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TWO NORMALITY CRITERIA AND COUNTEREXAMPLES

TO THE CONVERSE OF BLOCH’S PRINCIPLE

Kuldeep Singh Charak and Virender Singh

Abstract

In this paper, we prove two normality criteria for a family of meromorphic

functions. The first criterion extends a result of Fang and Zalcman [Normal families

and shared values of meromorphic functions II, Comput. Methods Funct. Theory, 1

(2001), 289–299] to a bigger class of di¤erential polynomials whereas the second one

leads to some counterexamples to the converse of the Bloch’s principle.

1. Introduction and main results

It is assumed that the reader is familiar with the standard notions used in the
Nevanlinna value distribution theory such as Tðr; f Þ, mðr; f Þ, Nðr; f Þ, Sðr; f Þ
etc., one may refer to [5]. In this paper, we obtain a normality criterion for a
family of meromorphic functions which involves sharing of holomorphic func-
tions by certain di¤erential polynomials generated by the members of the family.

In 2001, Fang and Zalcman [4, Theorem 2, p. 291] proved the following

Theorem A. Let F be a family of meromorphic functions on a domain D, k
be a positive integer and að0 0Þ and b be two finite values. If, for every f A F, all
zeros of f have multiplicity at least k and f ðzÞ f ðkÞðzÞ ¼ a , f ðkÞðzÞ ¼ b, then the
family F is normal on D.

In this paper, we extend this result as

Theorem 1.1. Let F be a family of meromorphic functions on a domain D.
Let nb 2, mb kb 1 be the positive integers and let að0 0Þ and b be two finite

values. If, for each f A F, f nðzÞð f mÞðkÞðzÞ ¼ a , ð f mÞðkÞðzÞ ¼ b, then the family
F is normal on D.
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Now it is natural to ask whether Theorem 1.1 still holds if a and b are
holomorphic functions. In this direction, we prove the following

Theorem 1.2. Let nb 2, mb kb 1 be the positive integers. Let aðzÞð2 0Þ
and bðzÞ be two holomorphic functions on a domain D such that multiplicity of

each zero of aðzÞ is at most p, where pa
n� 1

m

� �
� 1: Then, the family F of

meromorphic functions on a domain D, all of whose poles are of multiplicity
at least pþ 1, such that f nðzÞð f mÞðkÞðzÞ ¼ aðzÞ , ð f mÞðkÞðzÞ ¼ bðzÞ, for every
f A F, is normal on D.

Remark 1.1. Consider the family F ¼ f fl : l A Ng, where flðzÞ ¼ elz on the
unit disk D. Then

ð f m
l ÞðkÞðzÞ ¼ mkl kemlz and f n

l ðzÞð f m
l ÞðkÞðzÞ ¼ mkl keðnþmÞlz

Clearly, f n
l ðzÞð f m

l ÞðkÞðzÞ ¼ 0 , ð f m
l ÞðkÞðzÞ ¼ 0. However, F is not normal on D.

Thus the condition that a0 0 is essential in Theorem 1.1.

Remark 1.2. Consider the family F ¼ f fl : l A Ng, where flðzÞ ¼ 2lz on the
unit disk D. Then

f n
l ðzÞð f m

l ÞðkÞðzÞ ¼ ð2lÞnþm
mðm� 1Þðm� 2Þ � � � ðm� kÞznþm�k

and

ð f m
l ÞðkÞðzÞ ¼ ð2lÞmmðm� 1Þðm� 2Þ � � � ðm� kÞzm�k

Clearly, f n
l ðzÞð f m

l ÞðkÞðzÞ ¼ aðzÞ , ð f m
l ÞðkÞðzÞ ¼ bðzÞ, where aðzÞ ¼ znþm�k

and bðzÞ ¼ zm�k. We can see that multiplicity of zeros of aðzÞ is at least n.
However, the family F is not normal on D. Thus, the restriction on the
multiplicities of the zeros of aðzÞ is essential in Theorem 1.2.

In 2004, Lahiri and Dewan [9, Theorem 1.4, p. 3] proved

Theorem B. Let F be a family of meromorphic functions in a domain D and
að0 0Þ, b A C. Suppose that Ef ¼ fz A D : f ðkÞ � af �n ¼ bg, where k and nðb kÞ
are the positive integers. If for every f A F

(i) f has no zero of multiplicity less than k
(ii) there exists a positive number M such that for every f A F, j f ðzÞjbM

whenever z A Ef , then F is normal.

