F(u) dx > 75||u||§ — Cp meas(Q).
Q

Hence we conclude from (4.2) that

d|l, 5 o 2y Ay Ao 1
@3) ElEIv|2+§|Aullz+5|ullz—3||u||2+§||'7|,,,v

+ (e = 0)|[v]l3 — 6(ex — 8) (u, v) + Jol| Aulf3

2

1 B 2 V4
+3 (== Ivul ——)
2<\/2ﬂ VT
B > P ’ p* ki, 2 ki 2 e 2
+5<ﬁ”v“|z—ﬁ> _ﬁ—’—E”nHy,V_ZHr]H/LV_k—lHAuHZ

+ 20jull3 — A'6||ul|5 — Cod meas(Q) < (g, v).

Moreover using Poincaré inequality in Sec. 2, Hoélder inequality and Young
inequality, when J small enough, such that

Then we obtain
2 ﬂ052 2
44) (e —=9)v[l; — (e =) (u,v) + 5@——k1 (| Aull;
5% o )
_ 2 [oX 2 & 2 Mo 2
> (2= 3) ol (211||Au|2+2||v||2>+5g(1 0 )

L 2 _ M O 2
2(2 6>|v||2+5g< o 2M)nAuu

o
> o3+ So(1 — 8) | Aull3

and
2 2, @ 2
(4.5) (9:0) < llgll2llolly < =~ llgllz + g lloll2-

Combining with (4.4) and (4.5), we deduce from (4.3)
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2
d |1 2 % 2 1 2 1 ﬂ 2 P

— = ~|A — | = _— £
i 31918+ 318w+ 3l + 5 (vl -

2
o ki B P
+gllells +de(t = d)l|Aul + 7 linl v +6<— V3 - )

V2P V2P
2 op?
< Cyd meas(Q) +- lgll> + %
Setting
o = min{Z,Zé(l —5),"2‘}.

We conclude that

d 4 op?
— W) +uW(t) <~ |9l5 +L+2C05 meas(Q) := C,
dt o p
where
5 2
W) = loll3 + ol Al + Il + [ 2= ||Vu)? ——L= ) >o0.
(1) = llvll5 + ellAully + [|nl,, » \/ﬁ” B NET;

By the Gronwall Lemma, we get

W) < W(0)e ™ +%(1 o),
1

In view of (2.4), we conclude

1 C
2 2 2 2 s 1 _
| G, v, 5 = 1 Aully + [[ollz + llnll,, < EW(O)e ut +@(1 —e ),

This shows that any closed ball # = B(0,R) with R > o] is a bounded
absorbing set of (#,S(1)). | xe

Remark 4.1. The existence of a bounded absorbing set implies that for
initial data lying in bounded sets B C J#, the solutions of problem (1.6)—(1.9) are
globally bounded. More precisely, let (u,u,,77) be a solution of (1.6)—(1.9) with
initial data (uo,u;,7,) in a bounded set B, then one has

(4.6) 1(u(2), we(2), )| < Co, V220,

where Cp >0 is a constant depending on B. Lemma 4.1 also ensures the
existence of bounded positively invariant sets.
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We show an essential inequality to our proof of Theorem 2.2.

Lemma 4.2. Under the hypotheses of Theorem 2.2, given a bounded set
Bc o, let zy = (uyup,n) and z; = (v,v,&) be two weak solutions of problem
(1.6)—(1.9) such that z,(0) = (ug,u,n,) and z(0) = (vo,v1,&) are in B. Then

t
47) 120 =20l < G €[ I+ 6 ) b
for any t >0, where C >0 and oy > 0 are constants.

Proof. Let us fix a bounded set BC #. Weset w=u—v and { =5 —¢.
Then (w,{) satisfy

(4.8) Wy + aw, + oA?w + J V u($)A*C'(s) ds + w + (p — ﬂHVuH%)Au
0

— (p = BIVoI})Av + f(u) — f(v) =0,
(49) Ct - _Cs + Wh

with initial condition
w(0) =up —vg, wi(0)=u; —v1, (" =ny—&.

