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TOPOLOGICAL TRIVIALITY OF LINEAR DEFORMATIONS

WITH CONSTANT LÊ NUMBERS

Christophe Eyral and Maria Aparecida Soares Ruas

Abstract

Let f ðt; zÞ ¼ f0ðzÞ þ tgðzÞ be a holomorphic function defined in a neighbourhood of

the origin in C� Cn. It is well known that if the one-parameter deformation family

f ftg defined by the function f is a m-constant family of isolated singularities, then f ftg
is topologically trivial—a result of A. Parusiński. It is also known that Parusiński’s

result does not extend to families of non-isolated singularities in the sense that the

constancy of the Lê numbers of ft at 0, as t varies, does not imply the topological

triviality of the family f ftg in general—a result of J. Fernández de Bobadilla. In this

paper, we show that Parusiński’s result generalizes all the same to families of non-

isolated singularities if the Lê numbers of the function f itself are defined and constant

along the strata of an analytic stratification of C� ð f �1
0 ð0ÞV g�1ð0ÞÞ. Actually, it

su‰ces to consider the strata that contain a critical point of f .

1. Introduction

Let U be an open neighbourhood of the origin in Cn (nb 2), D an open disc
about the origin in C, ðt; zÞ :¼ ðt; z1; . . . ; znÞ linear coordinates for C� Cn, and

f : ðD�U ;D� f0gÞ ! ðC; 0Þ; ðt; zÞ 7! ftðzÞ :¼ f ðt; zÞ;

a holomorphic function. (This notation implies f ðt; 0Þ ¼ 0 for all t A D.) We
assume that the dimension of the critical locus Sft of ft at 0 is b 0 (i.e., ft has
a critical point at 0) and constant as t varies. As usual, we write Vð ftÞ for the
hypersurface f �1

t ð0Þ defined by the function ft. In [9], Lê Dũng Tráng and C. P.
Ramanujam showed that if the one-parameter deformation family f ftg defined
by f is a m-constant family of isolated singularities and if, furthermore, n0 3,
then the corresponding family of hypersurfaces fVð ftÞg is topologically trivial.
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That is, there exists a continuous function j : ðD�U ;D� f0gÞ ! ðCn; 0Þ defined
in a neighbourhood of the origin ð0; 0Þ A C� Cn such that, for all su‰ciently
small t, there is an open neighbourhood Ut JU of 0 A Cn such that the map
jt : ðUt; 0Þ ! ðjðftg �UtÞ; 0Þ defined by jtðzÞ :¼ jðt; zÞ is a homeomorphism
sending Vð f0ÞVUt onto Vð ftÞV jtðUtÞ. (We recall that a family of isolated
singularities f ftg is said to be m-constant if, for all su‰ciently small t, the Milnor
number of ft at 0 is independent of t.) Under the same assumption, J. G.
Timourian [18] showed that the family of functions f ftg itself is topologically
trivial too—that is, f0 ¼ ft � jt for all small t. In both cases, the restriction
n0 3 comes from the use of the h-cobordism theorem. In [14], D. Massey asked
whether the constancy of the Lê numbers l i

ft; z
ð0Þ of ft at 0 with respect to the

coordinates z, as t varies, is strong enough to imply that the local, ambient
topological type of the hypersurfaces Vð ftÞ remains constant in the case where
f ftg is a family of non-isolated singularities. (We recall that the Lê numbers
generalize to non-isolated singularities the data given by the Milnor number for
an isolated singularity.) In [5], J. Fernández de Bobadilla answered positively
this question when nb 5 and each ft has an 1-dimensional critical set—actually,
he showed that the family of functions f ftg itself is topologically trivial. On the
other hand, he showed in [4] that, in general, for higher-dimensional critical sets,
the constancy of the Lê numbers l i

ft; z
ð0Þ does not imply the constancy of the

topological type, even for families which are linear in t—that is, of the form
ftðzÞ ¼ f0ðzÞ þ tgðzÞ, where g : ðU ; 0Þ ! ðC; 0Þ is a holomorphic function. In
[17], A. Parusiński proved that if f ftg is a m-constant linear deformation family of
isolated singularities, then it is topologically trivial without any restriction on the
integer n. Parusiński’s approach does not use the h-cobordism theorem. His
result is a consequence of Theorem 1.1 below—also due to Parusiński [17]—and
a theorem of Lê Dũng Tráng and K. Saito [10] which says that, for a family of
isolated singularities, the t-axis D� f0g satisfies Thom’s af condition at the origin
with respect to the ambient stratum if this family is m-constant.