In 2006, Xu and Zhang [17, Theorem 1.3, p. 5] improved Theorem B as

Theorem C. Let F be a family of meromorphic functions in a domain D and
að0 0Þ, b A C. Suppose that Ef ¼ fz A D : f ðkÞ � af �n ¼ bg, where k and n are
the positive integers. If for every f A F
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(i) f has no zero of multiplicity at least k
(ii) there exists a positive number M such that for every f A F, j f ðzÞjbM

whenever z A Ef , then F is normal so long as
(A) nb 2 or
(B) n ¼ 1 and Nkðr; 1=f Þ ¼ Sðr; f Þ.

In this paper, we prove the following

Theorem 1.3. Let F be a family of meromorphic functions in a domain
D. Let n1, n2, m > kb 1 be the non-negative integers such that n1 þ n2 b 1.
Suppose cðzÞ :¼ f n1ðzÞð f mÞðkÞðzÞ � af �n2ðzÞ � b, where að0 0Þ, b A C. If there
exists a positive constant M such that for every f A F, either j f ðzÞjbM or
jð f mÞðkÞðzÞjaM whenever z is a zero of cðzÞ, then F is normal in D.

As an application of Theorem 1.3, we construct some counterexamples to the
converse of Bloch’s principle in the last section of this paper.

Corollary 1.4. Let F be a family of meromorphic functions in a domain D.
Let n;m > k be the positive integers and að0 0Þ be a finite complex number. If
there exists a positive constant M such that for every f A F, f nðzÞð f mÞðkÞðzÞ ¼
a ) jð f mÞðkÞðzÞjaM, then F is normal in D.

2. Some lemmas

Lemma 2.1 [21] (Zalcman’s lemma). Let F be a family of meromorphic
functions in the unit disk D and a be a real number satisfying �1 < a < 1. Then,
if F is not normal at a point z0 A D, there exist, for each a : �1 < a < 1,

(i) a real number r : r < 1,
(ii) points zn : jznj < r,
(iii) positive numbers rn : rn ! 0,
(iv) functions fn A F such that gnðzÞ ¼ r�a

n fnðzn þ rnzÞ converges locally uni-
formly with respect to the spherical metric to gðzÞ, where gðzÞ is a non constant
meromorphic function on C and gaðzÞa gað0Þ ¼ 1. Moreover, the order of g is
not greater than 2.

Lemma 2.2 [22, Lemma 2.6, p. 107]. Let R ¼ A

B
be a rational function and

B be non constant. Then ðRðkÞÞy a ðRÞy � k, where ðRÞy ¼ degðAÞ � degðBÞ.

Lemma 2.3. Let nb 2, mb kb 1 be the positive integers. Let aðzÞð2 0Þ
be a polynomial of degree p such that pa n� 2. Then there is no function
f rational on C which has only poles of multiplicity at least pþ 1 such that

f nðzÞð f mÞðkÞðzÞ0 aðzÞ and ð f mÞðkÞðzÞ0 0.
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Proof. First we consider the case of a polynomial. Suppose on the
contrary that there is a polynomial f ðzÞ with the given properties. Since
ð f mÞðkÞ 0 0 and mb k, f has zeros of multiplicity exactly one. So, we
have

degð f nð f mÞðkÞÞb n degð f Þ ¼ n > p ¼ degðaðzÞÞ

Therefore, f nðzÞð f mÞkðzÞ � aðzÞ has a solution, which is a contradiction.
Next, suppose that f has poles. Then, we set

f ðzÞ ¼ A

Qs
i¼1

ðz� aiÞ

Qt
j¼1

ðz� bjÞ
nj

;ð2:1Þ

where A0 0, ai are the distinct zeros of f with sb 0 and bj are the distinct poles
of f with tb 1.

