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ISOSPECTRAL KÄHLER GRAPHS

Yaermaimaiti Tuerxunmaimaiti and Toshiaki Adachi

Abstract

We give some basic ways to construct Kähler graphs which are compound graphs

having principal and auxiliary graphs. By use of these methods we give some examples

of isospectral pairs of Kähler graphs.

1. Introduction

Graphs which are pairs of a set of vertices and a set of edges are considered
as discrete models of Riemannian manifolds. Considering them as 1-dimensional
CW-complexes we regard paths on them which are chains of edges as geodesics.
In his paper [2] the second author introduced the notion of a Kähler graph to
give a discrete model of a Riemannian manifold admitting a magnetic field. As
a generalization of a static magnetic field on a Euclidean 3-space R3, a closed
2-form on a Riemannian manifold is said to be a magnetic field (see [7], for
example). As typical examples of magnetic fields we have constant multiples of
the Kähler form on a Kähler manifold. They are called Kähler magnetic fields
([1]). We consider that geodesics are trajectories of electric charged particles
without the action of magnetic fields. Under the influence of a magnetic field
motions of electric charged particles have their accelerations by getting the
Lorentz force. If we adopt graphs as discrete models of Kähler manifolds, as
graphs does not have 2-simplexes, we need a system to show complex structure.
For this sake we consider decompound graphs having two kinds of edges,
principal edges and auxiliary edges. We consider paths consisting of principal
edges as geodesics and consider paths consisting of both principal and auxiliary
edges as trajectories under an action of a magnetic field.

In this paper we study Laplacians for Kähler graphs corresponding to paths
where principal and auxiliary edges appear alternatively. Since the Laplacian of
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a graph is the generating operator of the random walk defined by paths of
graphs, we may say that its eigenvalues show some properties of the graph. We
show basic ways of constructing Kähler graphs, which are to take complement
graphs and to take product graphs. By investigating the relationship between
eigenvalues of Laplacians for Kähler graphs and eigenvalues of discrete Lap-
lacians for their principal and auxiliary graphs, we give examples of pairs of
isospectral Kähler graphs.

The authors are grateful to the referee who read their manuscript very
carefully.

2. Laplacians for a Kähler graphs

A graph G ¼ ðV ;EÞ is a 1-dimensional CW-complex which consists of a set
V of vertices and a set E of edges. We assume it has no loops and multiple
edges. Also we assume that it is not directed and is locally finite. We call
a graph G ¼ ðV ;EÞ Kähler if the set E of edges is divided into two disjoint

subsets E ðpÞ, E ðaÞ and satisfies the following condition: At each vertex v there
are at least four edges emanating from v; two are contained in E ðpÞ and two

are contained in E ðaÞ. For a Kähler graph G ¼ ðV ;E ðpÞ UE ðaÞÞ, we call the
graphs ðV ;E ðpÞÞ and ðV ;E ðaÞÞ its principal graph and auxiliary graph, respecti-
vely. For vertices v;w A V we denote as v@p w if they are adjacent to each
other in the principal graph ðV ;E ðpÞÞ, and denote as v@a w if they are adjacent
to each other in the auxiliary graph ðV ;E ðaÞÞ. For a vertex v A V we set
d ðpÞðvÞ ¼afw A V jw@p vg and d ðaÞðvÞ ¼afw A V jw@a vg, and call them the
principal degree and the auxiliary degree at v, respectively. Here, for a set X we
denote by aX its cardinality.

A bicolored path g ¼ ðv0; . . . ; v2mÞ on a Kähler graph G ¼ ðV ;E ðpÞ UE ðaÞÞ is
a 2m-step path satisfying v2k @p v2kþ1 and v2kþ1 @a v2kþ2 for k ¼ 0; . . . ;m� 1.
Roughly speaking bicolored paths show trajectories of charged particles under the
action of a magnetic field of strength 1. We consider that an edge ðv2k; v2kþ1Þ
shows a motion of a charged particle without actions of magnetic fields, and that
if it gets a Lorentz force it is bended and reaches to v2kþ2. More generally, for a
pair ðp; qÞ of relatively prime positive integers, we can consider paths corre-
sponding to trajectories of charged particles under the action of a magnetic field
of strength q=p by use of p-step paths in the principal graph and q-step paths
in the auxiliary graph. But as their treatment is a bit complicated we shall only
consider paths under the action of a magnetic field of strength 1. Moreover,
we note that if we only consider paths under the action of a magnetic field
of strength 1, the condition d ðpÞðvÞ; d ðaÞðvÞb 2 at each v A V in the definition
of Kähler graphs can be weaken to the condition d ðpÞðvÞ; d ðaÞðvÞb 1 at each
v A V . For a bicolored path g ¼ ðv0; . . . ; v2mÞ, we define its probabilistic weight

oðgÞ as oðgÞ ¼
Qm

k¼0fd ðaÞðv2kþ1Þg�1. Since a graph is a 1-dimensional CW-
complex, we can not show the direction of the action of a magnetic field,
therefore we treat the position of the terminus of a trajectory probabilistically.
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For a finite ordinary graph G ¼ ðV ;EÞ we set dGðvÞ ¼afw A V jw@ vg and
call it the degree at v A V . We define the adjacency operator AG and the
transition operator PG acting on the space CðVÞ of functions on V by

AG f ðvÞ ¼
X
w@v

f ðwÞ; PG f ðvÞ ¼ 1

dGðvÞ
X
w@v

f ðwÞ:

The combinatorial Laplacian DAG
and the transitional Laplacian DPG

acting on
CðVÞ are defined by DAG

¼ DG � AG and by DPG
¼ I � PG, respectively, where

the degree operator DG is given as DG f ðvÞ ¼ dGðvÞ f ðvÞ. When G is regular,
that is, its degree-function dG does not depend on the choice of vertices, these
Laplacians are related with each other as DAG

¼ dGDPG
because AG ¼ dGPG (see

[3, 5, 9] for more on Laplacians).
Corresponding to these operators we define Laplacians (or more precisely