Theorem 1.1 (Parusiński). Suppose that f is of the form f ðt; zÞ ¼ f0ðzÞþ
tgðzÞ. If, in a neighbourhood of the origin,

jgðzÞjf kgrad f ðt; zÞky as ðt; zÞ ! D� ð f �1
0 ð0ÞV g�1ð0ÞÞ;ð1:1Þ

then the family f ftg is topologically trivial.

Note that, in this theorem, the singularities may be non-isolated.
As usual, grad f ðt; zÞ is the gradient vector of f at ðt; zÞ. If hðt; zÞ denotes

the real number kgrad f ðt; zÞky, then (1.1) means

h�1ð0ÞJD� g�1ð0Þ;

in a neighbourhood of D� ð f �1
0 ð0ÞV g�1ð0ÞÞ, and

lim
s!0

g � g2ðsÞ
h � gðsÞ ¼ 0
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for any holomorphic curve g : C ! D�U , s 7! gðsÞ :¼ ðg1ðsÞ; g2ðsÞÞ, not con-
tained in the critical locus Sf of f in a neighbourhood of gð0Þ, with gð0Þ A
D� ð f �1

0 ð0ÞV g�1ð0ÞÞ.
In the present paper, we show that any linear deformation f of a (possibly

non-isolated) hypersurface singularity f0 is topologically trivial if the Lê numbers
of f are defined and constant along the strata of an analytic stratification of
D� ð f �1

0 ð0ÞV g�1ð0ÞÞ. Actually, it su‰ces the Lê numbers are constant along
the strata that contain a point of Sf . See Theorem 4.1 below. The proof is a
combination of Parusiński’s theorem (Theorem 1.1) and a generalization of the
Lê-Saito theorem to non-isolated singularities due to D. Massey (cf. Theorem
3.2). But before to get to the heart of this paper, let us briefly remind the
definition of the Lê numbers.

2. Lê numbers

The Lê numbers generalize to non-isolated hypersurface singularities the data
given by the Milnor number for an isolated singularity. They were introduced
about 25 years ago by D. Massey in [12, 13, 14, 15]. They are intersection
numbers of certain analytic cycles—so-called Lê cycles—with certain a‰ne sub-
spaces. As the definition of the Lê cycles involves the notion of gap sheaf, we
shall start this section by explaining what ‘analytic cycle’ and ‘gap sheaf ’ mean.
We follow the presentation given in [12, 13, 14, 15].

2.1. Analytic cycles. Let ðX ;OX Þ be a complex analytic space. An an-
alytic cycle in X is a finite formal sum

P
mV ½V �, where the V ’s are distinct

irreducible analytic subsets of X and the mV ’s are non-zero integers. The
analytic cycle associated to X is the cycle ½X � :¼

P
mV ½V � obtained when the V ’s

run over all the irreducible components of X and when the mV ’s are defined as
follows. Take a point x A V , and consider the germ Vx of V at x. Then, if V 0

x

is any irreducible germ component of Vx, the integer mV is defined to be the
length of the local ring of X at x localized at the prime ideal corresponding
to V 0

x . Of course, this definition is independent of the choices of the point x
and the component V 0

x . (Hereafter, we shall always use brackets ½�� to denote
analytic cycles.)