Put

Xt

j¼1

nj ¼ N:

Then

Nb tðpþ 1Þ:

Now,

f mðzÞ ¼ Am

Qs
i¼1

ðz� aiÞm

Qt
j¼1

ðz� bjÞ
mnj

ð2:2Þ

) ð f mÞðkÞðzÞ ¼

Qs
i¼1

ðz� aiÞm�k

Qt
j¼1

ðz� bjÞ
mnjþk

gðzÞ;ð2:3Þ

where gðzÞ is a polynomial.
By Lemma 2.2, we have

ð f mÞðkÞy a ð f mÞy � k

) degðgÞa kðsþ t� 1Þ:

Now,
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f nð f mÞðkÞ ¼ An

Qs
i¼1

ðz� aiÞðmþnÞ�k

Qt
j¼1

ðz� bjÞ
ðmþnÞnjþk

gðzÞ:ð2:4Þ

So,

ð f nð f mÞðkÞÞðpþ1Þ ¼

Qs
i¼1

ðz� aiÞðmþnÞ�k�p�1

Qt
j¼1

ðz� bjÞ
ðmþnÞnjþkþpþ1

g0ðzÞ;ð2:5Þ

where g0ðzÞ is a polynomial.
Again, by Lemma 2.2, we have

ð f nð f mÞðkÞÞðpþ1Þ
y a ð f nð f mÞðkÞÞy � ðpþ 1Þ

) degðg0Þa ðsþ t� 1Þðpþ k þ 1Þ:

Since f nð f mÞðkÞ 0 aðzÞ, we set

f nð f mÞðkÞ ¼ aðzÞ þ cQt
j¼1

ðz� bjÞ
ðmþnÞnjþk

;ð2:6Þ

where c0 0 is a constant.
So,

ð f nð f mÞðkÞÞð pþ1Þ ¼ g1ðzÞQt
j¼1

ðz� bjÞ
ðmþnÞnjþkþpþ1

;ð2:7Þ

where g1ðzÞ is a polynomial of degree at most ðpþ 1Þðt� 1Þ.
On comparing (2.4) and (2.6), we have

sðmþ nÞ � ksþ degðgÞ ¼ Nðmþ nÞ þ ktþ pt

) Nðmþ nÞa sðmþ nÞ � k

) N < s;

for nb 2, mb kb 1.
Also, from (2.5) and (2.7), we have

degðg1Þb sðmþ nÞ � sðk þ pþ 1Þ:
Now,
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ðpþ 1Þðt� 1Þb degðg1ðzÞÞb sðmþ nÞ � sðk þ pþ 1Þ
) sðmþ nÞa ðpþ 1Þðt� 1Þ þ sðk þ pþ 1Þ
) sðmþ nÞ < ðpþ 1Þtþ sðk þ pþ 1Þ

) s <
pþ 1

mþ n
tþ k þ pþ 1

mþ n
s

) s <
1

mþ n
N þ k þ pþ 1

mþ n
s

) s <
1

mþ n
þ k þ pþ 1

mþ n

� �
s

) s <
k þ pþ 2

mþ n

� �
s

) s < s 9
k þ pþ 2

mþ n
a 1

� �
;

which is absurd.
Thus, if ð f mÞðkÞðzÞ0 0, then f nðzÞð f mÞðkÞðzÞ � aðzÞ has at least a solution.

Hence the Lemma follows. 9

Lemma 2.4. Let nb 2, mb kb 1 be the positive integers. Then there is no
transcendental meromorphic function f on C such that f nðzÞð f mÞðkÞðzÞ0 aðzÞ and
ð f mÞðkÞðzÞ0 0, where aðzÞ2 0 is a small function of f .

Proof. Suppose on the contrary that there is a transcendental meromorphic
function f on C satisfying the given conditions. Since ð f mÞðkÞ 0 0 and mb k, f
has zeros of multiplicity exactly one. Now, by second fundamental theorem of
Nevanlinna for three small functions [5, Theorem 2.5, p. 47], we have

Tðr; f nð f mÞðkÞÞaNðr; f nð f mÞðkÞÞ þN r;
1

f nð f mÞðkÞ

 !
ð2:8Þ

þN r;
1

f nð f mÞðkÞ � aðzÞ

 !

