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Abstract

We characterize geodesic spheres with su‰ciently small radii in a complex hyper-

bolic space of constant holomorphic sectional curvature cð< 0Þ by using their geometric

three properties. These properties are based on their contact forms, geodesics and

shape operators. These geodesic spheres are the only examples of hypersurfaces of type

(A) which are of nonnegative sectional curvature in this ambient space. Moreover, in

particular, when �1e c < 0, the class of these geodesic spheres has just one example of

Sasakian space forms.

1. Introduction

We denote by ~MMnðcÞ a complex n-dimensional complete and simply con-
nected Kähler manifold of constant holomorphic sectional curvature cð0 0Þ,
namely it is holomorphically isometric to either an n-dimensional complex
projective space CPnðcÞ of constant holomorphic sectional curvature c or an
n-dimensional complex hyperbolic space CHnðcÞ of constant holomorphic sec-
tional curvature c according as c is positive or negative, which is called an
n-dimensional nonflat complex space form of constant holomorphic sectional
curvature c.

In the theory of real hypersurfaces M 2n�1 isometrically immersed into ~MMnðcÞ,
hypersurfaces of type (A) are the most important examples (see Section 2).

When c > 0, every hypersurface of type (A) is of nonnegative sectional
curvature (see Proposition A). On the contrary, the horosphere, which is a
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typical example of hypersurfaces of type (A) in CHnðcÞ, has the sectional
curvature K with 3c=4eKe�c=4. Motivated by this fact, we are interested
in nonnegatively curved hypersurfaces of type (A) in CHnðcÞ.

We shall classify nonnegatively curved hypersurfaces M 2n�1 of type (A) in
CHnðcÞ (cf. Remark 3(3)) and characterize them in terms of the extrinsic shape
of some geodesics of M, the exterior di¤erentiation dh of the contact form h
on M and the weakly f-invariance of the shape operator A of M in this ambient
space (see Theorems 1, 2 and 3).

Our motivation is mainly based on the following three facts on real
hypersurfaces M.

(1) There exist no real hypersurfaces M all of whose geodesics are mapped
to circles in a nonflat complex space form ~MMnðcÞ, nf 2.

(2) There exist no real hypersurfaces M with closed contact form h, namely
there does not exist an open (non-empty) subset U on each real hyper-
surface M in a nonflat complex space form ~MMnðcÞ, nf 2 such that
dh ¼ 0 on U .

(3) There exist no real hypersurfaces M with strongly f-invariant shape
operator A in CHnðcÞ, nf 2, that is, there does not exist M satisfying
that gðAfX ; fYÞ ¼ gðAX ;Y Þ for all vectors X , Y on M in the ambient
space CHnðcÞ.

Here, ðf; x; h; gÞ is the almost contact metric structure on M induced from the
Kähler structure ðJ; gÞ of the ambient space ~MMnðcÞ, nf 2.

Inspired by the above three Facts (1), (2) and (3), we shall prove the
following three theorems.

Theorem 1. A connected real hypersurface M 2n�1 isometrically immersed
into CHnðcÞ, nf 2 is locally congruent to a geodesic sphere GðrÞ of radius r all of
whose sectional curvatures are nonnegative if and only if at every point p of M,

there exists a positive constant kðpÞ with kðpÞf
ffiffiffiffiffi
jcj

p
such that all geodesics

gi ¼ giðsÞ on M with gið0Þ ¼ p, _ggið0Þ ¼ vi ð1e ie 2n� 2Þ are mapped to circles
of the same curvature kðpÞ in the ambient space CHnðcÞ for some orthonormal
vectors v1; . . . ; v2n�2ðA TpMÞ orthogonal to the characteristic vector xp. Here, the
function k ¼ kðpÞ is automatically constant on M.

We note that all sectional curvatures of a geodesic sphere GðrÞ are non-

negative if and only if its radius r satisfies 0 < re log 3=
ffiffiffiffiffi
jcj

p
.

Theorem 2. A connected real hypersurface M 2n�1 isometrically immersed
into CHnðcÞ, nf 2 is locally congruent to a geodesic sphere GðrÞ of radius r with

0 < re log 3=
ffiffiffiffiffi
jcj

p
if and only if it satisfies the following conditions:

(1) There exists a positive constant k such that M satisfies either dhðX ;YÞ ¼
kgðX ; fY Þ for all X ;Y A TM or dhðX ;YÞ ¼ �kgðX ; fYÞ for all X ;Y A
TM;

(2) There exists a point x A M where M is nonnegatively curved.
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In Theorems 1 and 2, k is expressed as: k ¼ ð
ffiffiffiffiffi
jcj

p
=2Þ cothð

ffiffiffiffiffi
jcj

p
r=2Þ, so

that kf
ffiffiffiffiffi
jcj

p
and the radius r of GðrÞ is given by r ¼ ð1=

ffiffiffiffiffi
jcj

p
Þflogð2k þ

ffiffiffiffiffi
jcj

p
Þ�

logð2k �
ffiffiffiffiffi
jcj

p
Þg.

Theorem 3. A connected real hypersurface M 2n�1 isometrically immersed
into CHnðcÞ, nf 2 is locally congruent to a geodesic sphere GðrÞ of radius r with

0 < re log 3=
ffiffiffiffiffi
jcj

p
if and only if it satisfies the following conditions:

(1) M is a Hopf hypersurface with weakly f-invariant shape operator A;
(2) There exists a point x A M where M is nonnegatively curved.

In Theorem 3, the condition that the shape operator A of M is weakly
f-invariant means that gðAfX ; fYÞ ¼ gðAX ;Y Þ holds for all vectors X and Y
orthogonal to the characteristic vector field x of M.