If V and W are irreducible analytic subsets of a connected complex analytic
manifold M, then we say that V and W intersect properly in M if, for each
irreducible component Z of V VW , we have:

codimM Z ¼ codimM V þ codimM W :

When this is the case, the intersection product of ½V � and ½W � in M (denoted
by ½V � � ½W �) is characterized axiomatically by four properties: openness, trans-
versality, projection and continuity (see [15, Appendix A] and [7, Example 11.4.4]
for details). Now, if

P
mi½Vi� and

P
nj½Wj� are two cycles in M intersecting
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properly (i.e., Vi and Wj intersect properly for all i, j), then we define their
intersection product asX

mi½Vi�
� �

�
X

nj½Wj �
� �

:¼
X

minjð½Vi� � ½Wj�Þ:

Finally, if C1 and C2 are two cycles intersecting properly and if C1 � C2 ¼P
pk½Zk�; then the intersection number of C1 and C2 at Zk (denoted by

ðC1 � C2ÞZk
) is defined to be the integer pk. In other words, ðC1 � C2ÞZk

represents
the number of times Zk occurs in the intersection, counted with multiplicity.

2.2. Gap sheaves. Let again ðX ;OX Þ be a complex analytic space, W JX
an analytic subset of X , and I a coherent sheaf of ideals in OX . As usual, we
shall denote by VðIÞ the analytic space defined by the vanishing of I. At each
point x A VðIÞ, we want to consider scheme-theoretically those components of
VðIÞ which are not contained in W . For this purpose, we look at a minimal
primary decomposition of the stalk Ix of I in the local ring OX ;x, and we
consider the ideal Ix:W in OX ;x consisting of the intersection of those (possibly
embedded) primary components Q of Ix such that VðQÞUW . If S is the
multiplicatively closed set

OX ;xn6P;

where the union is taken over all the associated prime ideals P of OX ;x=Ix such
that VðPÞUW , then

Ix:W ¼ S�1Ix VOX ;x;

where S�1Ix is the ring of fractions of Ix with denominators in S. In particular,
the definition of Ix:W does not depend on the choice of the minimal primary
decomposition of Ix. Now, if we perform the operation described above at the
point x simultaneously at all points of VðIÞ, then we obtain a coherent sheaf of
ideals called a gap sheaf and denoted by I:W . Hereafter, we shall denote by
VðIÞ:W the scheme (i.e., the complex analytic space) VðI:WÞ defined by the
vanishing of the gap sheaf I:W .

2.3. Lê cycles and Lê numbers. Now, we are ready to define the Lê cycles
and the Lê numbers. Consider a holomorphic function h : ðU ; 0Þ ! ðC; 0Þ,
where U is an open neighbourhood of 0 in Cn, and fix a system of linear
coordinates z ¼ ðz1; . . . ; znÞ for Cn. Let Sh be the critical locus of h. For
0a ia n� 1, the i-th (relative) polar variety of h with respect to z is the scheme

G i
h; z :¼ V

qh

qziþ1
; . . . ;

qh

qzn

� �
:Sh:

Clearly, for i ¼ 0, G0
h; z ¼ j. Also, it can be shown easily that

G iþ1
h; z VV

qh

qziþ1

� �� �
:Sh ¼ G i

h; z
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as schemes, and therefore, all the components of the cycle

G iþ1
h; z VV

qh

qziþ1

� �� �
� ½G i

h; z�ð2:1Þ

are contained in Sh. The cycle (2.1) is called the i-th Lê cycle of h with respect
to z. It is denoted by ½L i

h; z�.

Definition 2.1. The i-th Lê number l i
h; zðpÞ of h at p ¼ ðp1; . . . ; pnÞ with

respect to the coordinates system z is defined to be the intersection number

l i
h; zðpÞ :¼ ð½L i

h; z� � ½Vðz1 � p1; . . . ; zi � piÞ�Þp;ð2:2Þ

provided that this intersection is 0-dimensional or empty at p; otherwise, we say
that l i

h; zðpÞ is undefined.

For i ¼ 0, the relation (2.2) means

l0h; zðpÞ ¼ ð½L0
h; z� �UÞp ¼ G1

h; z VV
qh

qz1

� �� �
p

:

The last term is also equal to the intersection number

½G1
h; z� � V

qh

qz1

� �� �� �
p

;

whenever G1
h; z is 1-dimensional at p.

