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EXISTENCE AND MULTIPLE SOLUTIONS FOR NONAUTONOMOUS

SECOND ORDER SYSTEMS WITH NONSMOOTH POTENTIALS

Yan Ning* and Tianqing An

Abstract

This paper is concerned with the nonautonomous second order Hamiltonian systems

with nondi¤eretiable potentials. By using the nonsmooth least action principle and the

nonsmooth local linking theorem, we obtain some new existence and multiplicity results

for the periodic solutions.

1. Introduction and main results

In this paper we consider the following second order periodic system with a
nonsmooth potential

€uuðtÞ A qF ðt; uðtÞÞ a:e: t A ½0;T �;
uð0Þ � uðTÞ ¼ _uuð0Þ � _uuðTÞ ¼ 0;

�
ð1Þ

where T > 0, the potential function F : ½0;T � � RN ! R is locally Lipschitz
continuous in x and qF ðt; xÞ denotes the Clarke subdi¤erential of F for x.

The system ð1Þ has been studied in the past decades and many excellent
results appeared, for example, the work of D. Pasca [10]. Systems driven by
the vector p-Laplacian or p-Laplacian-like operators were studied by E. H.
Papageorgiou and N. S. Papageorgiou [9], S. Aizicovici and N. S. Papageorgiou
[1], D. Pasca [11] and the reference therein. We only focus on the semilinear
case (i.e., p ¼ 2) in the present paper, and our approach is based on the
nonsmooth least action principle by [4] and a nonsmooth local linking theorem
by [6]. It should be noted that our results are di¤erent from that of those
mentioned above even letting p ¼ 2 in their theorems. Examples are given to
show the di¤erence.
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When Fðt; xÞ is continuously di¤erentiable in x, the problem ð1Þ becomes the
second order Hamiltonian systems

€uuðtÞ ¼ ‘Fðt; uðtÞÞ a:e: t A ½0;T �;
uð0Þ � uðTÞ ¼ _uuð0Þ � _uuðTÞ ¼ 0:

�
ð2Þ

There have been a lot of contributions on problem ð2Þ, and we can refer to
Mawhin-Willem [7], Tang [12], Tang-Wu [13], Aizmahin-An [2] and so on. In
these works, the following assumption is necessary:

ðAÞ F ðt; xÞ is measurable in t for every x A RN and continuously di¤er-
entiable in x for a.e. t A ½0;T �, and there exist a A CðRþ;RþÞ, b A L1ð0;T ;RþÞ
such that

jF ðt; xÞja aðjxjÞbðtÞ; j‘Fðt; xÞja aðjxjÞbðtÞ

for all x A RN and a.e. t A ½0;T �, where Rþ is the set of all nonnegative real
number.

Throughout this paper, we always suppose that F ¼ F1 þ F2 with F1, F2

satisfying the following assumption ðA 0Þ:
� F1, F2 are integrable in t over ½0;T � for each x A RN ;
� F1 is strictly di¤erentiable and F2 is locally Lipschitz continuous in x for
each t A ½0;T �.

Let H 1
T be the usual Sobolev space with norm

kuk ¼
ðT
0

juðtÞj2 dtþ
ðT
0

j _uuðtÞj2 dt
� �1=2

:

The corresponding functional j : H 1
T ! R is given by

jðuÞ ¼ 1

2

ðT
0

j _uuðtÞj2 dtþ
ðT
0

F ðt; uðtÞÞ dt:

The main results of this paper are as follows:

Theorem 1.1. Assume that F ¼ F1 þ F2, where F1, F2 satisfy assumption
ðA 0Þ above and the following conditions:

ði1Þ There exists k A L2ð0;T ;RÞ such that for all x1; x2 A RN and all t A ½0;T �

jF1ðt; x1Þ � F1ðt; x2Þja kðtÞjx1 � x2j:ð3Þ

ði2Þ There exist f ; g A Lyð0;T ;RþÞ and a A ½0; 1Þ such that for all x A RN and
a.e. t A ½0;T �,

x A qF2ðt; xÞ ) jxja f ðtÞjxja þ gðtÞ:ð4Þ

ði3Þ There exists h A L1ð0;TÞ such that for a.e. t A ½0;T � and all x A RN

F1ðt; xÞb hðtÞ;ð5Þ
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and

jxj�2a

ðT
0

F2ðt; xÞ dt ! þy as jxj ! y:ð6Þ

Then problem ð1Þ possesses at least one solution which minimizes the functional
j on H 1

T .

