CORRECTION TO "SURFACES WITH PARALLEL MEAN CURVATURE VECTOR IN $P^{2}(C) "$

Katsuei Kenmotsu and Takashi Ogata

Abstract

We describe a condition under which the claims in the paper cited above hold.

1. Correction

It has been pointed out by Hirakawa [3] that a previous paper by Ogata [5] contained a mistake. In fact, the claim made in line 3, page 401 in [5], which states that " λ is a real-valued function defined on U," is not generally correct. We now give a geometric condition for the claim to hold. We follow the notation used in [5].

Lemma. Suppose that the immersion in [5] satisfies a condition $a=\bar{a}$ on M. Then, there exists a complex coordinate w on a neighborhood of a point of M such that $\phi=\mu d w$, where μ is real valued.

Using this lemma, we can state the following:
Correction. For the claims given in [5] to hold, we add the condition $a=\bar{a}$ to the immersion.

Since Kenmotsu and Zhou [4] and Hirakawa [2] used the results given by Ogata [5], those papers also need the additional assumption $a=\bar{a}$ for the immersion.

2. Proof of Lemma

Set $\phi=\lambda d z$, where λ is a non-zero complex valued function on a simply connected domain U with complex coordinate z. Although the lemma can be

[^0]proved using (2.4) in [5], we employ a slightly modified formula here. By (2.4) of [5], we have
\[

$$
\begin{align*}
& \lambda_{\bar{z}}=-\lambda \bar{\lambda}(\bar{a}-b) \cot \alpha, \tag{2.1}\\
& \alpha_{\bar{z}}=\bar{\lambda}(\bar{a}+b), \tag{2.2}\\
& a_{\bar{z}}=\bar{\lambda}\left(2 a(\bar{a}-b)+\frac{3 \rho}{2} \sin ^{2} \alpha\right) \cot \alpha, \tag{2.3}\\
& c_{z}=2 \lambda c(a-b) \cot \alpha . \tag{2.4}
\end{align*}
$$
\]

We note that (2.8) in [5] is not generally correct.
First, we prove the lemma for the case in which α is constant on M. By (2.2), we have $a=-b=\bar{a}=$ constant. By (2.6) of $[5],|c|^{2}$ is constant. Set $c=$ $|c| \exp (i \theta)$, where θ is a real-valued function on U. Then, using (2.4), we have $i \theta_{z}=-4 b \lambda \cot \alpha$. If we take the partial derivative with respect to \bar{z}, then (2.1) can be used to obtain $8 b^{2} \lambda \bar{\lambda} \cot ^{2} \alpha+i \theta_{z \bar{z}}=0$. Since $\theta_{z \overline{\bar{i}}}$ is real valued, this implies $\cot \alpha=0$. Therefore, we have $\lambda_{\bar{z}}=0$ by (2.1). Hence, λ is holomorphic. Define the complex coordinate w as $w=\int \lambda d z$. Then, we have $\phi=\lambda d z=d w$, which proves the lemma for the case $\alpha=$ constant.

When α is not constant, we need the following claim to prove the lemma:

Claim. Suppose that $a=\bar{a}$ on M. If α is not constant, then a is a function of α.

Proof. By the assumption, we see $a_{z}=(\bar{a})_{z}=\overline{a_{\bar{z}}} . \quad$ By (2.2) and (2.3), we have

$$
\begin{aligned}
d \alpha & =(a+b)(\phi+\bar{\phi}) \\
d a & =\left(2 a(a-b)+\frac{3}{2} \rho \sin ^{2} \alpha\right) \cot \alpha \cdot(\phi+\bar{\phi}) .
\end{aligned}
$$

Canceling out $(\phi+\bar{\phi})$ in the above formulas, we have a differential equation in a for α, which proves the claim.

Proof of Lemma. Using the above claim, we write $a=a(\alpha)$, and define a real-valued function $F(\alpha)$ as

$$
F(\alpha)=\frac{(a(\alpha)-b)^{2}+3 \rho / 2 \sin ^{2} \alpha}{(a(\alpha)+b)^{2}} \cot \alpha
$$

Taking the partial derivative of (2.2) with respect to z and using (2.1) and (2.3), we have a second-order partial differential equation $\alpha_{z \bar{z}}-F(\alpha) \alpha_{z} \alpha_{\bar{z}}=0$. It follows
that $\left(\alpha_{z} \exp \left(-\int F(\alpha) d \alpha\right)\right)_{\bar{z}}=0$. Hence, there exists a holomorphic function $G(z)$ on U such that $\alpha_{z}=G(z) \exp \left(\int F(\alpha) d \alpha\right)$. Setting

$$
w=\int G(z) d z, \quad \mu=\frac{\exp \left(\int F(\alpha) d \alpha\right)}{a(\alpha)+b},
$$

the lemma is proved by the conjugate of (2.2).
Remark. Briefly, we explain the geometric meanings for these quantities used in (2.1)-(2.4). The real valued function α is the Kaehler angle of the immersion, the positive number b is two times of the length of the mean curvature vector, and the complex valued functions a and c determine the second fundamental tensors of the immersion. The ambient space is a complex 2-dimensional Kaehler manifold of constant holomorphic sectional curvature 4ρ. These were first introduced in Chern and Wolfson [1].

Refrrences

[1] S. S. Chern and J. G. Wolfson, Minimal surfaces by moving frames, Amer. J. Math. 105 (1983), 59-83.
[2] S. Hirakawa, On the overdetermined system about surfaces with parallel mean curvature vector field, Kodai Math. J. 25 (2002), 246-253.
[3] S. Hirakawa, Constant Gaussian curvature surfaces with parallel mean curvature vector in two-dimensional complex space forms, Geom. Dedicata 118 (2006), 229-244.
[4] K. Kenmotsu and D. Zhou, The classification of the surfaces with parallel mean curvature vector in two-dimensional complex space forms, Amer. J. Math. 122 (2000), 295-317.
[5] T. Ogata, Surfaces with parallel mean curvature vector in $P^{2}(C)$, Kodai Math. J. 18 (1995), 397-407.

Katsuei Kenmotsu Mathematical Institute
Tohoku University
980-8578 Sendai
Japan
E-mail: kenmotsu@math.tohoku.ac.jp
Takashi Ogata
Nan-ei-cyo 3-3-18
990-2445 Yamagata
Japan
E-mail: ogata.takashi7@gmail.com

[^0]: 2010 Mathematics Subject Classification. 53C42, 53B25.
 Key words and phrases. Parallel mean curvature vector, complex space form.
 The first author is partly supported by JSPS Grant-in-Aid for Scientific Research (C-25400062). Received December 24, 2014; revised April 3, 2015.