Theorem 1 gives a geometric meaning of Theorems 2 and 3. Related to our
geodesic spheres in our Theorems, from the viewpoint of contact geometry we
shall prove the following:

Proposition 1. When �1e c < 0, the class of geodesic spheres GðrÞ of radius
r with 0 < re log 3=

ffiffiffiffiffi
jcj

p
in CHnðcÞ, nf 2 has just one example of Sasakian space

forms. In this case, it has automatically constant f-sectional curvature cþ 1 and
is a geodesic sphere of radius r with tanhð

ffiffiffiffiffi
jcj

p
r=2Þ ¼

ffiffiffiffiffi
jcj

p
=2.

The authors would like to express their hearty thanks to the referee for kind
advices.

2. Preliminaries

Let M 2n�1 be a real hypersurface with a unit normal local vector field N of
an nðf 2Þ-dimensional nonflat complex space form ~MMnðcÞ through an isometric
immersion. The ambient space ~MMnðcÞ is furnished with the standard Riemannian
metric g and the canonical Kähler structure J. The Riemannian connections
~‘‘ of ~MMnðcÞ and ‘ of M are related by the following formulas of Gauss and
Weingarten:

~‘‘XY ¼ ‘XY þ gðAX ;YÞN;ð2:1Þ
~‘‘XN ¼ �AXð2:2Þ

for arbitrary vector fields X and Y on M, where g is the Riemannian metric of
M induced from the standard metric of the ambient space ~MMnðcÞ and A is the
shape operator of M in ~MMnðcÞ. An eigenvector of the shape operator A is called

a principal curvature vector of M in ~MMnðcÞ and an eigenvalue of A is called a
principal curvature of M in ~MMnðcÞ. We denote by Vl the eigenspace associated
with the principal curvature l, namely we set Vl ¼ fv A TM jAv ¼ lvg.
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On M it is well-known that an almost contact metric structure ðf; x; h; gÞ
associated with N is canonically induced from the Kähler structure ðJ; gÞ of the
ambient space ~MMnðcÞ, which is defined by

gðfX ;YÞ ¼ gðJX ;YÞ; x ¼ �JN and hðXÞ ¼ gðx;X Þ ¼ gðJX ;NÞ:

It follows from (2.1), (2.2) and ~‘‘J ¼ 0 that

ð‘XfÞY ¼ hðY ÞAX � gðAX ;Y Þx;ð2:3Þ
‘Xx ¼ fAX :ð2:4Þ

In general, changing N into �N, we have two almost contact metric structures
ðf; x; h; gÞ and ðf;�x;�h; gÞ to each real hypersurface M in ~MMnðcÞ. The fol-
lowing is called the equation of Codazzi:

ð‘XAÞY � ð‘YAÞX ¼ ðc=4ÞðhðX ÞfY � hðYÞfX � 2gðfX ;Y ÞxÞ:ð2:5Þ

Denoting the curvature tensor of M by R, we have the equation of Gauss given
by

gððRðX ;YÞZ;WÞ ¼ ðc=4ÞfgðY ;ZÞgðX ;WÞ � gðX ;ZÞgðY ;WÞð2:6Þ
þ gðfY ;ZÞgðfX ;WÞ � gðfX ;ZÞgðfY ;WÞ
� 2gðfX ;YÞgðfZ;WÞg

þ gðAY ;ZÞgðAX ;WÞ � gðAX ;ZÞgðAY ;WÞ:

Hence, the sectional curvature KðX ;YÞ of the real plane spanned by a pair
ðX ;YÞ of orthonormal vectors is given by

KðX ;YÞ ¼ ðc=4Þð1þ 3gðfX ;Y Þ2Þ þ gðAX ;X ÞgðAY ;Y Þ � gðAX ;Y Þ2:ð2:7Þ

We usually call M a Hopf hypersurface if the characteristic vector x is a
principal curvature vector at each point of M. Note that every tube of a
su‰ciently small constant radius around each Kähler submanifold of ~MMnðcÞ is
a Hopf hypersurface.

Lemma A ([12, 9]). Let M be a Hopf hypsurface of a nonflat complex space
form ~MMnðcÞ, nf 2. Then the following hold.

(1) If a nonzero vector v A TM orthogonal to x satisfies Av ¼ lv, then
ð2l� dÞAfv ¼ ðdlþ ðc=2ÞÞfv, where d is the principal curvature asso-
ciated with x. In particular, when c > 0, we have Afv ¼ ððdlþ ðc=2ÞÞ=
ð2l� dÞÞfv.

(2) The principal curvature d associated with x is constant locally.

We recall the following real hypersurfaces which are the simplest examples
of Hopf hypersurfaces.
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When c > 0,
ðA1Þ a geodesic sphere GðrÞ of radius r ð0 < r < p=

ffiffiffi
c

p
Þ in CPnðcÞ,

ðA2Þ a tube of radius r ð0 < r < p=
ffiffiffi
c

p
Þ around a totally geodesic complex

submanifold CPlðcÞ with 1e le n� 2 in CPnðcÞ.
When c < 0,

ðA0Þ a horosphere HS in CHnðcÞ,
ðA1;0Þ a geodesic sphere GðrÞ of radius r ð0 < r < yÞ in CHnðcÞ,
ðA1;1Þ a tube of radius r ð0 < r < yÞ around a totally geodesic complex

hypersurface CHn�1ðcÞ in CHnðcÞ,
ðA2Þ a tube of radius r ð0 < r < yÞ around a totally geodesic complex

submanifold CH lðcÞ with 1e le n� 2.
Unifying these real hypersurfaces in ~MMnðcÞ, nf 2, we call them hypersurfaces of
type (A). The following shows the importance of hypersurfaces of type (A) in
the theory of real hypersurfaces in ~MMnðcÞ (for example, see [12, 13]).