Remark 1.1. The function F1ðt; xÞ is globally Lipschitz continuous in x on
H 1

T provided the condition ð3Þ holds. If Fðt; xÞ is measurable in t for every
x A RN and continuously di¤erentiable in x for a.e. t A ½0;T �, the inequality ð4Þ
becomes

j‘F2ðt; xÞja f ðtÞjxja þ gðtÞ:
Then our Theorem 1.1 generalizes Theorem 1 in [12].

Remark 1.2. There are functions F satisfying our Theorem 1:1 but not
satisfying the results in [1, 2, 7, 9–13]. For example, let F ðt; xÞ ¼ F1ðt; xÞ þ F2ðt; xÞ
with

F1ðt; xÞ ¼
t2

2
jsin xj; F2ðt; xÞ ¼

� yðtÞ
2

jxj2; jxja 1;

f ðtÞ
aþ 1

jxjaþ1 � yðtÞ
2

� f ðtÞ
aþ 1

; jxj > 1

8>>><
>>>:

for all ðt; xÞ A ½0;T � � RN ; where a A ½0; 1Þ, y; f A Lyð0;T ;RþÞ:

Theorem 1.2. Assume that F ¼ F1 þ F2 with
Ð T
0 Fðt; 0Þ dt ¼ 0 and F1, F2

satisfy assumptions of Theorem 1.1. Suppose that there exist d > 0 and an integer
kb 0 such that

� 1

2
ðk þ 1Þ2o2jxj2 aF ðt; xÞ � F ðt; 0Þa� 1

2
k2o2jxj2ð7Þ

for all jxja d and a.e. t A ½0;T �, where o ¼ 2p

T
. Then problem ð1Þ has at least

three distinct solutions in H 1
T .

Remark 1.3. Theorem 1:2 generalizes Theorem 2 in [13] and Thorem 4 in
[12]. Suppose that F ¼ F1 þ F2 and

F1ðt; xÞ ¼
t2

2
jxj; F2ðt; xÞ ¼

� 1

2
o2jxj2 � t2

2
jxj; jxja 1;

t2

aþ 1
jxjaþ1 � 1

2
o2 � t2

2
� t2

aþ 1
; jxj > 1

8>>><
>>>:

for all ðt; xÞ A ½0;T � � RN ; where a A ½0; 1Þ, o ¼ 2p

T
. Then the function F satisfies

Theorem 1:2 but not satisfies Theorem 2 in [13] and Thorem 4 in [12].
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Theorem 1.3. Assume that F ¼ F1 þ F2 with
Ð T
0 Fðt; 0Þ dt ¼ 0 and F1, F2

satisfy assumptions of Theorem 1.1. Suppose that

lim inf
x!0

Fðt; xÞ
jxj2

b� 2p2

T 2
ð8Þ

for a.e. t A ½0;T �, and there exist d̂d > 0 such that for all jxja d̂dðT
0

F ðt; xÞ dta 0:ð9Þ

Then problem ð1Þ has at least three distinct solutions in H 1
T :

Remark 1.4. Theorem 1:3 is new even in the case that F A C1 for system
ð2Þ. There are functions F satisfying Theorem 1:3 but not satisfying the results
in [1, 2, 7, 9–13]. For example, let F ¼ F1 þ F2 and

F1ðt; xÞ1 0; F2ðt; xÞ ¼
� 2p2

T 2
jxj2; jxja 1;

2t3

aþ 1
jxjaþ1 � 2p2

T 2
� 2t3

aþ 1
; jxj > 1

8>>><
>>>:

for all ðt; xÞ A ½0;T � � RN ; where a A ½0; 1Þ:

2. Basic definitions and preliminary results

Let ðX ; k � kÞ be a real Banach space. We denote by X � the dual space of
X , while h� ; �i stands for the duality pairing between X and X �. A functional
h : X ! R is called locally Lipschitz continuous if for every u A X there exist a
neighborhood Vu of u and a constant Lu b 0 such that

jhðzÞ � hðwÞjaLukz� wk; Ez;w A Vu:

If u; v A X , we write hoðu; vÞ for the generalized directional derivative of h at the
point u along the direction v, i.e.,

h�ðu; vÞ :¼ lim sup
w!u; t!0þ

hðwþ tvÞ � hðwÞ
t

:

It is well known that h� is upper semicontinuous on X � X [5, Proposition 2.1.1].
For locally Lipschitz continuous functionals h1; h2 : X ! R, we have

ðh1 þ h2Þ�ðx; zÞa h�1ðx; zÞ þ h�2ðx; zÞ; Ex; z A X :

The generalized gradient of the function h in u, denoted by qhðuÞ, is the set
defined by

qhðuÞ :¼ fu� A X � : hu�; via h�ðu; vÞ; Ev A Xg:
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Proposition 2.1.2 of [5] ensures that qhðuÞ turns out nonempty, convex, weak�

compact, thus the function lðxÞ ¼ minw A qhðxÞkwkX � exists and is lower semi-
continuous.

We call h : X ! R is strictly di¤erentiable in u if there exist an element
x A X � such that for each v,

lim
w!u; t!0þ

hðwþ tvÞ � hðwÞ
t

¼ hx; vi;

and provided the convergence is uniform for v in compact sets (This last condi-
tion is automatic if h is Lipschitz near u, see [5], P30).

If f ; g : X ! X be locally Lipschitz continuous, then

qð f þ gÞðxÞH qf ðxÞ þ qgðxÞð10Þ

for all x A X . Further, if at least one of the functional f , g is strictly di¤erenti-
able at x then equality holds, and qf ðxÞ ¼ f f 0ðxÞg when f A C 1ðXÞ.

A point u A X is said to be a critical point of h if

h�ðu; vÞb 0; Ev A X ;

which clearly means y A qhðuÞ.
We say the locally Lipschitz functional h satisfies the nonsmooth Cerami

condition if any sequence fxng in X such that fhðxnÞg is bounded and
ð1þ kxnkÞlðxnÞ ! 0 possesses a strongly convergent subsequence.

For convenience to quote we state some well known results, for more details,
we can refer to [3, 8].

Lemma 2.1 ([5], Theorem 2.3.7). Let x and y be points in X , and suppose
that f is Lipschitz on open set containing the line segment ½x; y�. Then there exists
a point u in ðx; yÞ such that

f ðyÞ � f ðxÞ A hqf ðuÞ; y� xi:

Lemma 2.2 ([6], Theorem 8). If X is a reflexive Banach space, X ¼ Y lV
with dim Y < þy, f : X ! R is a locally Lipschitz function which is bounded from
below, satisfies the nonsmooth Cerami condition, fð0Þ ¼ 0, infX f < 0 and there
exists r > 0 such that

fðxÞa 0; for x A Y ; kxka r;

fðxÞb 0; for x A V ; kxka r:

Then f has at least two nontrivial critical points.

3. Proof of Theorems

For every u A H 1
T , let u ¼ 1

T

Ð T
0 uðtÞ dt, ~uuðtÞ ¼ uðtÞ � u. Then the following

inequalities hold:
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k~uuk2y a
T

12

ðT
0

j _uuðtÞj2 dt; ðSobolev’s inequalityÞ

ðT
0

j~uuðtÞj2 dta T 2

4p2

ðT
0

j _uuðtÞj2 dt: ðWirtinger’s inequalityÞ

kuky aCkuk;ð11Þ
where C > 0 is a constant and kuky ¼ maxt A ½0;T �juðtÞj.