¼ Nðr; f Þ þN r;
1

f

� �
þ Sðr; f Þ:

Also,

Tðr; f nð f mÞðkÞÞb 1

2
Nðr; f nð f mÞðkÞÞ þN r;

1

f nð f mÞðkÞ

 !" #
ð2:9Þ

b
nþmþ k

2
Nðr; f Þ þN r;

1

f

� �
þ Sðr; f Þ:
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Thus, from (2.8) and (2.9), we get

nþmþ k

2
Nðr; f ÞaNðr; f Þ þ Sðr; f Þð2:10Þ

) Nðr; f Þ ¼ Sðr; f Þ:

Next,

ðmþ nÞTðr; f Þ ¼ Tðr; f mþnÞð2:11Þ

¼ T r;
1

f mþn

� �
þOð1Þ

¼ m r;
1

f mþn

� �
þN r;

1

f mþn

� �
þOð1Þ

¼ m r;
ð f mÞðkÞ

f m

1

f nð f mÞðkÞ

 !
þN r;

1

f mþn

� �
þOð1Þ

am r;
1

f nð f mÞðkÞ

 !
þN r;

1

f mþn

� �
þOð1Þ

aTðr; f nð f mÞðkÞÞ �N r;
1

f nð f mÞðkÞ

 !

þN r;
1

f mþn

� �
þ Sðr; f Þ:

Now, substituting (2.8) and (2.10) in (2.11), we get

ðmþ nÞTðr; f ÞaN r;
1

f

� �
�N r;

1

f nð f mÞðkÞ

 !
þN r;

1

f mþn

� �
þ Sðr; f Þ

aN r;
1

f

� �
� nN r;

1

f

� �
þ ðmþ nÞN r;

1

f

� �
þ Sðr; f Þ

¼ ðmþ 1ÞN r;
1

f

� �
þ Sðr; f Þ

a ðmþ 1ÞTðr; f Þ þ Sðr; f Þ

) ðn� 1ÞTðr; f ÞaSðr; f Þ;

which is a contradiction, for nb 2.
However, if f has no zeros, then f nð f mÞðkÞ has no zeros.
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That is,

N r;
1

f

� �
¼ Sðr; f Þ and N r;

1

f nð f mÞðkÞ

 !
¼ Sðr; f Þ:

Thus, by the same argument used above, we get a contradiction. 9

Lemma 2.5 [2]. Let f be a transcendental meromorphic function and n;m > k
be the positive integers. Let F ¼ f nð f mÞðkÞ. Then

k

2ð2k þ 2Þ þ oð1Þ
� �

Tðr;FÞaN r;
1

F � o

� �
þ Sðr;F Þ

for any small function oð2 0;yÞ of f .

Lemma 2.6 [2]. Let f be a rational function and n;m > k be the positive
integers. Then, for að0 0Þ A C, f nð f mÞðkÞ � a has at least two distinct zeros.

Lemma 2.7 [3]. Let f be an entire function. If the spherical derivative fa is
bounded in C, then the order of f is at most one.

3. Proof of Theorems

Proof of Theorem 1.1. Suppose that F is not normal at some point zo A D.
We assume D ¼ D. Then by Lemma 2.1, we can find a sequence f fjg in F, a
sequence fzjg of complex numbers with zj ! zo and a sequence frjg of positive
real numbers with rj ! 0 such that

gjðzÞ ¼ r
�k=ðnþmÞ
j fjðzj þ rjzÞ

converges locally uniformly with respect to the spherical metric to a non-constant
meromorphic function gðzÞ on C having bounded spherical derivative.

Claim.
(1) gnðgmÞðkÞ 0 a

(2) ðgmÞðkÞ 0 0
Suppose that gnðzoÞðgmÞðkÞðzoÞ ¼ a. Then gðzÞ0y in some small neigh-

borhood of zo. Further, gnðgmÞðkÞ 2 a. Suppose gnðgmÞðkÞ 1 a. Since g is a
non-constant entire function without zeros, by Lemma 2.7, we have gðzÞ ¼ eczþd ,
where c0 0 and d are constants. Thus

mkckeðmþnÞczþðmþnÞd 1 a

which is impossible unless ðmþ nÞc ¼ 0. Hence by Hurwitz theorem, there exist
points zj ! zo such that, for su‰ciently large j, we have

a ¼ gn
j ðzjÞðgm

j Þ
ðkÞðzjÞ ¼ f n

j ðzj þ rjzjÞð f m
j ÞðkÞðzj þ rjzjÞ:
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By given condition, we have

ð f m
j ÞðkÞðzj þ rjzjÞ ¼ b;

and hence,

ðgm
j Þ

ðkÞðzjÞ ¼ r
nk=ðmþnÞ
j ð f m

j ÞðkÞðzj þ rjzjÞ ¼ r
nk=ðmþnÞ
j b

) ðgmÞðkÞðzoÞ ¼ lim
j!y

ðgm
j Þ

ðkÞðzjÞ ¼ 0

which contradicts that gnðzoÞðgmÞðkÞðzoÞ ¼ a0 0. This proves claim (1).