Taking the scalar product in H of (4.8) with ¢ = w, + ow and integrating over Q,
we obtain

d (1 0
@100 (3101 + Z08WIE) + = o)) + oolnl

+((p = BIVul3)Au, 0) = ((p — BIIVo[3)Av, 9) + 2w, )
+&wi), y +oCw), p + (f(u) = f(v),9) = 0.
Noting that similar procedure used in Lemma 4.1 we obtain

(o = 0)(wi, 9) = (2 = a)lloll2 — 0(06 —a)(w,9),

Gy, =14

wv = 2 dZ”CH,u V + ||C||ﬂ Vo

O'
(W), ||<||W Be = llAw]s.
Then
U
@11) (2= o)|p|2 - a(x—o)(w, ) +( 90—) lawl3 = Zliglh + 2 lAw]3.

Combining with (4.11), we deduce from (4.10)
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d

(“12) =

1 2,0 ) 1 2 g 2, @ 2
(§||<o||2+§|Aw||2+5||cn,w + 5 lAwlz + 7 lloll

k
+IE  + (2 = BIVUIDAu, ) = (= BIVOIZ)Av, )

< —i(w,9) = (f(u) = f(v), 9).
From the Young inequality, we obtain

, 22 a
(4.13) =200, 0)| < iz + 5 lloll

AZCO

2 g 2
== IWll20p41) T o]l

where ¢y > 0 is an embedding constant for L2*+1)(Q) — L?(Q).
. . " . . . p 1 1
Using generalized Holder inequality with + +-=1,
g8 quattty 20+ 1) 20p+1) 2
sumption (2.1), estimate (4.6) and Young inequality, we have

as-

\— |, Gt = re0pt0 ax

< ko JQ(l +[u(@]” + @) WD) lp(1)] dx

2 1
< ko(1Q PV i)+ 0112 ) 1 gy Il

< Colwlapillell
szg 2 g 2
< Iwlipeny + 7 llgll2-

Now we estimate ((p — B||Vull3)Au, p) — ((p = B|[Vo[3)Av, ).

Setting
(4.14) ((p = BlIVul2)Au, ) — ((p — BIIVo[l3)Av, )
= |, o= AIvuLZ) 8= o = BIVeIR)atloc)
=1L+ Db,
where

I = JQ(pAu — pAv)p(1) dx,

b= | (AIvulau+ BIVelEacoo) dx.
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We derive from Holder inequality, Young inequality and the estimate (4.6) the
following estimates:

1= |[_p2u— psoloto) ax
Q
< jﬂ 1] |Aw] p(0)] dx
2 1 2
< ol Awl + 1 ol

1
2 2
< w3 + 5w + owl}
2 1 2
wll3 5 w13

1
< 02P2||AW||§ +m\

2, ¢ 2
lwill3 +E||W||2(p+l)a

1
< 02P2||AW||§ +ﬁ\

L] = Ug(ﬂlqulﬁAu — BIVol3A0)0(r) dx

< JQ |(BIVull3Au — BI[Vull380 + B|[Vull 380 — B|[Vo|3A0)0(1)] dx

<p JQ Va3 Aw| [(2)] dx + ﬂL(IIVuH% + |IVol2)|Av] [p(1)] dx

C C
< SB[ awlloto] dx+ (/8| Jaellp(o) ax
Q Q
Cgp C
< 5= l1awlalielly + /5 BllAvlb ol

1
< Cap( 8w + 513 ol

o
202

where we have used the fact that |Av||, = |Au— Awl|, < ||Aull, + || Aw], <

A

Cgfc
2, Cppco 12
Iwellz + === 11wl

< Cpfa®||Aw3 +

C . . o .
73|\Aw||2. Inserting above two inequalities into (4.14) we obtain

(4.15) ((p — BIIVull3)Au, 9) — ((p — BIIVo]3)Av, p)

1 C
> —(6%" + Csfo) | Aw]d - ( n Bﬂ) T

202 202
co . Cppeo 2
- (3‘1‘ 3 ) Wll50p1)-
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Combining with (4.13), (4.14) and (4.15), we deduce from (4.12)
d (1 2, @ > 1o
i (312 + S0l + 3112
oo o o ki
+ [ = o - capo?| Itz + (5= 5) ol + 50012

1 Cpp » (A0 Ch ey CgPey 2
S(m*‘g)”%”z*‘ > T 2T Wwll2(p41)-

We can choose o so small such that

> 0.