ð1; 1Þ-Laplacians) for finite Kähler graphs in the following manner. Let G ¼
ðV ;E ðpÞ UE ðaÞÞ be a finite Kähler graph. We denote by AðpÞ;PðpÞ the adjacency
operator and transition operator of the principal graph ðV ;E ðpÞÞ acting on the
space CðV ;CÞ of all (complex valued) functions on V . Similarly, we denote by
PðaÞ the transition operator of the auxiliary graph ðV ;E ðaÞÞ. According to the
lines in the previous paragraph, we set the adjacency and the transition operators

of G corresponding to bicolored paths as A ¼ AðpÞPðaÞ and P ¼ PðpÞPðaÞ. We
should note that these operators are not symmetric. Denoting DðpÞ the degree
operator of the principal graph, we set DA, DP as DA ¼ DðpÞ � A, DP ¼ I � P,
and call them the combinatorial and the transitional Laplacians for a finite
Kähler graph, respectively. When the principal graph is regular as an ordinary

graph, we find A ¼ d ðpÞP and DA ¼ d ðpÞDP.
We explain adjacency and transition operators in another way. For a

Kähler graph G ¼ ðV ;E ðpÞ UE ðaÞÞ, we can define a derived directed graph Gð1;1Þ
by use of 2-step bicolored paths in the following manner. The set of vertices is
V . We say a vertex v is joined to a vertex w by a derived directed edge if there
is a 2-step bicolored path g with origin oðgÞ ¼ v and terminus tðgÞ ¼ w. We note
that this graph Gð1;1Þ may have loops and multiple edges. For each edge of
Gð1;1Þ, which is a 2-step bicolored path, we attach it its probabilistic weight.
Then the adjacency and the transition operators of a Kähler graph are those of
the derived directed graph with weights on edges:

Af ðvÞ ¼
X
g

oðgÞ f ðtðgÞÞ;

Pf ðvÞ ¼ 1

d ðpÞðvÞ
X
g

oðgÞ f ðtðgÞÞ ¼ 1P
g oðgÞ

X
g

oðgÞ f ðtðgÞÞ;

where g runs over the set of all 2-step bicolored paths with oðgÞ ¼ v.
In this paper we only treat Laplacians of finite graphs. As the spaces of

functions on their sets of vertices are of finite dimensional, we frequently identify
operators acting on these spaces with matrices.
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3. Kähler graphs with complement auxiliary edges

One of the most typical way to construct Kähler graphs is to take comple-
ments of graphs. We take an ordinary finite graph G ¼ ðV ;EÞ and consider
its complement graph Gc ¼ ðV ;EcÞ. Here, the complement graph is given as
follows: Two distinct vertices are adjacent to each other in Gc if and only if
they are not adjacent in G. When the degree-function dG of the finite graph
G satisfies minv AV dGðvÞb 2 and maxv AV dGðvÞaaV � 3, we obtain a Kähler
graph GK ¼ ðV ;E UEcÞ by taking its complement as the auxiliary graph. We
call this the complement-filled Kähler graph of G. In this section we study
eigenvalues of Laplacians for complement-filled Kähler graphs.

We call a Kähler graph regular if both of its principal and auxiliary graphs
are regular. When the degree dG of finite regular graph G satisfies 2a dG a

aV � 3, we see its complement graph is reglar and of degree dGc ¼aV � dG � 1,
hence find that GK ¼ ðV ;E UEcÞ is a regular Kähler graph.

Theorem 1. Let G ¼ ðV ;EÞ be a connected regular finite graph whose degree
satisfies 2a dG aaV � 3. If we denote the eigenvalues of DAG

¼ DG � AG for
G as 0 ¼ l1 < l2 a � � �a laV , then the eigenvalues of DA ¼ DG � A for the
complement-filled Kähler graph GK are l̂l1 ¼ 0, l̂li ¼ fl2i � lið2dG þ 1Þ þ dGaVg �
ðaV � dG � 1Þ�1 ði ¼ 2; . . . ;aVÞ. Moreover, if fi : V ! R is an eigenfunction
corresponding to li, then it is an eigenfunction corresponding to l̂li.

Proof. If we put

N ¼

0 1 � � � 1

1 0 . .
. ..

.

..

. . .
. . .

.
1

1 � � � 1 0

0
BBBBB@

1
CCCCCA;

then the adjacency matrix AGc is given as AGc ¼ N � AG.
We note that the condition ðDG � AGÞ fi ¼ li fi is equivalent to the condition

AG fi ¼ ðdG � liÞ fi. For l1 ¼ 0, the eigenfunction f1 is a non-zero constant
function. Therefore we have AGcf1 ¼ Nf1 � AG f1 ¼ ðaV � 1� dGÞ f1.
Hence we obtain

DA f1 ¼ DG f1 � AGPGcf1 ¼ dG f1 �
1

aV � 1� dG
AGAGcf1 ¼ dG f1 � AG f1 ¼ 0:

For li ðib 2Þ, the eigenfunction fi is orthogonal to f1. That is, h fi; f1i ¼P
v AV f1ðvÞ fiðvÞ ¼ 0. Hence we have

P
v AV fiðvÞ ¼ 0. Therefore we get

NfiðvÞ ¼
X

w AV ;w0v

fiðwÞ ¼ �fiðvÞ:
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Thus we have AGcfi ¼ Nfi � AG fi ¼ ðli � dG � 1Þ fi and obtain

DA fi ¼ dG � ðdG � liÞðli � dG � 1Þ
aV � 1� dG

� �
fi ¼

l2i � lið2dG þ 1Þ þ dGaV

aV � 1� dG
fi:

This completes the proof. r

Remark 1. (1) The eigenvalues of DP ¼ I � P for our Kähler graph GK

are 0, fl2i � lið2dG þ 1Þ þ dGaVgfdGðaV � dG � 1Þg�1 ði ¼ 2; . . . ;aVÞ.
(2) These operators A, P are symmetric because NAG ¼ AGN, hence so are

DA, DP.

Two finite graphs are said to be combinatorially isospectral (resp. transi-
tionary isospectral) if their combinatorial Laplacians (resp. transitional Laplacians)
have the same eigenvalues by taking account of their multiplicities. Clearly
these notions are equivalent when these graphs are regular. So in this case
we just say that these graphs are isospectral. It is well known that there exist
many pairs of isospectral regular graphs (see [3]). We here study Kähler graphs
from this point of view. We call a pair of Kähler graphs combinatorially
isospectral if their principal graphs are combinatorially isospectral and their
combinatorial Laplacians as Kähler graphs have the same eigenvalues by taking
account of their multiplicities. Also, we call a pair of Kähler graphs transi-
tionary isospectral if their principal graphs are transitionary isospectral and their
transitional Laplacians as Kähler graphs have the same eigenvalues by taking
account of their multiplicities. When the principal graphs of two Kähler
graphs are regular, they are combinatorially isospectral if and only if they are
transitionary isospectral. In such a case we just call them isospectral.