Theorem A. For every real hyersurface M in a nonflat complex space form
~MMnðcÞ, nf 2, the length of the derivative of the shape operator A of M satisfies

k‘Ak2f ðc2=4Þðn� 1Þ> 0 at its each point. In particular, k‘Ak2 ¼ ðc2=4Þðn� 1Þ
holds on M if and only if M is locally congruent to a hypersurface of type (A).

The following is a well-known characterization of hypersurfaces of type (A)
in ~MMnðcÞ (cf. [13]).

Lemma B. Let M be a connected real hypersurface in a nonflat complex
space form ~MMnðcÞ, nf 2. Then M is locally congruent to a hypersurface of type
ðAÞ if and only if fA ¼ Af holds on M, where A is the shape operator of M in this
ambient space and f is the structure tensor on M.

It is well-known that every hypersurface of type (A) is a homogeneous real
hypersurface in ~MMnðcÞ, namely it is an orbit of some subgroup of the isometry
group Ið ~MMnðcÞÞ of the ambient space ~MMnðcÞ.

The following gives information on sectional curvatures of all hypersurfaces
of type (A) in CPnðcÞ (for example, see [8]).

Proposition A. The sectional curvature K of hypersurfaces of type (A) with
radius r ð0 < r < p=

ffiffiffi
c

p
Þ in CPnðcÞ, nf 2 satisfies the following inequalities:

ðA1Þ ðc=4Þ cot2ð
ffiffiffi
c

p
r=2ÞeK e cþ ðc=4Þ cot2ð

ffiffiffi
c

p
r=2Þ;

ðA2Þ 0eKe cþ ðc=4Þ maxfcot2ð
ffiffiffi
c

p
r=2Þ; tan2ð

ffiffiffi
c

p
r=2Þg.

Note that these estimations in Proposition A are sharp.
For the later use we recall the classification theorem of homogeneous Hopf

hypersurfaces in CHnðcÞ.

Theorem B ([4]). Let M 2n�1 be a connected Hopf hypersurface of CHnðcÞ,
nf 2. Then all of the principal curvatures of M are constant if and only if M is
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locally congruent to either a homogeneous real hypersurface of type ðAÞ ði.e., a
hypersurface of type ðAÞÞ or a homogeneous real hypersurface of type ðBÞ which
is a tube of radius r ð0 < r < yÞ around a totally real totally geodesic RHnðc=4Þ
which is the real part of CHnðcÞ.

Remark 1. Every homogeneous real hypersurface in CPnðcÞ is a Hopf
hypersurface. But, in CHnðcÞ there exist many homogeneous non-Hopf hyper-
surfaces as well as many homogeneous Hopf hypersurfaces (cf. [14, 5]).

A homogeneous real hypersurface of type (B) with radius r ¼
ð1=

ffiffiffiffiffi
jcj

p
Þ logeð2þ

ffiffiffi
3

p
Þ has two distinct constant principal curvatures l1 ¼ d ¼ffiffiffiffiffiffiffiffi

3jcj
p

=2 and l2 ¼
ffiffiffiffiffi
jcj

p
=ð2

ffiffiffi
3

p
Þ. Except for this real hypersurface, the numbers of

distinct principal curvatures of homogeneous Hopf hypersurfaces are 2; 2; 2; 3; 3,
respectively. The principal curvatures of these real hypersurfaces in CHnðcÞ are
given as follows (see [4]):

ðA0Þ ðA1;0Þ ðA1;1Þ ðA2Þ ðBÞ

l1

ffiffiffiffi
jcj

p
2

ffiffiffiffi
jcj

p
2 coth

� ffiffiffiffi
jcj

p
2 r
� ffiffiffiffi

jcj
p
2 tanh

� ffiffiffiffi
jcj

p
2 r
� ffiffiffiffi

jcj
p
2 coth

� ffiffiffiffi
jcj

p
2 r
� ffiffiffiffi

jcj
p
2 coth

� ffiffiffiffi
jcj

p
2 r
�

l2 — — —

ffiffiffiffi
jcj

p
2 tanh

� ffiffiffiffi
jcj

p
2 r
� ffiffiffiffi

jcj
p
2 tanh

� ffiffiffiffi
jcj

p
2 r
�

d
ffiffiffiffiffi
jcj

p ffiffiffiffiffi
jcj

p
cothð

ffiffiffiffiffi
jcj

p
rÞ

ffiffiffiffiffi
jcj

p
cothð

ffiffiffiffiffi
jcj

p
rÞ

ffiffiffiffiffi
jcj

p
cothð

ffiffiffiffiffi
jcj

p
rÞ

ffiffiffiffiffi
jcj

p
tanhð

ffiffiffiffiffi
jcj

p
rÞ

3. Real hypersurfaces some of whose geodesics are mapped
to circles in a complex hyperbolic space

First of all we explain the background of Fact (1) in Introduction. We
review the definition of circles in Riemannian geometry. A smooth real curve
g ¼ gðsÞ parametrized by its arclength s on a Riemannian manifold M with
Riemannian connection ‘ is called a circle of curvature k if there exist a
nonnegative constant k and the unit vector field Ys orthogonal to the tangential
vector _gg along the curve g satisfying the ordinary di¤erential equations ‘ _gg _gg ¼ kYs

and ‘ _ggYs ¼ �k _gg. It is well-known that a curve g is a circle if and only if it
satisfies the following di¤erential equation:

‘ _gg‘ _gg _ggþ gð‘ _gg _gg;‘ _gg _ggÞ _gg ¼ 0;ð3:1Þ

where g is the Riemannian metric on M. A circle of null curvature is nothing
but a geodesic. The following is fundamental in the theory of hypersurfaces:

Proposition 2. For a connected hypersurface Mn isometrically immersed
into a Riemannian manifold ~MMnþ1 the following three conditions are mutually
equivalent.
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(1) Every geodesic g on Mn is mapped to a circle in ~MMnþ1.
(2) Every geodesic g on Mn is mapped to a circle of the same curvature which

is independent of the choice of g in ~MMnþ1.
(3) Mn is totally umbilic in ~MMnþ1 and Trace A is constant locally on Mn,

where A is the shape operator of Mn in ~MMnþ1.