Define two functionals j1; j2 : H
1
T ! R as follows:

j1ðuÞ ¼
1

2

ðT
0

j _uuðtÞj2 dt; j2ðuÞ ¼
ðT
0

F ðt; uðtÞÞ dt:

It is easy to verify that j1 is continuously di¤erentiable and weakly lower semi-
continuous (w.l.s.c.), and j2 is locally Lipschitz continuous on H 1

T : Since H 1
T is

embedded compactly and densely in L2ð0;T ;RNÞ, let ĵj2 : L2ð0;T ;RNÞ ! R such
that j2 ¼ ĵj2jH 1

T
, then for every u A H 1

T , x A qj2ðuÞ,
qj2ðuÞJ qĵj2ðuÞJ ðL2ð0;T ;RNÞÞ� ¼ L2ð0;T ;RNÞ

and xðtÞ A qFðt; uðtÞÞ a.e. on ½0;T �. Moreover,

hj 0
1ðuÞ; vi ¼

ðT
0

ð _uuðtÞ; _vvðtÞÞ dt; Eu; v A H 1
T :

Lemma 3.1. Let F : ½0;T � � RN ! R such that F ¼ F1 þ F2, where F1, F2

satisfy assumption ðA 0Þ, ð3Þ and ð4Þ. Then the critical point of j corresponds to
the solutions of problem ð1Þ.

Proof. From the condition ð3Þ, Obviously F1 satisfies the Hypothesis A of
Theorem 2.7.5 in [5]. Since f ; g A Lyð0;T ;RþÞ, there exists a constant c0 > 0
such that

h A qF2ðt; xÞ ) jhja f ðtÞjxja þ gðtÞa c0ðjxj þ 1Þ; Ex A RN ; t A ½0;T �;
i.e., F2 satisfies the Hypothesis B of Theorem 2.7.5 in [5]. Thus

q

ðT
0

F1ðt; uÞ dt
� �

H
ðT
0

qF1ðt; uÞ dt; q

ðT
0

F2ðt; uÞ dt
� �

H
ðT
0

qF2ðt; uÞ dt:

Corollary 1 of Proposition 2.3.3 from [5] and ð10Þ imply that, if at least one of
the functions F1, F2 is strictly di¤erentiable in x for all t A ½0;T � then for all
u A H 1

T ,

qj2ðuÞH q

ðT
0

F1ðt; uÞ dt
� �

þ q

ðT
0

F2ðt; uÞ dt
� �

H
ðT
0

qF1ðt; uÞ dtþ
ðT
0

qF2ðt; uÞ dt ¼
ðT
0

qFðt; uÞ dt:

526 yan ning and tianqing an



Therefore, from ð10Þ one has

qjðuÞH qj1ðuÞ þ qj2ðuÞ

H qj1ðuÞ þ
ðT
0

qF ðt; uÞ dt

¼ qj1ðuÞ þ
ðT
0

qF1ðt; uÞ dtþ
ðT
0

qF2ðt; uÞ dt;

i.e., for every x A qjðuÞ, there exist mappings t 7! qðtÞ and t 7! qiðtÞ ði ¼ 1; 2Þ
from ½0;T � to ðH 1

TÞ
� with qðtÞ A qF ðt; uðtÞÞ and qiðtÞ A qFiðt; uðtÞÞ a.e. t A ½0;T �

such that for every v A H 1
T ,

hx; vi ¼
ðT
0

ð _uuðtÞ; _vvðtÞÞ dtþ
ðT
0

ðqðtÞ; vðtÞÞ dt

¼
ðT
0

ð _uuðtÞ; _vvðtÞÞ dtþ
ðT
0

ðq1ðtÞ; vðtÞÞ dtþ
ðT
0

ðq2ðtÞ; vðtÞÞ dt:

If u A H 1
T is a critical point of j, then there exists q0ðtÞ A qF ðt; uÞ such that for all

v A H 1
T ,

0 ¼ hy; vi ¼
ðT
0

ð _uu; _vvÞ dtþ
ðT
0

ðq0ðtÞ; vðtÞÞ dt:

It follows easily that q0ðtÞ ¼ €uuðtÞ a.e. t A ½0;T �, thus

€uuðtÞ A qFðt; uðtÞÞ a:e: on ½0;T �;

which means that the critical point of j corresponds to the solutions of problem
ð1Þ, which completes the proof. r

Proof of Theorem 1.1. It follows from conditions ð3Þ, Hölder inequality and
Wirtinger’s inequality that