Corollary 1. If two finite connected regular graphs G1, G2 are isospectral,
then their complement-filled Kähler graphs GK

1 , GK
2 are isospectral as Kähler

graphs.

We here give some examples following to [3] and [4].

Example 1. The following figures show an isospectral pair of Kähler graphs
consisted by isospectral regular graphs and their complements. In these figures
we show principal and auxiliary graphs separately to get their feature clearly.
We draw auxiliary edges by dotted lines. Their eigenvalues of combinatorial
Laplacians are

SpecðDAG
Þ ¼ f0; 3; 5; 5; 5; 5; 4�

ffiffiffi
5

p
; 4þ

ffiffiffi
5

p
; ð9�

ffiffiffiffiffi
17

p
Þ=2; ð9þ

ffiffiffiffiffi
17

p
Þ=2g;

SpecðDAÞ ¼ f0; 4; 4; 4; 4; 22=5; 24=5; 24=5; ð25�
ffiffiffi
5

p
Þ=5; ð25þ

ffiffiffi
5

p
Þ=5g:
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If we denote the eigenvalues of DAG
for a connected regular finite graph G as

0 ¼ l1 < l2 a � � �a laV , then the eigenvalues of DAGc of its complement graph
Gc are 0 and aV � li ði ¼ 2; . . . ;aVÞ. Therefore we can reverse the principal
and the auxiliary graphs of an isospectral pair of Kähler graphs.

Example 2. If we reverse the principal and the auxiliary graphs of the
Kähler graphs in Example 1, their eigenvalues of combinatorial Laplacians are

SpecðDAG
Þ ¼ f0; 5; 5; 5; 5; 7; 6�

ffiffiffi
5

p
; 6þ

ffiffiffi
5

p
; ð11�

ffiffiffiffiffi
17

p
Þ=2; ð11þ

ffiffiffiffiffi
17

p
Þ=2g;

SpecðDAÞ ¼ f0; 5; 5; 5; 5; 11=2; 6; 6; ð25�
ffiffiffi
5

p
Þ=4; ð25þ

ffiffiffi
5

p
Þ=4g:

Example 3. The following figures show another isospectral pair of Kähler
graphs consisted by isospectral regular graphs and their complements. Their
eigenvalues of combinatorial Laplacians are

SpecðDAG
Þ ¼ f0; 5; 5; ð9�

ffiffiffi
5

p
Þ=2; ð9þ

ffiffiffi
5

p
Þ=2; solutions of the equation

t5 � 21t4 þ 167t3 � 624t2 þ 1092t� 716 ¼ 0g;

SpecðDAÞ ¼ f0; 4; 4; 21=5; 21=5; solutions of the equation 55t5 � 54 � 118t4

þ 53 � 5557t3 � 52 � 130552t2 þ 5 � 1530052t� 7156316 ¼ 0g:

It is known that the pairs in Examples 1, 3 are the only pairs of isospectral
regular graphs whose numbers of vertices are not greater than ten (see [3, 4]).

Figure 1 Figure 2

Figure 3 Figure 4
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Therefore we have only four pairs of isospectral regular complete Kähler graphs
having ten vertices.

If we consider only A for the adjacency by 2-step bicolored paths and do not
consider principal graphs, we have many examples (c.f. [10]).

Example 4. The following vertex-transitive Kähler graphs are not isomor-
phic, but their derived graphs by 2-step bicolored paths are isomorphic, hence their
DA and DP have the same eigenvalues

SpecðDAÞ ¼
�
0;
9

2
;
9

2
;
1

2
9þ

ffiffiffi
3

p
cos

p

18

� �
;
1

2
9þ

ffiffiffi
3

p
cos

p

18

� �
;

1

2
9�

ffiffiffi
3

p
cos

5

18
p

� �
;
1

2
9�

ffiffiffi
3

p
cos

5

18
p

� �
;

1

2
9�

ffiffiffi
3

p
cos

7

18
p

� �
;
1

2
9�

ffiffiffi
3

p
cos

7

18
p

� ��
:

Since we treat connected regular graphs in Theorem 1, we here study
operations of graphs to treat Kähler graphs induced by non-connected graphs.
Given two graphs G1 ¼ ðV1;E1Þ, G2 ¼ ðV2;E2Þ we set V ¼ V1 UV2 and E ðpÞ ¼
E1 UE2. We define E ðaÞ in the following manner: Arbitrary v A V1 and w A V2

are adjacent to each other, two vertices in V1 are not adjacent to each other, and
nor are two vertices in V2. We call ðV ;E ðpÞ UE ðaÞÞ the joined Kähler graph of
G1 and G2, and denote it by G1 þ̂þG2.

Proposition 1. The eigenvalues DP of the joined Kähler graph G1 þ̂þG2 of
graphs G1 ¼ ðV1;E1Þ, G2 ¼ ðV2;E2Þ are 0; 1; . . . ; 1; 2, where the multiplicity of 1 is
aV1 þaV2 � 2.

Proof. We put mi ¼aVi ði ¼ 1; 2Þ. We denote by Mij an ðmi;mjÞ-matrix
all of whose entries are 1. The adjacency matrix AðpÞ for the principal graph
and the transition matrix PðaÞ for the auxiliary graph of G1 þ̂þG2 are

Figure 5. non-isomorphic vertex-transitive Kähler graphs
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AðpÞ ¼ AG1
O

O AG2

� �
; PðaÞ ¼

O
1

m2
M12

1

m1
M21 O

0
BBB@

1
CCCA:

Thus, if we take functions f : V1 ! R and g : V2 ! R then for the function

ð f ; gÞ : V ¼ V1 UV2 ! R we have PðaÞðð f ; gÞÞ ¼ 1

m2

P
w AV2

gðwÞ; 1

m1

P
v AV1

f ðvÞ
� �

.

We denote the function of degree on Gi also by dGi
: Vi ! R. We then have

A
1

1

� �
¼ dG1

dG2

� �
; A

1

�1

� �
¼ �dG1

dG2

� �
;

A
dv1 � dvi

0

� �
¼ 0

0

� �
; A

0

dw1
� dwj

� �
¼ 0

0

� �
;

where V1 ¼ fv1; . . . ; vm1
g, V2 ¼ fw1; . . . ;wm2

g and dv : V1 ! R, dw : V2 ! R de-
note characteristic functions. Thus we get the conclusion. r

By the proof of the above proposition we obtain the following.