Now, suppose ðgmÞðkÞðzoÞ ¼ 0 for some zo A C, then gðzÞ0y in some small
neighborhood of zo. Further, ðgmÞðkÞ 2 0, otherwise, g reduces to a constant
since mb k. Again, by Hurwitz theorem, there exist points zj ! zo such that,
for su‰ciently large j, we have

ðgm
j Þ

ðkÞðzjÞ � r
nk=ðmþnÞ
j b ¼ 0

) r
nk=ðmþnÞ
j ð f m

j ÞðkÞðzj þ rjzjÞ � r
nk=ðmþnÞ
j b ¼ 0

) ð f m
j ÞðkÞðzj þ rjzjÞ ¼ b:

Thus, by the given condition, we get

f n
j ðzj þ rjzjÞð f m

j ÞðkÞðzj þ rjzjÞ ¼ a ¼ gn
j ðzjÞðgm

j Þ
ðkÞðzjÞ

) a ¼ lim
j!y

gn
j ðzjÞðgm

j Þ
ðkÞðzjÞ ¼ gnðzoÞðgmÞðkÞðzoÞ ¼ 0

which is a contradiction. This proves claim (2).
Claims (1) and (2) as established contradict Lemma 2.3 and Lemma 2.4.

Hence F is normal. 9

Proof of Theorem 1.2. Suppose that F is not normal at some point zo A D.
We assume D ¼ D. We distinguish the following two cases:

Case I. aðzoÞ0 0
Following the proof of Theorem 1.1, we arrive at a contradiction and hence

F is normal in this case.

Case II. aðzoÞ ¼ 0
Without loss of generality, we assume that zo ¼ 0. Further, we assume

aðzÞ ¼ zpa1ðzÞ, where p is a positive integer and a1ð0Þ0 0. We may take
a1ð0Þ ¼ 1. Now, by Lemma 2.1, we can find a sequence f fjg in F, a sequence
fzjg of complex numbers with zj ! 0 and a sequence frjg of positive real
numbers with rj ! 0 such that

gjðzÞ ¼ r
�ð pþkÞ=ðnþmÞ
j fjðzj þ rjzÞ
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converges locally uniformly with respect to the spherical metric to a non-constant
meromorphic function gðzÞ on C having bounded spherical derivative.

Subcase I. Suppose there exist a subsequence of
zj

rj
, we may take

zj

rj
itself,

such that
zj

rj
! y as j ! y.

Let

GjðzÞ ¼ z
�ðpþkÞ=ðnþmÞ
j fjðzj þ zjzÞ:

Then, by the given condition f nðzÞð f mÞðkÞðzÞ ¼ aðzÞ , ð f mÞðkÞðzÞ ¼ bðzÞ, we
have

Gn
j ðzÞðGm

j Þ
ðkÞðzÞ ¼ ð1þ zÞpa1ðzj þ zjzÞ , ðGm

j Þ
ðkÞðzÞ ¼ zlj bðzj þ zjzÞ;

where

l ¼ �mðpþ kÞ
nþm

þ k > 0:

Thus, by Case I, fGjg is normal on D and Gj ! G (say) on D. Hence, by
Marty’s theorem, there exist a compact subset E of D and a constant M > 0
such that

Ga
j ðxÞaM for x A E:

Claim. Gað0Þ ¼ 0. Suppose Gað0Þ0 0. Then for z A C, we have

gaðzÞ ¼ lim
j!y

gaj ðzÞ

¼ lim
j!y

r
�ðpþkÞ=ðnþmÞ
j faj ðzj þ rjzÞ

¼ lim
j!y

zj

rj

 !ðpþkÞ=ðnþmÞ

Ga
j

rj

zj
z

� �

¼ y

which is a contradiction to the fact that g has bounded spherical derivative.
Now, Gað0Þ ¼ 0 ) G 0ð0Þ ¼ 0. For any z A C, we have

g 0
j ðzÞ ¼ r

�ðpþkÞ=ðnþmÞþ1
j f 0

j ðzj þ rjzÞ

¼
rj

zj

� ��ðpþkÞ=ðnþmÞþ1

G 0
j

rj

zj
z

� �
!w 0

on C as
pþ k

nþm
< 1. Thus g 0ðzÞ1 0 implies that g is constant and this is a

contradiction.
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Subcase II. Suppose there exist a subsequence of
zj

rj
, we may take

zj

rj
itself,

such that
zj

rj
! c as j ! y, where c is a finite number.