ðT
0

F1ðt; uðtÞÞ dt�
ðT
0

F1ðt; uÞ dt
����

����
a

ðT
0

jF1ðt; uðtÞÞ � F1ðt; uÞj dta
ðT
0

kðtÞj~uuðtÞj dt

a

ðT
0

jkðtÞj2 dt
� �1=2 ðT

0

j~uuðtÞj2 dt
� �1=2

a
T

2p
kkkL2

ðT
0

j _uuðtÞj2 dt
� �1=2
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for all u A H 1
T : From Lemma 2.1 it follows that for each t A ½0;T �; there exist

s A ½0; 1� and x A qF2ðt; uþ s~uuÞ such that F2ðt; uðtÞÞ � F2ðt; uÞ ¼ ðxðtÞ; ~uuðtÞÞRN : By
conditions ð4Þ and Sobolev’s inequality one has

ðT
0

F2ðt; uðtÞÞ dt�
ðT
0

F2ðt; uÞ dt
����

����
a

ðT
0

jF2ðt; uðtÞÞ � F2ðt; uÞj dt ¼
ðT
0

jðxðtÞ; ~uuðtÞÞj dt

a

ðT
0

jxj j~uuðtÞj dta
ðT
0

ð f ðtÞjuþ s~uuja þ gðtÞÞj~uuðtÞj dt

a 2juja
ðT
0

f ðtÞj~uuðtÞj dtþ 2k~uukaþ1
y

ðT
0

f ðtÞ dtþ k~uuky
ðT
0

gðtÞ dt

a
3

T
k~uuk2y þ T

3
juj2a

ðT
0

f ðtÞ dt
� �2

þ 2k~uukaþ1
y

ðT
0

f ðtÞ dtþ k~uuky
ðT
0

gðtÞ dt

a
1

4
k _uuk2L2 þ C1k _uukaþ1

L2 þ C2k _uukL2 þ C3juj2a

for all u A H 1
T and some positive constants C1, C2 and C3:

Hence from ð5Þ we have

jðuÞ ¼ 1

2

ðT
0

j _uuðtÞj2 dtþ
ðT
0

F1ðt; uðtÞÞ dt�
ðT
0

F1ðt; uÞ dt
� �

þ
ðT
0

F1ðt; uÞ dt

þ
ðT
0

F2ðt; uðtÞÞ dt�
ðT
0

F2ðt; uÞ dt
� �

þ
ðT
0

F2ðt; uÞ dt

b
1

2

ðT
0

j _uuðtÞj2 dt� T

2p
kkkL2

ðT
0

j _uuðtÞj2 dt
� �1=2

�
ðT
0

jhðtÞjdt� 1

4
k _uuk2L2

� C1k _uukaþ1
L2 � C2k _uukL2 � C3juj2a þ

ðT
0

F2ðt; uÞ dt

b
1

4
k _uuk2L2 � C1k _uukaþ1

L2 � C2 þ
T

2p
kkkL2

� �
k _uukL2

þ
ðT
0

F2ðt; uÞ dt� C3juj2a � C4

¼ 1

4
k _uuk2L2 � C1k _uukaþ1

L2 � C2 þ
T

2p
kkkL2

� �
k _uukL2 � C4

þ juj2a juj�2a

ðT
0

F2ðt; uÞ dt� C3

� �
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for all u A H 1
T and some positive constant C4, which implies that

jðuÞ ! þy as kuk ! y

by ð6Þ because a A ½0; 1Þ and the norm k � k given by kuk ¼ ðjuj2 þ k _uuk2L2Þ1=2 is an
equivalent norm on H 1

T :
Next we show that the functional j is w.l.s.c. on H 1

T : Since j1 is w.l.s.c.,
we only have to prove that j2 is w.l.s.c. on H 1

T : Suppose there are a sequence
fungJH 1

T and u A H 1
T such that un * u in H 1

T : Since the embedding H 1
T ,!