Proof. We suppose Condition (1). Then, from (3.1) every geodesic g of
Mn, considered as a curve in the ambient space ~MMnþ1, satisfies the following
ordinary di¤erential equation:

~‘‘ _gg
~‘‘ _gg _ggþ gð~‘‘ _gg _gg; ~‘‘ _gg _ggÞ _gg ¼ 0:ð3:2Þ

On the other hand, in consideration of Gauss formula: ~‘‘XY ¼ ‘XY þ
gðAX ;Y ÞN and Weingarten formula: ~‘‘XN ¼ �AX for the hypersurface Mn

in ~MMnþ1, we can rewrite (3.2) as follows:

�gðA _gg; _ggÞA _ggþ gðA _gg; _ggÞ2 _ggþ gðð‘ _ggAÞ _gg; _ggÞN ¼ 0:ð3:3Þ

Hence, taking the tangential component and the normal component of (3.3) for
the hypersurace Mn in ~MMnþ1, we obtain

gðA _gg; _ggÞA _gg ¼ gðA _gg; _ggÞ2 _gg and gðð‘ _ggAÞ _gg; _ggÞ ¼ 0ð3:4Þ

for each geodesic g on Mn. Equation (3.4) means that

gðAX ;XÞAX ¼ gðAX ;X Þ2X and gðð‘XAÞX ;X Þ ¼ 0ð3:5Þ

for all X A TM with kXk ¼ 1. Note that the former equation in (3.5) means

gðAX ;XÞgðAX ;Y Þ ¼ 0ð3:6Þ

for each pair of orthonormal vectors X and Y on M, which is equivalent to
saying that

gðApX ;X Þ2 is constant at each point p A Mð3:7Þ

for every unit vector X A TpM.

Indeed, let f : Sn�1ð1ÞðHRnÞ ! R be the di¤erentiable function on a sub-
set Sn�1ð1ÞG fu A TpM j kuk ¼ 1g defined by f ðuÞ ¼ gðApu; uÞ2, where Ap is the
shape operator of M in ~MMnþ1 at the point p A M. If v is a vector tangent to
Sn�1ð1Þ at u (hence u ? vÞ, we find vð f Þ ¼ 4gðApu; uÞgðApu; vÞ ¼ 0 by (3.6).
Thus f is a constant function on Sn�1ð1Þ.

Then we can set l2ðpÞ ¼ gðAX ;X Þ2 for each unit vector X A TpM with

lðpÞf 0 at every point p A M. When Mn is not totally geodesic in ~MMnþ1, there
exists a point x A M with lðxÞ > 0. Then the continuity of the function l shows
that there exists some open neighborhood Ux of the point x such that l > 0 on
Ux. We here choose a local field of orthonormal frames e1; . . . ; en on Ux in such
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a way that Aei ¼ liei ð1e ie nÞ. Hence, from (3.7) we see that l21 ¼ � � � ¼
l2n ¼ l2. In this case, we suppose that there exist an orthonormal pair of vectors
ei and ej such that Aei ¼ lei and Aej ¼ �lej. Then we find that

gðAðei þ ejÞ=
ffiffiffi
2

p
; ðei þ ejÞ=

ffiffiffi
2

p
Þ ¼ 0;

which is a contradiction. So, we know that either Aei ¼ lei ð1e ie nÞ or Aei ¼
�lei ð1e ie nÞ, which shows that every point y A Ux is an umbilic point. Thus

we can see that Mn is totally umbilic in ~MMnþ1. Furthermore, the latter equation
in (3.5) yields that the function l is constant locally on M. Therefore we get
Conditions (2) and (3) in our Proposition. In this case, note that every geodesic
g on Mn is mapped to a circle of the same curvature lðf 0Þ which is independent
of the choice of g.

Conversely, we suppose Condition (3). Then we have Equation (3.5).
Hence by (3.2) we obtain Condition (1). r

The following is well-known:

Proposition 3 ([15]). There exist no totally umbilic real hypersurfaces in a
nonflat complex space form ~MMnðcÞ, nf 2.

Proof. Suppose that AX ¼ lX for all vectors X on M. For any vectors X
and Y orthogonal to x, from the Codazzi equation (2.5) we have ðXlÞY �
ðYlÞX ¼ ðc=2ÞgðX ; fYÞx, so that gðX ; fYÞ ¼ 0 for all X , Y perpendicular to x.
This is a contradiction. r

By virtue of Propositions 2 and 3 we obtain Fact (1).
We shall prove Theorem 1.
ð)Þ First of all we remark that a geodesic sphere GðrÞ ð0 < r < yÞ in

CHnðcÞ is of nonnegative sectional curvature if and only if the radius r satisfies
0 < re log 3=

ffiffiffiffiffi
jcj

p
(for example, see the proof of Theorem 2).

Let M be a geodesic sphere GðrÞ of radius r all of whose sectional curvatures
are nonnegative in the ambient space CHnðcÞ. Let g ¼ gðsÞ be an arbitrary
geodesic with gð0Þ ¼ p on our real hypersurface M whose initial vector _ggð0Þ is
perpendicular to the characteristic vector xp. It follows from (2.4), Lemma B,
the symmetry of A and the skew-symmetry of f that

_ggðgð _gg; xÞÞ ¼ gð _gg;‘ _ggxÞ ¼ gð _gg; fA _ggÞ ¼ gð _gg;Af _ggÞ
¼ gðA _gg; f _ggÞ ¼ �gðfA _gg; _ggÞ ¼ 0;

which, combined with gð _ggð0Þ; xgð0ÞÞ ¼ 0, shows that _ggðsÞ is orthogonal to xgðsÞ for

every s. Thus we have A _ggðsÞ ¼ ð
ffiffiffiffiffi
jcj

p
=2Þ cothð

ffiffiffiffiffi
jcj

p
r=2Þ _ggðsÞ for �y < s < y.