Proposition 2. The eigenvalues DA of the joined Kähler graph G1 þ̂þG2 of
regular graphs G1 ¼ ðV1;E1Þ, G2 ¼ ðV2;E2Þ are 0; dG1

; . . . ; dG1
; dG2

; . . . ; dG2
; dG1

þ
dG2

, where dGi
appears aVi � 1 times.

Proof. We only need to change ð1;�1Þ to ðdG1
;�dG2

Þ. We then have

A
dG1

�dG2

� �
¼ AðpÞ �dG2

dG1

� �
¼ �dG1

dG2

dG1
dG2

� �
;

hence get

DA

dG1

�dG2

� �
¼

d 2
G1

þ dG1
dG2

�d 2
G2

� dG1
dG2

 !
¼ ðdG1

þ dG2
Þ dG1

�dG2

� �
:

We therefore obtain the conclusion. r

Given two graphs G1 ¼ ðV1;E1Þ, G2 ¼ ðV2;E2Þ we consider a Kähler graph
constructed by taking their complements and their join. One can easily find
that it is the Kähler graph ðG1 UG2ÞK by taking the complement of G1 UG2 ¼
ðV1 UV2;E1 UE2Þ.

Proposition 3. Let G1 ¼ ðV1;E1Þ, G2 ¼ ðV2;E2Þ be connected regular
graphs. We denote the eigenvalues of DAG1

as l1 < l2 a � � �a laV1
and the

eigenvalues of DAG2
as h1 < h2 a � � �a haV2

.
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(1) The eigenvalues of DA of ðG1 UG2ÞK are

0; dG1
� d̂d�1

G1
ðdG1

� ljÞðlj � dG1
� 1Þ ð j ¼ 2; . . . ;aV1Þ;

dG2
� d̂d�1

G2
ðdG2

� hkÞðhk � dG2
� 1Þ ðk ¼ 2; . . . ;aV2Þ; dG1

d̂d�1
G1
aV2 þ dG2

d̂d�1
G2
aV1:

where d̂dGi
¼aV1 þaV2 � dGi

� 1.
(2) The eigenvalues of DP of ðG1 UG2ÞK are

0; 1� ðdG1
d̂dG1

Þ�1ðdG1
� ljÞðlj � dG1

� 1Þ ð j ¼ 2; . . . ;aV1Þ;

1� ðdG2
d̂dG2

Þ�1ðdG2
� hkÞðhk � dG2

� 1Þ ðk ¼ 2; . . . ;aV2Þ; d̂d�1
G1
aV2 þ d̂d�1

G2
aV1:

Proof. By using the notation in the proof of Proposition 1, we see the
transition matrix PðaÞ of the auxiliary graph of ðG1 UG2ÞK is

PðaÞ ¼
d̂d�1
G1

AGc
1

d̂d�1
G1

M12

d̂d�1
G2

M21 d̂d�1
G2

AGc
2

 !
:

Therefore we have

A
1

1

� �
¼ dG1

dG2

� �
;

A

1

� dG2
d̂dG1

aV1

dG1
d̂dG2

aV2

0
B@

1
CA¼

dG1

d̂dG1

aV1 � dG1
� 1� dG2

d̂dG1
aV1

dG1
d̂dG2

( )

dG2

d̂dG2

aV1 �
dG2

d̂dG1
aV1

dG1
d̂dG2

aV2

ðaV2 � dG2
� 1Þ

( )
0
BBBBBB@

1
CCCCCCA:

Also, if we take eigenfunctions fj and gk for lj and hk with jb 2, kb 2,
respectively, as we have

P
v AV1

fjðvÞ ¼ 0 and
P

w AV2
gkðwÞ ¼ 0, we find

A
fj

0

� �
¼ d̂d�1

G1
ðdG1

� ljÞðlj � dG1
� 1Þ fj

0

 !
;

A
0

gk

� �
¼

0

d̂d�1
G2

ðdG2
� hkÞðhk � dG2

� 1Þgk

� �
:

Thus we get our conclusion for DA.
As we have

P

1

� d̂dG1
aV1

d̂dG2
aV2

0
B@

1
CA¼

1

d̂dG1

aV1 � dG1
� 1� d̂dG1

aV1

d̂dG2

( )

1

d̂dG2

aV1 �
d̂dG1

aV1

d̂dG2
aV2

ðaV2 � dG2
� 1Þ

( )
0
BBBBB@

1
CCCCCA;

we get our conclusion for DP. r
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4. Kähler graphs of product type

We give typical examples of Kähler graphs. Let G ¼ ðV ;EÞ and H ¼
ðW ;F Þ be two (non-oriented) graphs. We define their Kähler graph of Cartesian
product type G k̂kH as follows:

i) its set of vertices is the product V �W ;
ii) two vertices ðv;wÞ; ðv 0;w 0Þ A V �W are adjacent to each other by a

principal edge if and only if v, v 0 are adjacent to each other in G and
w ¼ w 0;

iii) two vertices ðv;wÞ; ðv 0;w 0Þ A V �W are adjacent to each other by an
auxiliary edge if and only if v ¼ v 0 and w, w 0 are adjacent to each other
in H.

Example 5. If G and H are graphs of real lines, which are non-circuit
regular graphs of degree 2, then their Kähler graph of Cartesian product type is
a graph of complex line.

When G, H are graphs of finite degrees, their Kähler graph of Cartesian
product type is of finite degree. At a vertex ðv;wÞ A V �W , we have d

ðpÞ
Gk̂kH

ðv;wÞ
¼ dGðvÞ and d

ðaÞ
Gk̂kH

ðv;wÞ ¼ dHðwÞ.

Theorem 2. Let G ¼ ðV ;EÞ, H ¼ ðW ;F Þ be finite graphs whose eignevalues
of DPG

and DPH
are mi ð1a iamð¼aVÞÞ and na ð1a aa nð¼aWÞÞ, respec-

tively. Then the eigenvalues of DP for their Kähler graph G k̂kH of Cartesian
product type are mi þ na � mina ð1a iam; 1a aa nÞ.

Moreover, if DPG
f ¼ mf , DPH

g ¼ ng and if we set a function jf ;g on V �W
by jf ;gðv;wÞ ¼ f ðvÞgðwÞ, then we have DPjf ;g ¼ ðmþ n� mnÞjf ;g.

Proof. We denote by AG ¼ ðaG
ij Þ the adjacency matrix of G and by PH ¼

ðpH
abÞ the transition matrix of H. Then the adjacency matrix AðpÞ ¼ ðaðpÞði;aÞ; ð j;bÞÞ

of the principal graph of G k̂kH and the transition matrix PðaÞ ¼ ðpðaÞði;aÞ; ð j;bÞÞ of
the auxiliary graph of G k̂kH are of the form

Figure 6. G ¼ H Figure 7. G k̂kH
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AðpÞ ¼

O aG
12I � � � aG

1mI

aG
21I O . .