L2ð½0;T �;RNÞ is compact, one has un ! u in L2ð½0;T �;RNÞ.
On account of ð3Þ, one hasðT

0

F1ðt; unÞ dt�
ðT
0

F1ðt; uÞ dt
����

����
a

ðT
0

jF1ðt; unÞ � F1ðt; uÞj dta
ðT
0

kðtÞjun � uj dt

a

ðT
0

jkðtÞj2 dt
� �1=2 ðT

0

jun � uj2 dt
� �1=2

! 0;

Since a A ½0; 1Þ, there exists C5 A R such that

jxj2 b jxj2a þ C5; Ex A RN :

Due to ð4Þ and Lemma 2.1, there exist h A qF2ðt; sun þ ð1� sÞuÞ and positive
constants C6, C7 such thatðT

0

F2ðt; unÞ dt�
ðT
0

F2ðt; uÞ dt
����

����
a

ðT
0

jF2ðt; unÞ � F2ðt; uÞj dt ¼
ðT
0

jðhðtÞ; unðtÞ � uðtÞÞj dt

a

ðT
0

jhj jun � uj dta
ðT
0

ð f ðtÞjsun þ ð1� sÞuja þ gðtÞÞjun � uj dt

a

ðT
0

ð2f ðtÞðjunja þ jujaÞ þ gðtÞÞjun � uj dt

a 2k f ky
ðT
0

junj2a dt
� �1=2

þ
ðT
0

juj2a dt
� �1=2 !

þ
ffiffiffiffi
T

p
kgky

 !

�
ðT
0

jun � uj2 dt
� �1=2

a ðC6ðkunkL2 þ kukL2Þ þ C7Þkun � ukL2 ! 0;

which implies j2ðunÞ ! j2ðuÞ in H 1
T . Thus j2 is sequentially weakly continuous;

therefore, j is w.l.s.c. on H 1
T . Thanks to Theorem 1.1 and Corollary 1.1 in [7], j
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has a minimum u0 on H 1
T . Proposition 2.3.2 in [5] implies that u0 is a critical

point of j. Consequently, by Lemma 3.1, u0 is a solution of problem ð1Þ, which
completes the proof. r

Proof of Theorem 1.2. Let us first note that j satisfies the nonsmooth
Cerami condition. Pick a sequence fungHH 1

T such that fjðunÞg is bounded and
ð1þ kunkÞlðunÞ ! 0 as n ! y: By the weak� compactness of qjðunÞ and the
weak lower semicontinuity of the norm, one can find u�

n A qjðunÞ such that
lðunÞ ¼ ku�

nk ¼ oð1Þ, then there exists an integer n0 such that for each nb n0, we
have

jhu�
n ; vija kvk; Ev A H 1

T :

Since F1, F2 satisfy the conditions of Theorem 2.7.5 in [5], one has qj2ðuÞHÐ T
0 qFðt; uÞ dt and qjðuÞH qj1ðuÞ þ

Ð T
0 qFðt; uÞ dt. Thus to every u�

n A qjðunÞ,
there corresponds a mapping t 7! qnðtÞ from ½0;T � to ðH 1

TÞ
� with qnðtÞ A

qFðt; unðtÞÞ such that

hu�
n ; vi ¼

ðT
0

ð _uunðtÞ; _vvðtÞÞ dtþ
ðT
0

ðqnðtÞ; vðtÞÞ dt; Ev A H 1
T :

From the proof of Theorem 1.1 we know that j is coercive, which implies that
the sequence fung turns out bounded. Thus there exists an u A H 1

T such that
un * u in H 1

T and un ! u in Cð½0;T �;RNÞ, where a subsequence is considered
when necessary.

Since H 1
T is reflexive while qjðuÞ is weak� compact, and the set-valued

mapping u ! qjðuÞ is upper semicontinuous, we can find an u� A qjðuÞ such that

hu�
n � u�; un � ui ! 0; as n ! y:

Moreover

hu�
n � u�; un � ui ¼

ðT
0

j _uunðtÞ � _uuj2 dtþ
ðT
0

ðqnðtÞ � qðtÞ; unðtÞ � uðtÞÞ dt;

where qnðtÞ A qFðt; unðtÞÞ and qðtÞ A qFðt; uðtÞÞ. Similarly, by the upper semi-
continuity of the set-valued mapping u ! qFðuÞ, one has qnðtÞ ! qðtÞ in
w� topology and