This, together with (2.1) and (2.2), implies that the geodesic g is mapped to a

circle of the same positive curvature ð
ffiffiffiffiffi
jcj

p
=2Þ cothð

ffiffiffiffiffi
jcj

p
r=2Þ in CHnðcÞ. Here,

by the assumption 0 < re log 3=
ffiffiffiffiffi
jcj

p
we see ð

ffiffiffiffiffi
jcj

p
=2Þ cothð

ffiffiffiffiffi
jcj

p
r=2Þf

ffiffiffiffiffi
jcj

p
.

Thus we have proved the ‘‘only if ’’ part in our Theorem.
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ð(Þ Let gi ¼ giðsÞ ð1e ie 2n� 2Þ be geodesics on M satisfying the con-
dition in the ‘‘if ’’ part in our Theorem. Then it follows from (3.1) that

~‘‘ _ggið~‘‘ _ggi _ggiÞ ¼ �k2 _ggi:ð3:8Þ

On the other hand, from (2.1) and (2.2) we obtain

~‘‘ _ggið~‘‘ _ggi _ggiÞ ¼ gðð‘ _ggiAÞ _ggi; _ggiÞN� gðA _ggi; _ggiÞA _ggi:ð3:9Þ

Comparing the tangential components of (3.8) and (3.9), we have

gðA _ggiðsÞ; _ggiðsÞÞA _ggiðsÞ ¼ k2 _ggiðsÞ for 1e ie 2n� 2;

which, combined with kðpÞ0 0, yields that Avi ¼ kðpÞvi or Avi ¼ �kðpÞvi for
1e ie 2n� 2 at the point p ¼ gð0Þ. Note that x is principal. Indeed, gðAx; viÞ
¼ gðx;AviÞ ¼ 0 for 1e ie 2n� 2. Thus we know that our real hypersurface
M is a Hopf hypersurface having at most three distinct principal curvatures d, k
and �k. We here show that the function k ¼ kðpÞ is automatically constant
on M.

We first consider the case of 2k � d0 0 at a point x0 A M. Then by the
continuity of this function it does not vanish on a su‰ciently small neighborhood
Ux0 of the point x0. This, together with Lemma A(1), yields

k ¼ kdþ ðc=2Þ
2k � d

or k ¼ � kdþ ðc=2Þ
2k � d

:

Hence k is constant on the neighborhood Ux0 . We finally consider the case of
2k � d ¼ 0 at a point x0 A M. We shall show that the function 2k � d vanishes
identically on some neighborhood Vx0 of the point x0. We here use reductio
ad absurdum. Suppose that there does not exist a neighborhood of the point
x0 on which the function 2k � d vanishes identically. Then there exists a point
sequence fxng on M with limn!y xn ¼ x0 and ð2k � dÞðxnÞ0 0 for each n.
We note that the discussion in the case that 2k � d0 0 means that for each n
the function 2k � d is nonzero constant on some su‰ciently small neighborhood
Vxn of the point xn. This, together with the fact that every principal curvature
of M is continuous on M, shows that 2k � d0 0 at the point x0 of M, which is
a contradiction. Thus we can see that the function k ¼ kðpÞ is constant on
M. Hence we find that the principal curvature k is also constant locally in the
case that 2k � d ¼ 0 at some point x0 of M. Then we know that our real
hypersurface M is a Hopf hypersurface having at most three distinct constant
principal curvatures d, k and �k.

Therefore by the table of the principal curvatures of homogeneous Hopf
hypersurfaces in CHnðcÞ we find that our Hopf hypersurface M has two distinct
constant principal curvatures either d, k or d, �k. Then without loss of
generality M has two distinct constant principal curvatures d and kðf

ffiffiffiffiffi
jcj

p
Þ.

Therefore our discussion guarantees that our real hypersurface M is locally
congruent to a geodesic sphere GðrÞ with 0 < re log 3=

ffiffiffiffiffi
jcj

p
. Hence we have
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shown the ‘‘if ’’ part in our Theorem. So we obtain the desired statement of
Theorem 1.

The discussion in the proof of Theorem 1 yields the following:

Proposition 4. Every geodesic g on a geodesic sphere GðrÞ ðlog 3=
ffiffiffiffiffi
jcj

p
<

r < yÞ whose initial vector _ggð0Þ is perpendicular to the characteristic vector xgð0Þ is
mapped to the same positive curvature k with

ffiffiffiffiffi
jcj

p
=2 < k <

ffiffiffiffiffi
jcj

p
in the ambient

space CHnðcÞ, nf 2, where k ¼ ð
ffiffiffiffiffi
jcj

p
=2Þ cothð

ffiffiffiffiffi
jcj

p
r=2Þ.

At the end of this section we explain the extrinsic shape i � g of every
geodesic g on GðrÞ ð0 < r < yÞ through the natural isometric embedding i : GðrÞ
! CHnðcÞ (for details, see Proposition 3.1 in [2]).