For dimp Sh < ia n� 1, l i
h; zðpÞ ¼ 0. For this reason, we usually only

consider the Lê numbers

l0h; zðpÞ; . . . ; l
dimp Sh

h; z ðpÞ:

If p is an isolated singularity of h, then l0h; zðpÞ (which is the only possible
non-zero Lê number) equals the Milnor number of h at p.

We conclude this section with the definition of the polar numbers.

Definition 2.2. The i-th polar number g ih; zðpÞ of h at p ¼ ðp1; . . . ; pnÞ with
respect to the coordinates system z is defined to be the intersection number

g ih; zðpÞ :¼ ð½G i
h; z� � ½Vðz1 � p1; . . . ; zi � piÞ�Þp;

provided that this intersection is 0-dimensional or empty at p; otherwise, we say
that g ih; zðpÞ is undefined.

Note that g0h; zðpÞ is always defined and equal to 0.

Remark 2.3. For a generic choice of coordinates z, for any point p A VðhÞ
near 0 and for any 0a ia dimp Sh, the Lê number l i

h; zðpÞ and the polar number

g ih; zðpÞ exist (cf. [14, Proposition 10.2 and Theorem 1.28]).
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3. lðt; zÞ-constant linear deformations and Thom’s af condition

Now, let us come back to the situation described in Section 1, where U is
an open neighbourhood of 0 in Cn, D an open disc about 0 in C, ðt; zÞ linear
coordinates for C� Cn, and f ðt; zÞ a holomorphic function on D�U such that
f ðt; 0Þ ¼ 0 and dim0 Sft is b 0 and constant as t varies. Furthermore, in this
section, we suppose that f is linear in t, that is,

f ðt; zÞ ¼ f0ðzÞ þ tgðzÞ:

By shrinking D and U , we may assume Sf J f �1ð0Þ. In particular, this implies
Sf JD� ð f �1

0 ð0ÞV g�1ð0ÞÞ.
We fix an arbitrary analytic stratification S of f �1

0 ð0ÞV g�1ð0Þ.

Definition 3.1. We say that the deformation f is lðt; zÞ-constant with respect
to the stratification S if, for any point q0 :¼ ða0; p0Þ in the critical locus Sf of
f and for any integer i, 0a ia dimq0 Sf , the i-th Lê number l i

f ; ðt; zÞðqÞ of f at

q with respect to the coordinates ðt; zÞ is defined and independent of q for all
q :¼ ða; pÞ A D� Sðp0Þ near q0, where Sðp0Þ is the stratum of S containing p0.

In [14, Corollary 6.6], D. Massey proved the following theorem. (Actually,
the statement given by Massey is much more general than the one given below,
which is restricted to our situation.)

Theorem 3.2 (Massey). If the deformation f is lðt; zÞ-constant with respect to
the stratification S, then, for any q0 :¼ ða0; p0Þ A Sf , the submanifold D� Sðp0Þ of
D� ð f �1

0 ð0ÞV g�1ð0ÞÞ containing q0 satisfies Thom’s af condition at q0 with respect
to the ambient stratum. That is, if fqkg is a sequence of points in ðD�UÞnSf
such that

qk ! q0 and Tqk
Vð f � f ðqkÞÞ ! T ;

then Tq0ðD� Sðp0ÞÞJT.

As usual, TqkVð f � f ðqkÞÞ denotes the tangent space at qk to the level
hypersurface in C� Cn defined by f ðt; zÞ ¼ f ðqkÞ, and Tq0ðD� Sðp0ÞÞ the tangent
space at q0 ¼ ða0; p0Þ to D� Sðp0Þ.