Ð T
0 ðqnðtÞ � qðtÞ; unðtÞ � uðtÞÞ dt ! 0 as n ! þy. ThusÐ T

0 j _uun � _uuj2 dt ! 0 and un ! u in H 1
T . Therefore j satisfies the nonsmooth

Cerami condition.
Now let Y be a finite-dimensional subspace of X ¼ H 1

T given by

Y ¼
Xk
j¼0

ðaj cos jotþ bj sin jotÞ j aj ; bj A RN ; j ¼ 0; . . . ; k

( )
;

and let V ¼ Y ?. Then from ð7Þ we have

jðuÞa 1

2

ðT
0

j _uuðtÞj2 dt� 1

2
k2o2

ðT
0

juðtÞj2 dta 0;ð12Þ
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for all u A Y with kukaC�1d, and

jðuÞb 1

2

ðT
0

j _uuðtÞj2 dt� 1

2
ðk þ 1Þ2o2

ðT
0

juðtÞj2 dtb 0;

for all u A V with kukaC�1d, where C is the positive constant given by ð11Þ.
Clearly jð0Þ ¼ 0 because

Ð T
0 Fðt; 0Þ dt ¼ 0, and j is bounded from below for it is

coercive.
In the case infX j < 0, Theorem 1.2 follows from Lemma 2.2.
In the case infX jb 0; according to ð12Þ one has

jðuÞ ¼ inf
X

j ¼ 0

for all u A Y with kukaC�1d, which implies that all u A Y with kukaC�1d are
minimum points of j. Hence by Lemma 3.1, all u A Y with kukaC�1d are
solutions of problem ð1Þ. Therefore Theorem 1.2 is proved. r

Proof of Theorem 1.3. Similar as in the proof of Theorem 1.2, we know j
is bounded from below, satisfies the nonsmooth Cerami condition, and jð0Þ ¼ 0.

According to the condition ð8Þ, we know for every e > 0 there exists d1 > 0
such that

Fðt; xÞ > � 2p2

T 2
þ e

� �
jxj2

for a.e. t A ½0;T � and jxja d1. Let d2 ¼ minfd1; d̂dg, then from ð9Þ one has

� 2p2

T 2
þ e

� �
jxj2 < Fðt; xÞ and

ðT
0

Fðt; xÞ dta 0 Ejxja d2; t A ½0;T �:

Let H 1
T ¼ ~HH 1

T lRN with ~HH 1
T ¼ fu A H 1

T j
Ð T
0 uðtÞ dt ¼ 0g:

Since for every u A ~HH 1
T

juðtÞj2 a kuk2y a
T

12

ðT
0

j _uuðtÞj2 dta T

12
kuk2:

Put d3 ¼ min

ffiffiffiffiffi
12

T

r
d2; d̂d

( )
, then for every u A ~HH 1

T with kuka d3, one has juðtÞja d2

for all t A ½0;T � and

jðuÞ ¼ 1

2

ðT
0

j _uuðtÞj2 dtþ
ðT
0

F ðt; uðtÞÞ dt

>
1

2

ðT
0

j _uuðtÞj2 dt� 2p2

T 2
þ e

� �ðT
0

juðtÞj2 dt

b
1

2

ðT
0

j _uuðtÞj2 dt� 2p2

T 2
þ e

� �
T 2

4p2

ðT
0

j _uuðtÞj2 dt

¼ � eT 2

4p2

ðT
0

j _uuðtÞj2 dt;
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thus

jðuÞb� eT 2

4p2

ðT
0

j _uuðtÞj2 dtb� eT 2

4p2
kuk2

b� eT 2

4p2
d3 b� eT 2

4p2
d̂d;

which implies that jðuÞb 0 for all kuka d3 in ~HH 1
T by the arbitrariness of e.

On the other hand for every u A RN with kuka d3, it follows from ð9Þ that

jðuÞ ¼
ðT
0

Fðt; uðtÞÞ dta 0:

Therefore, j satisfies the conditions of Lemma 2.2 and has at least two
nontrivial critical points. With the critical point (global minima) obtained by
Theorem 1.1 and taking Lemma 3.1 into account, problem ð1Þ has at least three
distinct solutions in H 1

T . The proof is completed. r
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