Proposition B. For a geodesic g on GðrÞ ð0 < r < yÞ in CHnðcÞ, nf 2,
through the inclusion mapping i : GðrÞ ! CHnðcÞ the curve i � g is as follows:

(1) When the initial vector _ggð0Þ is equal to xgð0Þ, i � g is a circle of positive

curvature
ffiffiffiffiffi
jcj

p
cothð

ffiffiffiffiffi
jcj

p
rÞ on a complex line CH 1ðcÞ in CHnðcÞ;

(2) When the initial vector _ggð0Þ is orthogonal to xgð0Þ, i � g is a circle of

positive curvature ð
ffiffiffiffiffi
jcj

p
=2Þ cothð

ffiffiffiffiffi
jcj

p
r=2Þ on a totally real totally geodesic

RH 2ðc=4Þ in CHnðcÞ;
(3) When the initial vector _ggð0Þ is neither the form in (1) nor that in ð2Þ,

i � g is a helix of proper order 4, namely it has three positive constant
curvatures k1, k2 and k3 and each of its other curvatures kd ðdf 4Þ
vanishes in the sense of Frenet formula, on a totally geodesic complex
submanifold CH 2ðcÞ in CHnðcÞ.

4. Exterior di¤erentiation of the contact form on real hypersurfaces
in a complex hyperbolic space

Before proving Theorem 2 we explain the background of Fact (2) in
Introduction. To do this, we first recall the definition of dh, which is given by

dhðX ;YÞ ¼ ð1=2ÞfX ðhðYÞÞ � YðhðXÞÞ � hð½X ;Y �Þg for all X ;Y A TM:ð4:1Þ

It follows from (2.4) and (4.1) that dh ¼ 0 if and only if fAþ Af ¼ 0. This,
together with the fact that there exist no real hypersurfaces M with fAþ Af ¼ 0
on M (see Corollary 2. 12 in [13]), implies Fact (1).

We are now in a position to prove Theorem 2.
ð(Þ It follows from dhðX ;Y Þ ¼GkgðX ; fY Þ for all X ;Y A TM, (4.1) and

(2.4) that

0 ¼ gðfAX ;Y Þ � gðfAY ;XÞH 2kgðX ; fYÞ ¼ gððfAþ AfG 2kfÞX ;YÞ

for each X ;Y A TM. So our real hypersurface M satisfies

fAþ Af ¼H2kf:ð4:2Þ
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We then have fAx ¼ 0, which shows that M is a Hopf hypersurface. We next
take a principal curvature vector X orthogonal to x associated to a principal
curvature l. Hence, from Lemma A and Equation (4.2) we find that the
principal curvature l satisfies one of the following quadratic equations:

4l2 þ 8klþ c� 4kd ¼ 0 or 4l2 � 8klþ cþ 4kd ¼ 0:ð4:3Þ

Since k and d are constant, this implies that l is also constant on the connected
real hypersurface M. Thus we can see that our real hypersurface M is locally
congruent to a homogeneous Hopf hypersurface in CHnðcÞ (see Theorem B).
We shall check (4.2) one by one for each homogeneous Hopf hypersurface M.

When M is of type ðA0Þ, we know by the table of the principal curvatures

that Afþ fA ¼
ffiffiffiffiffi
jcj

p
f.

When M is of type ðA1;0Þ, we see that Afþ fA ¼
ffiffiffiffiffi
jcj

p
cothð

ffiffiffiffiffi
jcj

p
r=2Þf.

When M is of type ðA1;1Þ, we have Afþ fA ¼
ffiffiffiffiffi
jcj

p
tanhð

ffiffiffiffiffi
jcj

p
r=2Þf.

When M is of type ðA2Þ, by the fact that fVl1 ¼ Vl1 and fVl2 ¼ Vl2 (see
Lemma A), we find that our real hypersurface M does not satisfy (4.2).

When M is of type (B), by the fact that fV 0
l1
¼ V 0

l2
and fV 0

l2
¼ V 0

l1
for each

radius r A ð0;yÞ, where V 0
li
¼ fv A TM jAv ¼ liv; v ? xg for i ¼ 1; 2 (see Lemma

A) we can see that our real hypersurface M satisfies Afþ fA ¼ ðl1 þ l2Þf with
l1 þ l2 ¼

ffiffiffiffiffi
jcj

p
cothð

ffiffiffiffiffi
jcj

p
rÞ.

Therefore by virtue of the above discussion we can see that a real hyper-
surface M satisfies (4.2) if and only if M is of either type ðA0Þ, type ðA1;0Þ,
type ðA1;1Þ or type (B). We next investigate the sectional curvatures of these
homogeneous real hypersurfaces.

When M is of type ðA1;0Þ, we take a pair ðX ;Y Þ of orthonormal vectors that
are orthogonal to x. In order to estimate the sectional curvature K of M, we
calculate Kðsin y � X þ cos y � x;YÞ. It follows from (2.7) that

Kðsin y � X þ cos y � x;Y Þ ¼ ðc=4Þfsin2 yð1þ 3gðfX ;YÞ2Þ � coth2ð
ffiffiffiffiffi
jcj

p
r=2Þg:

This gives the following inequalities:

c� ðc=4Þ coth2ð
ffiffiffiffiffi
jcj

p
r=2ÞeKe ð�c=4Þ coth2ð

ffiffiffiffiffi
jcj

p
r=2Þ:ð4:4Þ

We remark that KðX ; fX Þ ¼ c� ðc=4Þ coth2ð
ffiffiffiffiffi
jcj

p
r=2Þ and KðX ; xÞ ¼ ð�c=4Þ �

coth2ð
ffiffiffiffiffi
jcj

p
r=2Þ for each unit vector X orthogonal to x. By easy computation we

see that c� ðc=4Þ coth2ð
ffiffiffiffiffi
jcj

p
r=2Þf 0 if and only if 0 < re log 3=

ffiffiffiffiffi
jcj

p
. Hence

a geodesic sphere GðrÞ is of nonnegative sectional curvature at some point x A M
if and only if the radius r satisfies 0 < re log 3=

ffiffiffiffiffi
jcj

p
.

