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CORRECTION TO “SURFACES WITH PARALLEL MEAN
CURVATURE VECTOR IN P*(C)”

KATSUET KENMOTSU AND TAKASHI OGATA

Abstract

We describe a condition under which the claims in the paper cited above hold.

1. Correction

It has been pointed out by Hirakawa [3] that a previous paper by Ogata [5]
contained a mistake. In fact, the claim made in line 3, page 401 in [5], which
states that “A is a real-valued function defined on U,” is not generally correct.
We now give a geometric condition for the claim to hold. We follow the
notation used in [5].

LEmMMA.  Suppose that the immersion in [5] satisfies a condition a =a on M.
Then, there exists a complex coordinate w on a neighborhood of a point of M such
that ¢ = wdw, where u is real valued.

Using this lemma, we can state the following:

CORRECTION.  For the claims given in [5] to hold, we add the condition a = a
to the immersion.

Since Kenmotsu and Zhou [4] and Hirakawa [2] used the results given
by Ogata [5], those papers also need the additional assumption a = a for the
immersion.

2. Proof of Lemma

Set ¢ = A dz, where A is a non-zero complex valued function on a simply
connected domain U with complex coordinate z. Although the lemma can be
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proved using (2.4) in [5], we employ a slightly modified formula here. By (2.4)
of [5], we have

(2.1) )z = —AA(a@— b) cot u,
(2.2) a: = ila+b),
T _ 3p .2
(2.3) az = Al 2a(a —b) +7 sin” o | cot a,
(2.4) ¢, = 2Ac(a — b) cot a.

We note that (2.8) in [5] is not generally correct.

First, we prove the lemma for the case in which o is constant on M. By
(2.2), we have a = —b = @ = constant. By (2.6) of [5], |¢|® is constant. Set ¢ =
|c| exp(if), where 6 is a real-valued function on U. Then, using (2.4), we have
i0. = —4bi cot o. If we take the partial derivative with respect to Z, then (2.1)
can be used to obtain 8h%Alcot> a+if.: =0. Since 0.: is real valued, this
implies cot o = 0. Therefore, we have A: = 0 by (2.1). Hence, 4 is holomorphic.
Define the complex coordinate w as w = [Adz. Then, we have ¢ = A dz = dw,
which proves the lemma for the case o = constant.

When o is not constant, we need the following claim to prove the
lemma:

Cram. Suppose that a = a@ on M. If « is not constant, then « is a function
of a.

Proof. By the assumption, we see a. = (d), =az. By (2.2) and (2.3), we
have

do= (a+b)(¢+¢),

da = (2a(a—b) +%p sin? oc) cota-(p+¢).

Canceling out (¢ + ¢) in the above formulas, we have a differential equation in
a for o, which proves the claim.

Proof of Lemma. Using the above claim, we write ¢ = a(a), and define a
real-valued function F(o) as

(a(a) — b)* + 3p/2 sin® «

(a(oz) n b)2 ot o.

F(a) =

Taking the partial derivative of (2.2) with respect to z and using (2.1) and (2.3),
we have a second-order partial differential equation o,: — F(a)o.o: = 0. It follows
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that (o exp(— [ F(«) da)): = 0. Hence, there exists a holomorphic function G(z)
on U such that o. = G(z) exp(| F(«) do). Setting

B _exp([ F(x) da)
w= JG(Z) dz, =T a@+b

the lemma is proved by the conjugate of (2.2).

)

Remark. Briefly, we explain the geometric meanings for these quantities
used in (2.1)—(2.4). The real valued function « is the Kaehler angle of the
immersion, the positive number b is two times of the length of the mean
curvature vector, and the complex valued functions ¢ and ¢ determine the second
fundamental tensors of the immersion. The ambient space is a complex
2-dimensional Kaehler manifold of constant holomorphic sectional curvature 4p.
These were first introduced in Chern and Wolfson [1].
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