Lemma 3.3. Let q0 :¼ ða0; p0Þ be any point in Sf , and let Sðp0Þ be the
stratum of S containing p0. If D� Sðp0Þ satisfies Thom’s af condition at q0 with
respect to the ambient stratum, then

jgðzÞjf kgrad f ðt; zÞky as ðt; zÞ ! ða0; p0Þ:

Proof. First, we observe that if D� Sðp0Þ satisfies Thom’s af condition at
q0 with respect to the ambient stratum, then, for any holomorphic curve

g : ðC; 0Þ ! ðD�U ; q0Þ; s 7! gðsÞ :¼ ðg1ðsÞ; g2ðsÞÞ
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not contained in Sf in an arbitrarily small neighbourhood of q0, we have

ord
qf

qt
� g

� �
> inf

1aian
ord

qf

qzi
� g

� �
;ð3:1Þ

where ordð�Þ is the order in s at 0. To show this, we proceed as in [3, Lemma 2.2].
Suppose there is a holomorphic curve g for which the condition (3.1) does not
hold. Then, the limit, as s ! 0, of the projective class of

grad f ðgðsÞÞ ¼ qf

qt
ðgðsÞÞ; qf

qz1
ðgðsÞÞ; . . . ; qf

qzn
ðgðsÞÞ

� �

has the form ½w : v1 : � � � : vn� with w0 0, and therefore D� Sðp0Þ does not
satisfy Thom’s af condition along the curve g—a contradiction. Now, as f is
linear in t,

qf

qt
� gðsÞ ¼ g � g2ðsÞ;

and hence, by (3.1),

jg � g2ðsÞjf kgrad f ðgðsÞÞky as s ! 0:

This completes the proof of Lemma 3.3. r

4. Topological triviality of lðt; zÞ-constant linear deformations

We still assume that f is of the form f ðt; zÞ ¼ f0ðzÞ þ tgðzÞ, and we still
denote by S any given analytic stratification of f �1

0 ð0ÞV g�1ð0Þ.

Theorem 4.1. Under the above assumptions, if f is lðt; zÞ-constant with
respect to the stratification S, then the family f ftg is topologically trivial.

Proof. By Theorem 1.1, it su‰ces to show that, for any q A D� ð f �1
0 ð0ÞV

g�1ð0ÞÞ,
jgðzÞjf kgrad f ðt; zÞky as ðt; zÞ ! q:

By Theorem 3.2 and Lemma 3.3, this is true for any point q in Sf . Actually,
this is also true for any point q A ðD� ð f �1

0 ð0ÞV g�1ð0ÞÞÞnSf . Indeed, for such a
point q ¼ ða; pÞ, there exist an index i0, 1a i0 a n, such that ðqf =qzi0ÞðqÞ0 0,
while ðqf =qtÞðqÞ ¼ gðpÞ ¼ 0. r

To show that Theorem 4.1 is not vacuously true, let us give an example
where its assumptions are satisfied. Let U1 be an open neighbourhood of 0 A C3,
D an open disc about 0 A C, and let F : D�U1 ! C be the Briançon-Speder
example [1]—that is, the family of isolated singularities defined by

ðt; zÞ :¼ ðt; z1; z2; z3Þ 7! Fðt; zÞ :¼ z53 þ z72z1 þ z151 þ tz62z3:

195topological triviality of linear deformations with constant lê numbers



Now, pick an open neighbourhood U2 of 0 A C and consider the function
f : D�U2 �U1 ! C defined by

ðt;w; zÞ 7! f ðt;w; zÞ :¼ Fðt; zÞ:

This example is already used in [11, §5]. Clearly, the family f ftg defined by f
(i.e., the family of functions given by ftðw; zÞ :¼ f ðt;w; zÞ) is a family of line
singularities, and we have Sf ¼ D�U2 � f0g and Sft ¼ U2 � f0g.

By [14, Proposition 10.2 and Theorem 1.28], for a generic choice of linear
coordinates ðt;w; zÞ, for any point ða; b; pÞ A Vð f Þ in a neighbourhood of the
origin and for any 0a ia dimða;b;pÞ Sf ¼ 2, the Lê number l i

f ; ðt;w; zÞða; b; pÞ and

the polar number g if ; ðt;w; zÞða; b; pÞ exist. Hereafter, we fix such a generic coor-
dinates system. Then, as Sf V ðfag �U2 �U1Þ ¼ fag � Sfa, Proposition 1.21 of
[14] applies and shows that

l1fa; ðw; zÞðb; pÞ ¼ l2f ; ðt;w; zÞða; b; pÞ;
g1fa; ðw; zÞðb; pÞ ¼ g2f ; ðt;w; zÞða; b; pÞ;
l0fa; ðw; zÞðb; pÞ ¼ g1f ; ðt;w; zÞða; b; pÞ þ l1f ; ðt;w; zÞða; b; pÞ:

8>><
>>:ð4:1Þ

Furthermore, as Sfa V ðfbg �U1Þ ¼ fbg � Sð faÞb and as l i
fa; ðw; zÞðb; pÞ and

g ifa; ðw; zÞðb; pÞ exist for any ðb; pÞ A Vð faÞ in a neighbourhood of the origin and for

any 0a ia 1, Proposition 1.21 of [14] also shows that

l0ð faÞb; zðpÞ ¼ g1fa; ðw; zÞðb; pÞ þ l1fa; ðw; zÞðb; pÞ;ð4:2Þ

where ð faÞbðzÞ :¼ faðb; zÞ ¼ FaðzÞ. Since Fa has an isolated singularity at the
origin, the Lê number l0ð faÞb; zð0Þ is nothing but the Milnor number of Fa at 0,

which is constant as a varies. (Note that l0ð faÞb; zðpÞ ¼ 0 for p0 0.)

Now, as the Briançon-Speder family fFtg is m-constant, the t-axis D� f0g
satisfies Thom’s aF condition at ð0; 0Þ with respect to the ambient stratum
ðD�U1ÞnSF (cf. [10]). Then, the proof of Lemma 44 of [5] shows that, in a
neighbourhood of the origin in D�U1,

SF :¼ V
qF

qt
;
qF

qz1
; . . . ;

qF

qzn

� �
¼ V

qF

qz1
; . . . ;

qF

qzn

� �
:

This, in turn, implies that, in a neighbourhood of the origin in D�U2 �U1,

Sf ¼ V
qf

qw
;
qf

qz1
; . . . ;

qf

qzn

� �
:

It follows that the 1-st polar variety G1
f ; ðt;w; zÞ is empty, and hence,

g1f ; ðt;w; zÞða; b; pÞ :¼ ð½G1
f ; ðt;w; zÞ� � ½Vðt� aÞ�Þða;b;pÞ ¼ 0ð4:3Þ
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and

l0f ; ðt;w; zÞða; b; pÞ :¼ G1
f ; ðt;w; zÞ VV

qf

qt

� �� �
ða;b;pÞ

¼ 0;ð4:4Þ

for any ða; b; pÞ A Vð f Þ. Moreover, as

Sfa ¼ V
qfa

qz1
; . . . ;

qfa

qzn

� �
JU2 �U1;

G1
fa; ðw; zÞ is empty, and hence,

g1fa; ðw; zÞðb; pÞ ¼ l0fa; ðw; zÞðb; pÞ ¼ 0;ð4:5Þ

for any ðb; pÞ A Vð faÞ.
Combining (4.1)–(4.5) gives l0f ; ðt;w; zÞða; b; pÞ ¼ l1f ; ðt;w; zÞða; b; pÞ ¼ 0 and

l2f ; ðt;w; zÞða; b; pÞ ¼
mFa

ð0Þ if ða; b; pÞ A Sf ;

0 if ða; b; pÞ A Vð f ÞnSf ;

�

where mFa
ð0Þ is the Milnor number of Fa at 0. It follows that the deformation f

is lðt;w; zÞ-constant with respect to the analytic stratification of f �1
0 ð0ÞV g�1ð0Þ con-

sisting in the following two strata: U2 � f0g and ð f �1
0 ð0ÞV g�1ð0ÞÞnðU2 � f0gÞ.

(Here, f0ðw; zÞ ¼ z53 þ z72z1 þ z151 and gðw; zÞ ¼ z62z3.) Therefore, Theorem 4.1
applies. (Of course, in this special case, since the family fFtg is topologically
trivial, we knew from the beginning that the family f ftg must be topologically
trivial too.)