When M is of type ðA0Þ, by taking r ! y in (4.4) we have 3c=4eKe

�c=4 at its each point.
When M is of type ðA1;1Þ, for a unit vector X with AX ¼

ð
ffiffiffiffiffi
jcj

p
=2Þ tanhð

ffiffiffiffiffi
jcj

p
r=2ÞX from (2.7) we see

KðX ; fXÞ ¼ cþ jcj
4

tanh2

ffiffiffiffiffi
jcj

p
r

2

 !
< cþ jcj

4
¼ 3c

4
< 0:
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When M is of type (B), by taking a unit vector X orthogonal to x with

AX ¼ ð
ffiffiffiffiffi
jcj

p
=2Þ cothð

ffiffiffiffiffi
jcj

p
r=2ÞX , from (2.7) we get KðX ; fX Þ ¼ 3c=4 < 0. Thus

we have proved the ‘‘if ’’ part in our Theorem.
ð)Þ By the above discussion we get easily the ‘‘only if ’’ part in our

Theorem.
Thus we have proved Theorem 2. r

We cannot characterize a geodesic sphere GðrÞ of radius r with 0 < re

log 3=
ffiffiffiffiffi
jcj

p
by the condition that there exists a positive constant k with kf

ffiffiffiffiffi
jcj

p
such that M satisfies either dhðX ;YÞ ¼ kgðX ; fYÞ for all X ;Y A TM or dhðX ;Y Þ
¼ �kgðX ; fY Þ for all X ;Y A TM. Indeed, we have the following:

Theorem C ([7]). A real hypersurface M 2n�1 of CHnðcÞ, nf 2 satisfies the

condition that there exists a positive constant k with kf
ffiffiffiffiffi
jcj

p
such that M satisfies

either dhðX ;Y Þ ¼ kgðX ; fY Þ for all X ;Y A TM or dhðX ;YÞ ¼ �kgðX ; fY Þ for
all X ;Y A TM if and only if M is locally congruent to either a geodesic sphere
GðrÞ of radius r ð0 < re log 3=

ffiffiffiffiffi
jcj

p
Þ or a homogeneous real hypersurface of type

(B) of radius r ð0 < re log 3=ð2
ffiffiffiffiffi
jcj

p
ÞÞ.

5. f-invariance of the shape operator of real hypersurfaces
in a complex hyperbolic space

In order to guarantee Fact (3), we prove the following:

Proposition 5. There does not exist a real hypersurface M 2n�1 with strongly
f-invariant shape operator A in CHnðcÞ, nf 2.

Proof. Suppose that there exists a real hypersurface M with strongly
f-invariant shape operator A in this ambient space. Then the shape operator
A of this real hypersurface M satisfies

�fAfX ¼ AX for all X A TM:ð5:1Þ

Putting X ¼ x in (5.1), we have Ax ¼ 0, so that in particular, M is a Hopf
hypersurface. This, together with Lemma A(1), implies

2lAfX ¼ c

2
fX for each vector X ð? xÞ with AX ¼ lX :ð5:2Þ

It follows from (5.1) and (5.2) that 4l2 ¼ c < 0, which is a contradiction. Thus
we get the desired conclusion. r

Remark 2. We emphasize that there do exist real hypersurfaces M 2n�1

with strongly f-invariant shape operator in CPnðcÞ, nf 2. In CPnðcÞ, nf 2,
a real hypersurface M 2n�1 has strongly f-invariant shape operator if and only if
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M is locally congruent to a hypersurface of type ðAÞ with radius r ¼ p=ð2
ffiffiffi
c

p
Þ

(see [11]).

We shall prove Theorem 3.
ð)Þ Since fA ¼ Af holds on M (see Lemma B), for any X ;Y ðA TMÞ

orthogonal to x we see

gðAfX ; fY Þ ¼ gðfAX ; fY Þ ¼ �gðAX ; f2YÞ
¼ �gðAX ;�Y þ hðY ÞxÞ ¼ gðAX ;Y Þ;

which shows that our Hopf hypersurface M has weakly f-invariant shape oper-
ator. Moreover, by the above estimation on sectional curvatures we find that
our real hypersurface M is of nonnegative sectional curvatures at its each
point. Thus we have shown the ‘‘only if ’’ part in our Theorem.

ð(Þ For a unit vector X orthogonal to x with AX ¼ lX , we find

ð2l� dÞgðAfX ; fXÞ ¼ lð2l� dÞ;

which, combined with Lemma A(1), implies that our Hopf hypersurface M has
at most three constant principal curvatures d, l1 and l2, where l1 and l2 are
solutions to the quadratic equation 4l2 � 4dl� c ¼ 0. Then M is locally
congruent to either a hypersurface of type (A) or a homogeneous real hyper-
surface of type (B) (see Theorem B). But, the principal curvatures l1 and l2 of
every homogeneous real hypersurface of type (B) do not satisfy the above
quadratic equation. Hence M is of type (A). Furthermore, by virtue of the
estimation on the sectional curvature of hypersurfaces of types ðA1;0Þ, ðA0Þ and
ðA1;1Þ and the following estimation on the sectional curvature of a hyper-
surface of type ðA2Þ

KðX ; fXÞ ¼ c� c

4
tanh2

ffiffiffiffiffi
jcj

p
2

r

 !
< 0 for each unit vector X A Vl2

we obtain the ‘‘if ’’ part in our Theorem. Thus we have proved Theorem 3.

Remark 3. (1) The shape operator of every hypersurface of type (A) in a
nonflat complex space form is weakly f-invariant.

(2) There exist non-Hopf hypersurfaces M 2n�1 with weakly f-invariant shape
operator in a nonflat complex space form ~MMnðcÞ, nf 2. For example, we take
an arbitrary ruled real hypersurface M in this ambient space. Then the shape
operator A of M satisfies gðAX ;YÞ ¼ 0 for all X ;Yð? xÞ A TM (for details, see
[13]). Hence this real hypersurface M has weakly f-invariant shape operator in
a trivial sense.