. ..
.

..

. . .
. . .

.
aG
m�1mI

aG
m1I � � � aG

mm�1I O

0
BBBBBB@

1
CCCCCCA; PðaÞ ¼

PH O � � � O

O PH
. .
. ..

.

..

. . .
. . .

.
O

O � � � O PH

0
BBBBB@

1
CCCCCA;

where I denotes the unit matrix and the components of AðpÞ and PðaÞ are
expressed according to lexicographical order. If we denote their components,
we have a

ðpÞ
ði;aÞ; ð j;bÞ ¼ aG

ij dab and p
ðaÞ
ði;aÞ; ð j;bÞ ¼ dijp

H
ab. Corresponding to these if

we denote f ¼ tð f1; . . . ; fmÞ, g ¼ tðg1; . . . ; gnÞ and jf ;g ¼ tð f1g1; . . . ; f1gn; . . . ;
fmg1; . . . ; fmgnÞ, we then have

AðpÞPðaÞjf ;g ¼ AðpÞ

f1PHg

..

.

fmPHg

0
BB@

1
CCA¼

Xm
j¼1

aG
1j fjPHg

..

.

Xm
j¼1

aG
mj fjPHg

0
BBBBBBBB@

1
CCCCCCCCA

¼ ð1� nÞð1� mÞ
dGðv1Þ f1g

..

.

dGðvmÞ fmg

0
BB@

1
CCA;

where dGðviÞ denotes the degree of G at the vertex vi. Thus we have

DPjf ;g ¼ f1� ð1� nÞð1� mÞgjf ;g ¼ ðmþ n� mnÞjf ;g:

This completes the proof. r

For a finite Kähler graph G k̂kH of Cartesian product given by G ¼ ðV ;EÞ
and H ¼ ðW ;FÞ, its principal graph is a aW -copies of G. Therefore if two
graphs G1, G2 are combinatorially (resp. transitively) isospectral and if the
cardinalities of the sets of verticies of graphs H1, H2 are the same, then the
principal graphs of the Kähler graphs G1 k̂kH1, G2 k̂kH2 are combinatorially
(resp. transitively) isospectral. Hence we get the following.

Corollary 2. If G1, G2 are transitionary isospectral graphs and H1, H2 are
also transitionary isospectral graphs, then their Kähler graphs G1 k̂kH1, G2 k̂kH2 of
Cartesian product type are transitionary isospectral.

Remark 2. For Kähler graphs of Cartesian product type in Corollary 2,
their auxiliary graphs are also transitionary isospectral.

By the proof of Theorem 2 we have the following.

570 yaermaimaiti tuerxunmaimaiti and toshiaki adachi



Proposition 4. Let G be a regular finite graph of degree dG and H be
a finite graph. If DPG

f ¼ mf , DPH
g ¼ ng and if we set a function jf ;g on V �W

by jf ;gðv;wÞ ¼ f ðvÞgðwÞ, then the combinatorial Laplacian of G k̂kH satisfies
DAjf ;g ¼ dGðmþ n� mnÞjf ;g.

We note that there are pairs of isospectral regular graphs of same degree
(see for example [4, 5]).

Corollary 3. Let G1, G2 be isospectral regular graphs of same degree and
H1, H2 be transitionary isospectral graphs. Then their Kähler graphs G1 k̂kH1,
G2 k̂kH2 of Cartesian product type are combinatorially isospectral.

Most typical Kähler graphs of product type are Kähler graphs of Cartesian
product type. But for the sake of contrast, we here give definitions of other
Kähler graphs of product type which correspond to ordinary product operations
of graphs.

Given two graphs G ¼ ðV ;EÞ and H ¼ ðW ;F Þ, we define their Kähler graph
of strong product type G n̂nH as follows:

i) its set of vertices is the product V �W ;
ii) two vertices ðv;wÞ; ðv 0;w 0Þ A V �W are adjacent to each other by a prin-

cipal edge if and only if v, v 0 are adjacent to each other in G and w ¼ w 0;
iii) two vertices ðv;wÞ; ðv 0;w 0Þ A V �W are adjacent to each other by an

auxiliary edge if and only if either v ¼ v 0 and w, w 0 are adjacent to each
other in H or v, v 0 are adjacent to each other in G and w, w 0 are adjacent
to each other in H.

We define their Kähler graph of semi-tensor product type G n̂nH as follows:
i) its set of vertices is the product V �W ;
ii) two vertices ðv;wÞ; ðv 0;w 0Þ A V �W are adjacent to each other by a prin-

cipal edge if and only if v, v 0 are adjacent to each other in G and w ¼ w 0;
iii) two vertices ðv;wÞ; ðv 0;w 0Þ A V �W are adjacent to each other by an

auxiliary edge if and only if v, v 0 are adjacent to each other in G and
w, w 0 are adjacent to each other in H.

Example 6. If G and H are graphs of real lines, then their Kähler graphs
of strong product type and of semi-tensor product type are as Figures 8 and 9 in
the next page.

When G, H are graphs of finite degrees, their Kähler graph of strong product
type is of finite degrees. At a vertex ðv;wÞ A V �W , we have d

ðpÞ
Gn̂nH

ðv;wÞ ¼ dGðvÞ
and d

ðaÞ
Gn̂nH

ðv;wÞ ¼ dHðwÞfdGðvÞ þ 1g. Therefore we have the following property
on eigenvalues of Kähler graphs of strong product type.

Theorem 3. Let G ¼ ðV ;EÞ, H ¼ ðW ;F Þ be finite graphs whose eignevalues
of DPG

and DPH
are mi ð1a iamð¼aVÞÞ and na ð1a aa nð¼aWÞÞ, respec-
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tively. Suppose G is regular of degree dG. Then the eigenvalues of DP of their
Kähler graph G n̂nH of strong product type are

fð1þ dG � dGmiÞðmi þ na � minaÞ þ dGmig=fdG þ 1g ð1a iam; 1a aa nÞ:

Moreover, if DPG
f ¼ mf , DPH

g ¼ ng and if we set a function jf ;g on V �W
by jf ;gðv;wÞ ¼ f ðvÞgðwÞ, then we have

DPjf ;g ¼
ð1þ dG � dGmÞðmþ n� mnÞ þ dGm

dG þ 1
jf ;g:

Proof. For arbitrary finite graphs G;H, the adjacency matrix AðpÞ for the
principal graph of G n̂nH is the same as of G k̂kH, and the transition matrix PðaÞ

for the auxiliary graph of G n̂nH is given as

PðaÞ ¼

1

dGðv1Þ þ 1
PH

aG
12

dGðv1Þ þ 1
PH � � � aG

1m

dGðv1Þ þ 1
PH

aG
21

dGðv2Þ þ 1
PH

1

dGðv2Þ þ 1
PH

. .
. ..