Then, we have

HjðzÞ ¼ r
�ðpþkÞ=ðnþmÞ
j fjðrjzÞ ¼ gj z� zj

rj

 !
!w gðz� cÞ :¼ HðzÞ:

Thus, by the given condition, we have

Hn
j ðzÞðHm

j ÞðkÞðzÞ ¼ zpa1ðrjzÞ , ðHm
j ÞðkÞðzÞ ¼ r l

j bðrjzÞ;
where

l ¼ �mðpþ kÞ
nþm

þ k > 0:

Claim.
(1) HnðzÞðHmÞðkÞðzÞ0 zp on C� f0g
(2) ðHmÞðkÞðzÞ0 0 on C� f0g

Suppose that HnðzoÞðHmÞðkÞðzoÞ ¼ zpo , zo 0 0. Then, HðzÞ0y on some small
neighborhood of zo. Further, HnðzÞðHmÞðkÞðzÞ2 zp. If HnðzÞðHmÞðkÞðzÞ
1 zp, then z ¼ 0 is the only possible zero of H. If H is a transcendental

function, then, clearly HnðHmÞðkÞ is also a transcendental function, which is
not true. If H is a rational function and z ¼ 0 is a zero of H, then H is a
polynomial. Thus, degðHnðHmÞðkÞÞb n degðHÞb n, which is a contradiction

to the fact that HnðzÞðHmÞðkÞðzÞ1 zp, pa n� 2. By Hurwitz’s theorem, there
exist points zj ! zo such that, for su‰ciently large j, we have

Hn
j ðzjÞðHm

j ÞðkÞðzjÞ � z
p
j a1ðrjzjÞ ¼ 0

) ðHm
j ÞðkÞðzjÞ � r l

j bðrjzjÞ ¼ 0:

Thus,

ðHmÞðkÞðzoÞ ¼ lim
j!y

ðHm
j ÞðkÞðzjÞ

¼ lim
j!y

r l
j bðrjzjÞ

¼ 0

which contradicts that HnðzoÞðHmÞðkÞðzoÞ ¼ zpo 0 0. This proves claim (1).
Next, suppose ðHmÞðkÞðzoÞ ¼ 0 for some zo A C� f0g. Then HðzÞ0y on

some small neighborhood of zo. Further, ðHmÞðkÞ 2 0, otherwise, H reduces to a
constant since mb k. Thus, by Hurwitz theorem, there exist points zj ! zo such
that, for su‰ciently large j, we have
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ðHm
j ÞðkÞðzjÞ � r l

j bðrjzjÞ ¼ 0

) Hn
j ðzjÞðHm

j ÞðkÞðzjÞ � z
p
j a1ðrjzjÞ ¼ 0

and so

HnðzoÞðHmÞðkÞðzoÞ ¼ lim
j!y

Hn
j ðzjÞðHm

j ÞðkÞðzjÞ

¼ lim
j!y

z
p
j a1ðrjzjÞ

¼ zpo

which is a contradiction. This proves claim (2).
Claims (1) and (2) as established contradict Lemma 2.3 and Lemma 2.4.

Hence F is normal. 9

Proof of Theorem 1.3. Suppose that F is not normal at some point z0 A D.
Then by Lemma 2.1, we can find a sequence f fjg in F, a sequence fzjg of
complex numbers with zj ! zo and a sequence frjg of positive real numbers with
rj ! 0 such that

gjðzÞ ¼ r
�k=ðn1þn2þmÞ
j fjðzj þ rjzÞ

converges locally uniformly with respect to the spherical metric to a non-constant
meromorphic function gðzÞ on C having bounded spherical derivative. Now, by