(3) The discussion in the proof of Theorems 2 and 3 shows that geodesic

spheres GðrÞð0 < re log 3=
ffiffiffiffiffi
jcj

p
Þ in CHnðcÞ are the only examples of hyper-

surfaces of type (A) all of whose sectional curvatures are nonnegative in this
ambient space (cf. [10]).
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6. Contact metric structures and the proof of Proposition 1

Let M 2n�1 ðnf 2Þ be a di¤erentiable manifold with an almost contact
metric structure ðf; x; h; gÞ. That is, this structure satisfies the following equa-
tions:

f2X ¼ �X þ hðX Þx; fx ¼ 0; hðxÞ ¼ 1; gðfX ; fYÞ ¼ gðX ;Y Þ � hðX ÞhðYÞ

for all vectors X and Y on M. We say M to be a Sasakian manifold if the
structure tensor f satisfies the di¤erential equation

ð‘XfÞY ¼ gðX ;YÞx� hðYÞXð6:1Þ

for all tangent vectors X ;Y A TM, where ‘ denotes the Riemannian connection
related to the metric g of M. A Sasakian manifold is called a Sasakian space
form of constant f-sectional curvature c if the sectional curvature Kðu; fuÞ :¼
gðRðu; fuÞfu; uÞ satisfies Kðu; fuÞ ¼ c for each unit vector u orthogonal to x.
The following is a Sasakian analogue of Schur’s Theorem.

Theorem C. If the f-sectional curvature at each point of a Sasakian manifold
M of dimensionf 5 does not depend on the choice of f-section at that point, then
it is constant on M. The curvature tensor of M is given by

RðX ;Y ÞZ ¼ cþ 3

4
fgðY ;ZÞX � gðX ;ZÞYg

þ c� 1

4
fhðXÞhðZÞY � hðY ÞhðZÞX þ gðX ;ZÞhðY Þx� gðY ;ZÞhðX Þx

þ gðZ; fYÞfX � gðZ; fX ÞfY þ 2gðX ; fYÞfZg;

where c is the constant f-sectional curvature of M.

For the standard construction of Sasakian space forms, see pp. 114–115 in
[6]. The following is the unique existence theorem of Sasakian space forms.

Theorem D. For any two simply connected complete Sasakian manifolds of
constant f-sectional curvature c, there exists an isomorphism between them which
preserves their almost contact metric structures.

We here review the construction of Sasakian space forms of constant
f-sectional curvature cð< 1Þ from the viewpoint of submanifold theory. The
following lemma is essentially due to Berndt [3].

Lemma C. Let M 2n�1 be a connected real hypersurface isometrically
immersed into CHnðcÞ, nf 2. Suppose that M is a Sasakian manifold with
respect to one of the almost contact metric structures ðf; x; h; gÞ and ðf;�x;�h; gÞ
induced from the Kähler structure ðJ; gÞ of CHnðcÞ. Then M is locally congruent
to one of the following homogeneous real hypersurfaces of CHnðcÞ:
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i) A horosphere in CHnð�4Þ;
ii) A geodesic sphere GðrÞ of radius r ð0 < r < yÞ with tanhð

ffiffiffiffiffi
jcj

p
r=2Þ ¼ffiffiffiffiffi

jcj
p

=2 in CHnðcÞ ð�4 < c < 0Þ;
iii) A tube of radius r ð0 < r < yÞ around a totally geodesic CHn�1ðcÞ with

tanhð
ffiffiffiffiffi
jcj

p
r=2Þ ¼ 2=

ffiffiffiffiffi
jcj

p
in CHnðcÞ ðc < �4Þ.

In these cases, M has constant f-sectional curvature cþ 1.

Proof. Suppose that our real hypersurface M is a Sasakian manifold.
Then it follows from (2.3) and (6.1) that

gðX ;Y Þx� hðY ÞX ¼ hðYÞAX � gðAX ;YÞxð6:2Þ

for all vectors X ;Y A TM. Setting X ¼ Y ¼ x in Equation (6.2), we find that x
is principal. So we can choose another principal curvature vector u orthogonal
to x. Then, putting Y ¼ x in Equation (6.2), we see that

Au ¼ �u for each vector u perpendicular to x:ð6:3Þ

This, together with Lemma A, Theorem B and the above table of the principal
curvature vectors, implies that our real hypersurface M is locally congruent
to one of iÞ, iiÞ and iiiÞ. Here, we change the unit normal vector N into �N
on each real hypersurface M in the list of Theorem B. Note that the shape
operator A of our Sasakian real hypersurface M satisfies A ¼ �I þ ðc=4Þhn x.
This, combined with (2.6), shows that the f-sectional curvature Kðu; fuÞ on our
real hypersurface M satisfies Kðu; fuÞ ¼ cþ 1 for every unit vector u orthogonal
to x.

Conversely, we take a real hypersurface M which is locally congruent to one
of iÞ, iiÞ and iiiÞ. Then, without loss of generality we can see that the shape
operator A of our real hypersurface M is of the form A ¼ �I þ ðc=4Þhn x.
This, together with (2.3), yields (6.1), so that M is a Sasakian manifold. r

We shall prove Proposition 1. We consider a geodesic sphere G of radius
r ð0 < re log 3=

ffiffiffiffiffi
jcj

p
Þ in CHnðcÞ. Then we have

0 < tanh

ffiffiffiffiffi
jcj

p
2

r

 !
e tanh

log 3

2

� �
¼ 1

2
;

which, together with Equation tanhð
ffiffiffiffiffi
jcj

p
r=2Þ ¼

ffiffiffiffiffi
jcj

p
=2 in Lemma C(ii), implies

�1e c < 0. Thus by virtue of Lemma C we obtain the desired statement of
Proposition 1.
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