.

..

. . .
. . .

. aG
m�1m

dGðvm�1Þ þ 1
PH

aG
m1

dGðvmÞ þ 1
PH � � � aG

mm�1

dGðvmÞ þ 1
PH

1

dGðvmÞ þ 1
PH

0
BBBBBBBBBBBBB@

1
CCCCCCCCCCCCCA
:

That is, their components are given as a
ðpÞ
ði;aÞ; ð j;bÞ ¼ aG

ij dab and p
ðaÞ
ði;aÞ; ð j;bÞ ¼

pH
abðdij þ aG

ij Þ=fdGðviÞ þ 1g. Thus we have

AðpÞPðaÞ ¼ pH
ab aG

ij þ
Xm
k¼1

aG
ika

G
kj

 !�
fdGðviÞ þ 1g

 !
:

We now compute eigenvalues of G n̂nH when G is regular. We have

Figure 8. G n̂nH Figure 9. G n̂nH
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DPjf ;g ¼ jf ;g �
1

dG
AðpÞPðaÞjf ;g

¼ figa �
1

dGðdG þ 1Þ
Xn
b¼1

pH
abgb

 ! Xm
j¼1

aG
ij fj þ

Xm
j¼1

Xm
k¼1

aG
ika

G
kj fj

 ! !

¼ figa �
ð1� nÞð1� mÞ

dG þ 1
ga fi þ

Xm
k¼1

aG
ik fk

 ! !

¼ figa �
ð1� nÞð1� mÞ

dG þ 1
f1þ dGð1� mÞg figa

� �

¼ ð1þ dG � dGmÞðmþ n� mnÞ þ dGm

dG þ 1
jf ;g:

Thus we get the conclusion. r

Corollary 4. Let G1, G2 be isospectral regular finite graphs of same degree
and H1, H2 be transitionary isospectral finite graphs. Then their Kähler graphs
G1 n̂nH1, G2 n̂nH2 of strong product type are isospectral.

Remark 3. For Kähler graphs of strong product type in Corollary 4, their
auxiliary graphs are also transitionary isospectral.

When G, H are graphs of finite degrees, it is clear that their Kähler graph
of semi-tensor product type is of finite degrees. At a vertex ðv;wÞ A V �W ,
we have d

ðpÞ
Gn̂nH

ðv;wÞ ¼ dGðvÞ and d
ðaÞ
Gn̂nH

ðv;wÞ ¼ dHðwÞdGðvÞ. Therefore we have

the following property on eigenvalues of Kähler graphs of semi-tensor product
type.

Theorem 4. Let G ¼ ðV ;EÞ, H ¼ ðW ;F Þ be finite graphs whose eignevalues
of DPG

and DPH
are mi ð1a iamð¼aVÞÞ and na ð1a aa nð¼aWÞÞ. Then

the eigenvalues of DP of their Kähler graph G n̂nH of semi-tensor product type
are

fð1� miÞðmi þ na � minaÞ þ mig ð1a iam; 1a aa nÞ:

Moreover, if DPG
f ¼ mf , DPH

g ¼ ng and if we set a function jf ;g on V �W
by jf ;gðv;wÞ ¼ f ðvÞgðwÞ, then we have

DPjf ;g ¼ fð1� mÞðmþ n� mnÞ þ mgjf ;g:

Proof. For arbitrary finite graphs G, H, the adjacency matrix AðpÞ for the
principal graph of G n̂nH is the same as of G k̂kH, and the transition matrix PðaÞ

for its auxiliary graph is given as
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PðaÞ ¼

O
aG
12

dGðv1Þ
PH � � � aG

1m

dGðv1Þ
PH

aG
21

dGðv2Þ
PH O . .

. ..
.

..

. . .
. . .

. aG
m�1m

dGðvm�1Þ
PH

aG
m1

dGðvmÞ
PH � � � aG

mm�1

dGðvmÞ
PH O

0
BBBBBBBBBBBBB@

1
CCCCCCCCCCCCCA
:

That is, their components are given as a
ðpÞ
ði;aÞ; ð j;bÞ ¼ aG

ij dab and p
ðaÞ
ði;aÞ; ð j;bÞ ¼

aG
ij p

H
ab=dGðviÞ ¼ pG

ij p
H
ab. Here, we denote by PG ¼ ðpG

ij Þ the transition matrix of

G. Thus we have

AðpÞPðaÞ ¼ pH
ab

Xm
k¼1

aG
ik p

G
kj

 !
:

Therefore, we have

DPjf ;g ¼ figa �
1

dGðviÞ
Xn
b¼1

pH
abgb

 ! Xm
j¼1

Xm
k¼1

aG
ik p

G
kj fj

 ! !

¼ figa �
ð1� mÞð1� nÞ

dGðviÞ
ga

Xm
k¼1

aG
ik fk

 ! !

¼ ð figa � ð1� nÞð1� mÞ2figaÞ ¼ f1� ð1� nÞð1� mÞ2gjf ;g:

Thus we get the conclusion. r

Proposition 5. Let G be a regular finite graph of degree dG and H be
a finite graph. If DPG

f ¼ mf , DPH
g ¼ ng and if we set a function jf ;g on V �W

by jf ;gðv;wÞ ¼ f ðvÞgðwÞ, then the combinatorial Laplacian DA of G n̂nH satisfies
DAjf ;g ¼ dGfð1� mÞðmþ n� mnÞ þ mgjf ;g.

Corollary 5. Let G1, G2 be transitionary isospectral finite graphs and H1,
H2 be also transitionary isospectral finite graphs.

(1) Their Kähler graphs G1 n̂nH1, G2 n̂nH2 of semi-tensor product type are
transitionary isospectral.

(2) If G1, G2 are regular and of same degree, then their Kähler graphs
G1 n̂nH1, G2 n̂nH2 of semi-tensor product type are ðcombinatoriallyÞ
isospectral.