By the Thom-Mather first isotopy theorem [16, 19], we know that if hðt; zÞ is
a holomorphic function in a neighbourhood of the origin in C� Cn and if there
exists a Whitney stratification of the hypersurface VðhÞ such that the t-axis can be
chosen as a stratum, then the family of hypersurfaces fVðhtÞg is topologically
trivial. The Briançon-Speder family fFtg is a topologically trivial family such
that the t-axis (in D�U1) cannot be chosen as a Whitney stratum of VðF Þ
(cf. [1]). As it is explained by D. Massey in [11, §5], the t-axis (in D�U2 �U1)
cannot be chosen as a Whitney stratum of Vð f Þ either, where f is as in the
above example. Thus, this example shows that the assumptions in Theorem 4.1
are not so strong in the sense that they do not imply the Whitney conditions
along the t-axis.

5. lðt; zÞ-constancy along the t-axis

Now, let us come back to the general setting described in Section 3 and at
the beginning of Section 4. If f is lðt; zÞ-constant with respect to S, then, clearly,
it is also lðt; zÞ-constant along the t-axis in a neighbourhood of the origin—that
is, for all 0a ia dimð0;0Þ Sf , the i-th Lê number l i

f ; ðt; zÞða; 0Þ of f at ða; 0Þ with

respect to the coordinates ðt; zÞ is defined and independent of a for all a near 0.
Obviously, the converse is not true. Then, we may ask what is the relationship
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between the lðt; zÞ-constancy along the t-axis in a neighbourhood of the origin and
the constancy of the Lê numbers l i

ft; z
ð0Þ of ft at 0, with respect to the coordinates

z, as t varies. It turns out that they are equivalent. Essentially, this is proved
in [14, Proposition 1.21], [5, Lemma 44 and the relations (60) and (61)] and
[2, Theorem 4.1 and Corollary 4.2].

Theorem 5.1. Suppose that, for all a near 0 and all 0a ia dimða;0Þ Sf , the
Lê number l i

f ; ðt; zÞða; 0Þ and the polar number g if ; ðt; zÞða; 0Þ exist. Then, the fol-
lowing two assertions are equivalent.

(1) The deformation f is lðt; zÞ-constant along the t-axis in a neighbourhood
of the origin.

(2) The family f ftg is lz-constant.

Here, we say that f ftg is lz-constant if for all 0a ia dim0 Sf0 ¼ dim0 Sft,
the i-th Lê number l i

ft; z
ð0Þ is defined and independent of t, for all t near 0.

In this theorem, we do not assume that f is linear in t.
Note that, by [14, Proposition 10.2 and Theorem 1.28], for a generic choice

of coordinates ðt; zÞ, for any a near 0 and for any 0a ia dimða;0Þ Sf , the Lê
number l i

f ; ðt; zÞða; 0Þ and the polar number g if ; ðt; zÞða; 0Þ exist.
Theorem 5.1 is not essential for our purpose. However, it may help to

understand why the lz-constancy is not enough to get the topological triviality.
To obtain the topological triviality, we need to control the Lê numbers not only
on the t-axis but also all around Sf within D� ð f �1

0 ð0ÞV g�1ð0ÞÞ.

Proof of Theorem 5.1. If f is lðt; zÞ-constant along the t-axis in a neigh-
bourhood of the origin, then, by [14, Corollary 6.6], the t-axis D� f0g satisfies
Thom’s af condition at the origin with respect to the ambient stratum. Hence,
the proof of Lemma 44 of [5] shows that, in a neighbourhood of the origin,

Sf :¼ V
qf

qt
;
qf

qz1
; . . . ;

qf

qzn

� �
¼ V

qf

qz1
; . . . ;

qf

qzn

� �
:ð5:1Þ

In particular, for all a small enough, Sf V ðfag � CnÞ ¼ fag � Sfa, and hence, by
[14, Propositions 1.16 and 1.21],

l i
fa; z

ð0Þ ¼ l iþ1
f ; ðt; zÞða; 0Þ for 1a ia dimða;0Þ Sf � 1 ¼ dim0 Sfa;

l0fa; zð0Þ ¼ g1f ; ðt; zÞða; 0Þ þ l1f ; ðt; zÞða; 0Þ:

(
ð5:2Þ

Furthermore, (5.1) also shows that the 1-st polar variety G1
f ; ðt; zÞ is empty.