Lemma 2.5 and Lemma 2.6, gnðzÞðgmÞðkÞðzÞ � a has at least one zero for nb 1,

m > kb 1. Suppose that gnðz0ÞðgmÞðkÞðz0Þ � a ¼ 0 for some z0 A C. Clearly,
gðzÞ0 0;y in some neighborhood of z0. Thus, we have

gn1ðz0ÞðgmÞðkÞðz0Þ � ag�n2ðz0Þ ¼ 0;

where n ¼ n1 þ n2 b 1.
Now, in some neighborhood of z0, we have

gn1
j ðz0Þðgm

j Þ
ðkÞðz0Þ � ag�n2

j ðz0Þ � r
kn2=ðnþmÞ
j b

¼ r
kn2=ðnþmÞ
j f f n1

j ðzj þ rjz0Þð f m
j ÞðkÞðzj þ rjz0Þ � af �n2

j ðzj þ rjz0Þ � bg

By Hurwitz’s theorem, there exists a sequence zj ! z0 such that for all large
values of j,

f n1
j ðzj þ rjzjÞð f m

j ÞðkÞðzj þ rjzjÞ � af �n2
j ðzj þ rjzjÞ � b ¼ 0

Thus, by the assumption, if j fjðzj þ rjzjÞjbM, then we have

jgjðzjÞj ¼ r
�k=ðnþmÞ
j j fjðzj þ rjzjÞjb r

�k=ðnþmÞ
j M:
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Since gjðzÞ converges uniformly to gðzÞ in some neighborhood of z0, for all large
values of j and for every e > 0, we have

jgjðzÞ � gðzÞj < e for all z in that neighborhood of zo:

Thus, in a neighborhood of zo, for all large values of j, we have

jgðzjÞjb jgjðzjÞj � jgðzjÞ � gjðzjÞj > r
�k=ðnþmÞ
j M � e

which is a contradiction to the fact that z0 is not a pole of gðzÞ.
Again, by the assumption, if jð f m

j ÞðkÞðzj þ rjzjÞjaM, then we have

jðgm
j Þ

ðkÞðzjÞj ¼ r
k�mk=ðn1þn2þmÞ
j jð f m

j ÞðkÞðzj þ rjzjÞja r
k�mk=ðn1þn2þmÞ
j M

so that

ðgmÞðkÞðzoÞ ¼ lim
j!y

ðgm
j Þ

ðkÞðzjÞ ¼ 0

which contradicts gnðzoÞðgmÞðkÞðzoÞ ¼ a0 0. Hence F is normal. 9

4. Counterexamples to the converse of the Bloch’s principle

The Bloch’s principle as noted by Robinson [14] is one of the twelve math-
ematical problems requiring further consideration; it is a heuristic principle in
function theory. The Bloch’s principle states that a family of holomorphic
(meromorphic) functions satisfying a property P in a domain D is likely to be
a normal family if the property P reduces every holomorphic (meromorphic)
function on C to a constant. The Bloch’s principle is not universally true, for
example one can see [15].

The converse of the Bloch’s Principle states that if a family of meromorphic
functions satisfying a property P on an arbitrary domain D is necessarily a
normal family, then every meromorphic function on C with property P reduces
to a constant. Like Bloch’s principle, its converse is not true. For counter-
examples one can see [1], [8], [10], [16], [18], [20]. In order to construct counter-
examples to the converse, one needs to prove a suitable normality criterion.
Here Theorem 1.3 is such a criterion. Infact, following is a direct consequence
of Theorem 1.3:

Theorem 4.1. Let F be a family of meromorphic functions in a domain D.
Let n1, n2, m > kb 1 be the non-negative integers such that n1 þ n2 b 1. Suppose
cðzÞ :¼ f n1ðzÞð f mðzÞÞðkÞ � af �n2ðzÞ � b, where að0 0Þ, b A C, has no zeros in D.
Then F is normal in D.

Now by Theorem 4.1, we have the following four counterexamples to the
converse of the Bloch’s principle:

Consider f ðzÞ ¼ ez. Then for n1 ¼ 1, n2 ¼ 0, m ¼ 2, k ¼ 1, a ¼ �1, and
b ¼ 1, cðzÞ :¼ f ðzÞð f 2Þ0ðzÞ þ 1� 1 ¼ 2e3z has no zeros in C. Thus there is a
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non constant entire function with property P : cðzÞ has no zeros in C. Hence
in view of Theorem 4.1, this is a counterexample to the converse of Bloch’s
principle.

Similarly, for the same values of the constants n1, n2, m, k, a, and b, the
meromorphic functions

1

z
;

1

ez þ 1
; tan zG i;

provide three more counterexamples to the converse of the Bloch’s principle.

Acknowledgment. The authors are grateful to the anonymous referee for
his/her valuable comments which have definitely improved the quality of the
paper.
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