Remark 4. For Kähler graphs of semi-tensor product type in Corollary 5
(2), their auxiliary graphs are also transitionary isospectral.
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We can consider lexicographical products. Given two graphs G ¼ ðV ;EÞ
and H ¼ ðW ;FÞ, we define their Kähler graph of lexicographical product type
G .H as follows:

i) its set of vertices is the product V �W ;
ii) two vertices ðv;wÞ; ðv 0;w 0Þ A V �W are adjacent to each other by a

principal edge if and only if v, v 0 are adjacent to each other in G and
w ¼ w 0;

iii) two vertices ðv;wÞ; ðv 0;w 0Þ A V �W are adjacent to each other by an
auxiliary edge if and only if w, w 0 are adjacent to each other in H.

Example 7. If we take G and H to graphs of real lines, then their Kähler
graph of lexicographical product type is as Figure 10.

When G ¼ ðV ;EÞ is a finite graph and H ¼ ðW ;FÞ is a graph of finite
degree, their Kähler graph of lexicographical product type is of finite degrees.
At a vertex ðv;wÞ A V �W , we have d

ðpÞ
G.Hðv;wÞ ¼ dGðvÞ and d

ðaÞ
G.Hðv;wÞ ¼

aVdHðwÞ. In order to study eigenvalues of G .H, we consider the mean M
on V which is given by Mf ðvÞ ¼

P
u AV f ðuÞ. Eigenvalues of M are 0; . . . ; 0;m,

where m ¼aV . We denote as V ¼ fv1; . . . ; vmg and define a function e1 by
e1ðvÞ ¼ 1 for all v A V , and define functions e2; . . . ; em by ek ¼ dv1 � dvk with
characteristic functions dv. Then e1 is an eigenfunction corresponding to m, and
e2; . . . ; em are linearly independent eigenfunctions corresponding to 0. Therefore
we have the following property on eigenvalues of Kähler graphs of lexicographical
product type.

Theorem 5. Let G ¼ ðV ;EÞ be a finite graph and H ¼ ðW ;FÞ be a finite
graph whose eignevalues of DPH

are na ð1a aa nð¼aWÞÞ. Then the eigenvalues
of DP of their Kähler graph G .H of lexicographical product type are 1; . . . ; 1;
n1; . . . ; nn, where 1 appears ðaV � 1ÞaW times.

Figure 10. G .H

575isospectral kähler graphs



Moreover, for k ðk ¼ 1; . . . ;mð¼aVÞÞ and for a function g with DPH
g ¼ ng

we define a function ck;g on V �W by ck;gðv;wÞ ¼ ekðvÞgðwÞ. Then we have

DPc1;g ¼ nc1;g and DPck;g ¼ ck;g ðk ¼ 2; . . . ;mÞ:

Proof. For arbitrary finite graphs G, H, the adjacency matrix AðpÞ for the
principal graph of G .H is the same as of G k̂kH, and the transition matrix PðaÞ

for its auxiliary graph is given as

PðaÞ ¼

1

m
PH � � � 1

m
PH

..

. ..
.

1

m
PH � � � 1

m
PH

0
BBBBB@

1
CCCCCA:

That is, a
ðpÞ
ði;aÞ; ð j;bÞ ¼ aG

ij dab and p
ðaÞ
ði;aÞ; ð j;bÞ ¼ pH

ab=m. Thus we have

Að pÞPðaÞ ¼ 1

m
pH
ab

Xm
k¼1

aG
ik

 !
¼ dGðiÞ

m
pH
ab

� �
:

We therefore have

DPck;g ¼ ekðviÞga �
1

m

Xn
b¼1

pH
abgb

 ! Xm
j¼1

ekðvjÞ
 ! !

¼
ðga � ð1� nÞgaÞ ¼ nj1;g; k ¼ 1;

ðekðviÞgaÞ ¼ jk;g; k0 1:

�

Thus we get the conclusion. r

Corollary 6. Let G1, G2 be finite graphs and H1, H2 be transitionary
isospectral finite graphs. Suppose cardinalities of the sets of vertices of G1 and of
G2 coincide. Then their Kähler graphs G1 .H1, G2 .H2 of lexicographical product
type are transitionary isospectral.

For construction of Kähler graphs, we can generalize the notion of Kähler
graphs of lexicographical product type to the following. Let H ¼ ðW ;F Þ be
a finite graph and Ga ¼ ðVa;EaÞ ða ¼ 1; . . . ; n ¼aWÞ be finite graphs. We
denote W ¼ fw1; . . . ;wng. We set V ¼ V1 U � � �UVn and E ðpÞ ¼ E1 U � � �UEn.

We define E ðaÞ in the following manner: Two vertices v; v 0 A V are adjacent
to each other in auxiliary graph if and only if v A Vi, v 0 A Vj and wi, wj are

adjacent to each other in H. We denote this Kähler graph ðV ;E ðpÞ UE ðaÞÞ by
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HKðG1; . . . ;GnÞ and call it a Kähler extension of H by G1; . . . ;Gn. It is clear
that G .H ¼ HKðG; . . . ;GÞ and that G1 þ̂þG2 ¼ HKðG1;G2Þ with H ¼ ðfw1;w2g;
fðw1;w2ÞgÞ.

We here give another way to construct Kähler graphs. Since the operations
of taking complement graphs and of taking products are independent, we may do
both of them. For example, given two graphs G ¼ ðV ;EÞ, H ¼ ðW ;FÞ we define
a Kähler graph G k̂kK H as follows:

i) its set of vertices is the product V �W ;
ii) two vertices ðv;wÞ; ðv 0;w 0Þ A V �W are adjacent to each other by a

principal edge if and only if v, v 0 are adjacent to each other in G and
w ¼ w 0;

iii) two vertices ðv;wÞ; ðv 0;w 0Þ A V �W are adjacent to each other by an
auxiliary edge if and only if either v ¼ v 0 and w, w 0 are adjacent to
each other in H or w ¼ w 0, v0 v 0 and v, v 0 are not adjacent to each
other in G.

For the sake that this definition makes sense, we suppose G is not complete.

One may easily find the definitions of G n̂nK H, G n̂nK H and G .K H.

Example 8. When G and H are graphs of real lines, principal and auxiliary

edges emanating from a vertex of their Kähler graphs G k̂kK H, G n̂nK H, G n̂nK H
and G .K H are like the following figures.