Therefore,

g1f ; ðt; zÞða; 0Þ :¼ ð½G1
f ; ðt; zÞ� � ½Vðt� aÞ�Þða;0Þ ¼ 0:

It follows immediately that the family f ftg is lz-constant.
Conversely, if the family f ftg is lz-constant, then, by [14, Theorem 6.5], the

t-axis satisfies Thom’s af condition at the origin with respect to the ambient
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stratum. Hence, as above, (5.1) holds and G1
f ; ðt; zÞ ¼ j. Therefore, for all a

su‰ciently small,

g1f ; ðt; zÞða; 0Þ ¼ 0

and

l0f ; ðt; zÞða; 0Þ :¼ G1
f ; ðt; zÞ VV

qf

qt

� �� �
ða;0Þ

¼ 0:

Furthermore, Propositions 1.16 and 1.21 of [14] apply and show that (5.2)
holds. It follows that f is lðt; zÞ-constant along the t-axis in a neighbourhood of
the origin. r

As mentioned in the introduction, J. Fernández de Bobadilla gave in [4] an
example of a lz-constant family which is not topologically trivial. This family is
given by

f ðt; z1; . . . ; z5Þ :¼ z3z
2
4 � z3z

2
5 þ 2z2z4z5 þ tz1z

2
5 :

Let us show that this family does not satisfy the hypotheses of Theorem 4.1.
More precisely, if p0 :¼ ðp1; 0; 0; 0; 0Þ with p1 0 0, then we claim that for any
analytic stratification S of f �1

0 ð0ÞV g�1ð0Þ,

l3f ; ðt; zÞð0; p0Þ0 l3f ; ðt; zÞða; p0Þð5:3Þ

for any a0 0, where f0ðz1; . . . ; z5Þ ¼ z3z
2
4 � z3z

2
5 þ 2z2z4z5 and gðz1; . . . ; z5Þ ¼

z1z
2
5 . In particular, f is not lðt; zÞ-constant with respect to S. To compute the

Lê numbers (5.3), we first observe that the 4-th and 3-rd polar varieties of f with
respect to the coordinates ðt; zÞ are given by

G4
f ; ðt; zÞ ¼ Vðz3z4 þ z2z5; z2z4 þ z5ðtz1 � z3Þ; z3ðtz1 � z3Þ � z22Þ;

G3
f ; ðt; zÞ ¼ Vð2z2 þ tz1; z3 þ z2; z4 � z5ÞUVð2z2 � tz1; z3 � z2; z4 þ z5Þ:

Thus the 3-rd Lê cycle of f with respect to ðt; zÞ is given by

½L3
f ; ðt; zÞ� ¼ 2½Vðz4; z5; z3ðtz1 � z3Þ � z22Þ�:

It follows that l3f ; ðt; zÞð0; p0Þ ¼ 4 while l3f ; ðt; zÞða; p0Þ ¼ 2 for any a0 0.

To conclude, let us mention some interesting features of lz-constant families.
Certainly, the most important one, due to D. Massey [13, 14, 15], says that, for
a generic choice of coordinates z, if the family f ftg is lz-constant and if
dim0 Sft a n� 4, then the di¤eomorphism type of the Milnor fibration of ft
at the origin is independent of t, for all t small. (When dim0 Sft ¼ 0—in which
case the lz-constancy is equivalent to the m-constancy—the result was proved by
Lê Dũng Tráng and C. P. Ramanujam [9].)

Finally, related to the Zariski multiplicity conjecture [21] for non-isolated
singularities, the authors showed in [3] that if f is linear in t and if the family
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f ftg is lz-constant, then the order of ft at 0 is independent of t, for all small t.
(When dim0 Sft ¼ 0, the result was first proved by G.-M. Greuel [8] and D.
Trotman [20].)
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200 christophe eyral and maria aparecida soares ruas



[21] O. Zariski, Some open questions in the theory of singularities, Bull. Amer. Math. Soc. 77

(1971), 481–491.

Christophe Eyral

Instytut Matematyczny

Polskiej Akademii Nauk
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