% —o*p? — Cyfo’ = a(g— ap? — CBﬂa) >0,

Then we set

AR
N Q

2 2 2
Ew(t) = llolly + ollAwl[l5 + 1]l v
and we have

d 2 2
S Ew(0) +oaEw(t) < Collwielly + wllyp)),

where

and

1 CpB 22%cy 2C2
szaX{—+o_i2ﬁ, CO+TB+60+CBﬂC()}.

By the Gronwall Lemma, we get

t

Ew(t) < Ew(0)e ™ 4+ L e 2 (|lwi ()] + ||w(s)||§(p+1>) ds.
Since
z1() = 22(8) 15 = NAW]5 + will3 + 1IC] 5
= [|Aw]3 + llp — owll3 + 12113
< [|AW[l3 + 2]lgll3 + 202 |wll3 + 1<l »

262 2 2 2
< 1+il [Awlly + 2[lell; + (<]l

2 2 2
< Gs(llolly + ellAwlly + 1K1, ),

2
where C; = max{1+27,2}.
0 oA

75
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Namely
I21(8) — 22(0) |5, < CGEw(2).

Hence
t
I21(1) = 22(0)15 < CEw(0)e ™ + C2C3J e I ()3 + 1w($)1551)) s,
0
we have (4.7) with C = max{GEp(0), C;C5}. O

Lemma 4.3. Under assumptions of Theorem 2.2, the dynamical system
(#,S(t)) is asymptotically smooth.

Proof. Let B be a bounded subset of # positively invariant with respect to
S(#). Denote by Cp several positive constants that are dependent on B but
not on 7. For z},z5 € B, S(¢)z§ = (u(t),u,(¢),n") and S(1)z3 = (v(2),v,(2),&") are
the solutions of (1.6)—(1.9). Then given &> 0, from inequality (4.7), we take
T >0 such that Ce-%27)/2 < ¢ and

(4.16)  [[S(T)zg — S(T)z5 | ¢

T 1/2
<&+ Cp <J0 (l(s) = v($)[1311) + Nl aae(s) = vals)15) dS) ;

where Cp > 0 is a constant which depends only on the size of B.
Now we note that condition (2.2) implies that 2 < 2(p+ 1) < 0 if | <N < 4

if N >5. Taking 0 = N (1 — L) we obtain from
p

d2<?2 1) <
and 2<2(p+1) < 4 1

N -4
interpolation theorem

() = 0(1) I3 ps1) < CIAG(E) = o(2))II3lJu(t) — v(2)]13~" < Chllu(t) — v(r)]3".

Since ||Au(?)||, and ||Av(?)||, are uniformly bounded, there exists a constant
Cp > 0 such that

2 2(1-0
lee(t) = 0(0) 151y < Callu() = (D)3
Then we can rewrite (4.16) as
IS(T)z5 = S(T)zgllr < &+ Pr(zg,53),

with
1/2

T 2(1-0
D7 (z},23) = Cp (JO (lee(s) = o(s) 15" + [l (ae(s) — vas))13) ds)

Let us show that ®7 satisfies (3.1). Indeed, given a sequence of initial data
z, = (uf,uf,n) in B, as before, we write S(¢)z, = (u"(¢),u]'(t),n™"). Since B is
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invariant by S(7), ¢ > 0, it follows that (u”(z),u/(¢),n™") are uniformly bounded
in #. In particular,

(u",ul') is bounded in C([0,T],V x H), T >0.

Then from the compact embedding of V' into H, the Aubins lemma (see Simon
[17] (Corollary 4)) implies that there exist subsequences {u"} and {u*} that
converge strongly in C([0, 7], H). Therefore, we see that

T
fim Jim J () — w210 4 | (5) — " () |2) ds = O,

k—ow l=m )

and consequently (3.1) holds. The asymptotic smoothness property of (#,S(¢))
follows from Theorem 3.2. O

Proof of Theorem 2.2. We note that Lemmas 4.1 and 4.3 imply that
(#,S(1)) is a dissipative dynamical system which is asymptotically smooth.
Then from Theorem 3.1 it has compact global attractor .7 in the phase space
H. O
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