Proposition 6. Let G ¼ ðV ;EÞ, H ¼ ðW ;FÞ be finite regular graphs.
Suppose G is connected. We denote the eignevalues of DPG

and DPH
by mi

ð1a iamð¼aVÞ; m1 ¼ 0Þ and na ð1a aa nð¼aWÞÞ, respectively. Then the
eigenvalues of DP of the regular Kähler graph G k̂kK H are

dH

D
na; 1�

1

D
ð1� miÞðdGmi � dHna � dG þ dH � 1Þ ð2a iam; 1a aa nÞ;

where D ¼ m� dG þ dH � 1.

Proof. The principal graph of G k̂kK H is the same as of G k̂kH, and the
transition matrix PðaÞ for its auxiliary graph is given as

Figure 11. G k̂kK H Figure 12. G n̂nK H Figure 13. G n̂nK H Figure 14. G .K H
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PðaÞ ¼

1

D
AH

aGc

12

D
I � � � aGc

1m

D
I

aGc

21

D
I

1

D
AH

. .
. ..

.

..

. . .
. . .

. aGc

m�1m

D
I

aGc

m1

D
I � � � aGc

mm�1

D
I

1

D
AH

0
BBBBBBBBBBBB@

1
CCCCCCCCCCCCA
:

That is, their components are given as a
ðpÞ
ði;aÞ; ð j;bÞ ¼ aG

ij dab and p
ðaÞ
ði;aÞ; ð j;bÞ ¼

ðaGc

ij dab þ dija
H
abÞ=D. Therefore we have

AðpÞPðaÞ ¼ 1

D
aG
ij a

H
ab þ

Xm
k¼1

aG
ika

Gc

kj dab

( ) !
:

For functions f , g satisfying DPG
f ¼ m f and DPH

g ¼ ng we define a func-
tion jf ;g as in the proof of Theorem 2. Since we have AG f ¼ dGð1� mÞ f and
G is connected, we see that AGcf ¼ fm� dG � 1g f when m ¼ 0 and AGc f ¼
fdGðm� 1Þ � 1g f when m0 0 (see the proof of Theorem 1). As AHg ¼
dHð1� nÞg, we find

DPjf ;g ¼
1� 1

D
ðm� dG � 1þ dH � dHnÞ

� �
jf ;g; when m ¼ 0;

1� 1

D
ð1� mÞðdGm� dG � 1þ dH � dHnÞ

� �
jf ;g; when m0 0;

8>>><
>>>:

and get the conclusion. r

By the same argument we have the following.

Proposition 7. Let G ¼ ðV ;EÞ, H ¼ ðW ;FÞ be finite regular graphs.
Suppose G is connected. We denote the eignevalues of DPG

and DPH
by mi

ð1a iamð¼aVÞ; m1 ¼ 0Þ and na ð1a aa nð¼aWÞÞ, respectively. Then the
eigenvalues of DP of the regular Kähler graph G n̂nK H are

dHðdG þ 1Þ
D

na; 1� 1

D
ð1� miÞðdGmi � dG � 1ÞðdHna � dH þ 1Þ

ð2a iam; 1a aa nÞ;

where D ¼ mþ dGdH � dG þ dH � 1.

Proof. The components of the transition matrix PðaÞ for its auxiliary graph
is given as p

ðaÞ
ði;aÞ; ð j;bÞ ¼ ðaGc

ij dab þ ðdij þ aG
ij ÞaH

abÞ=D. For functions f , g satisfying
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DPG
f ¼ mf and DPH

g ¼ ng we define a function jf ;g as in the proof of Theorem
2. By the same argument as in the proof of Proposition 6, we find

Pjf ;g ¼

1

D
ðdHð1� nÞðdG þ 1Þ þm� dG � 1Þjf ;g; when m ¼ 0;

1

D
ð1� mÞðdGm� dG � 1ÞðdHn� dH þ 1Þjf ;g; when m0 0;

8>><
>>:

hence get the conclusion. r

Proposition 8. Let G ¼ ðV ;EÞ, H ¼ ðW ;FÞ be finite regular graphs.
Suppose G is connected. We denote the eignevalues of DPG

and DPH
by mi

ð1a iamð¼aVÞ; m1 ¼ 0Þ and na ð1a aa nð¼aWÞÞ, respectively. Then the
eigenvalues of DP of the regular Kähler graph G n̂nK H are

dGdH

D
na; 1� 1

D
ð1� miÞfdGdHð1� miÞð1� naÞ þ dGmi � dG � 1g

ð2a iam; 1a aa nÞ;

where D ¼ mþ dGdH � dG � 1.

Proof. The components of the transition matrix PðaÞ for its auxiliary graph
is given as p

ðaÞ
ði;aÞ; ð j;bÞ ¼ ðaGc

ij dab þ aG
ij a

H
abÞ=D. For functions f , g satisfying DPG

f

¼ mf and DPH
g ¼ ng we define a function jf ;g as in the proof of Theorem 2. By

the same argument as in the proof of Proposition 6, we find

Pjf ;g ¼

1

D
ðdGdHð1� nÞ þaV � dG � 1Þjf ;g; when m ¼ 0;

1

D
ð1� mÞðdGdHð1� mÞð1� nÞ þ dGm� dG � 1Þjf ;g; when m0 0;

8>><
>>:

hence get the conclusion. r

Proposition 9. Let G ¼ ðV ;EÞ, H ¼ ðW ;FÞ be finite regular graphs.
Suppose G is connected. We denote the eignevalues of DPG

and DPH
by mi

ð1a iamð¼aVÞ; m1 ¼ 0Þ and na ð1a aa nð¼aWÞÞ, respectively. Then the
eigenvalues of DP of the Kähler graph G .K H are

mdH

D
na; 1� 1

D
ð1� miÞðdGmi � dG � 1Þ ð2a iam; 1a aa nÞ;

where D ¼ mðdH þ 1Þ � dG � 1 and the latter appears n times.

Proof. The components of the transition matrix PðaÞ for its auxiliary graph
is given as p

ðaÞ
ði;aÞ; ð j;bÞ ¼ ðaGc

ij dab þ aH
abÞ=D. For functions f , g satisfying DPG

f ¼
mf and DPH

g ¼ ng we define a function jf ;g as in the proof of Theorem 2. Since
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P
v AV f ðvÞ ¼ 0 when m0 0, by the same argument as in the proof of Proposi-

tion 6, we find

Pjf ;g ¼

1

D
ðmdHð1� nÞ þm� dG � 1Þjf ;g; when m ¼ 0;

1

D
ð1� mÞðdGm� dG � 1Þjf ;g; when m0 0;

8>><
>>:

hence get the conclusion. r
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