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ORDERS OF MEROMORPHIC MAPPINGS

INTO HOPF AND INOUE SURFACES
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Abstract

In a late paper of J. Noguchi and J. Winkelmann [7] (J. Math. Soc. Jpn., Vol. 64

No. 4 (2012), 1169–1180) they gave the first instance where Kähler or non-Kähler

conditions of the image spaces make a di¤erence in the value distribution theory. In

this paper, we will investigate orders of meromorphic mappings into a Hopf surface

which is more general than dealt with by Noguchi-Winkelmann, and an Inoue surface.

They are non-Kähler surfaces and belong to VII0-class. For a general Hopf surface

S, we prove that there exists a di¤erentiably non-degenerate holomorphic mapping

f : C2 ! S with order at most one. For any Inoue surface S 0, we prove that every

non-constant meromorphic mapping f : Cn ! S 0 is holomorphic and its order satisfies

rf b 2.

1. Main results

In Nevanlinna theory, there are many studies on value distributions of
meromorphic mappings whose image spaces are Kähler, especially complex
projective algebraic manifolds. On the other hand, however, little are known
for non-Kähler cases. The first instance where Kähler or non-Kähler conditions
of the image spaces make a di¤erence in the value distribution theory was given
by J. Noguchi and J. Winkelmann [7]. They proved a theorem on order of
meromorphic mappings and rationality of the image space under a Kähler
condition, and showed that without the Kähler condition, there is a counter-
example by constructing a holomorphic mapping to a special Hopf surface with
low order. The purpose of this paper is to investigate orders of meromorphic
mappings into Hopf surfaces which are more general than dealt with by them and
Inoue surfaces. They are non-Kähler surfaces and belong to VII0-class. The
two main theorems are as follows.

Main Theorem 1.1. Let Sa;b be a Hopf surface defined by the action,

n : ðx; yÞ A C2nfð0; 0Þg 7! ðanx; bnyÞ A C2nfð0; 0Þg; n A Z;
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where a, b are complex numbers with jaj; jbj > 1. Then there exists a di¤er-
entiably non-degenerate holomorphic mapping f : C2 ! Sa;b with order at most
one.

N.B. In general, whether there exists a di¤erentiably non-degenerate mer-
omorphic mapping to a compact complex manifold with order less than two or
not are big di¤erence. Because if there is such a map, every global covariant
holomorphic tensor on the manifold must vanish [7].

Main Theorem 1.2. Let S be an Inoue surface. Let nb 1 be an arbi-
trary natural number. Then every non-constant meromorphic mapping f : Cn ! S
is holomorphic and its order satisfies rf b 2. In addition to this, when
nb dimC Sð¼ 2Þ, f is di¤erentiably degenerate.

Acknowledgement. I would like to express my deep gratitude to my advisor
Professor Junjiro Noguchi for his great advice, helpful comments and warm
encouragements. I would also thank Dr. Yusaku Tiba for giving me a number
of invaluable comments.

2. Preliminaries

2.1. Notation
We fix the following notation.
� Let f : Cn ! X be a meromorphic mapping to a complex manifold. We
denote by Ið f Þ the indeterminancy locus of f .

� If the rankðdf Þ is equal to the dimension of the image space generically, f
is said to be di¤erentiably non-degenerate.

� For z ¼ ðzjÞ A Cn, we set

a ¼ dd ckzk2;ð2:1Þ

z ¼ d c logkzk25ðdd c logkzk2Þn�1;ð2:2Þ

where d c ¼ i

4p
ðq� qÞ and kzk2 ¼

Pn
j¼1 jzjj

2.

� BðrÞ ¼ fz A Cn : kzk < rg, SðrÞ ¼ fz A Cn : kzk ¼ rg ðr > 0Þ.

Definition 2.3. Let f : Cn ! X be a meromorphic mapping to a compact
complex manifold and let o be a Hermitian metric form on X . We define a
function

Tf ðr;oÞ ¼
ð r
1

dt

t2n�1

ð
BðtÞ

f �o5an�1

which is called the characteristic function of f with respect to o.

494 takushi amemiya



Definition 2.4. In above setting we define the order of f as follows,

rf ¼ lim
r!y

log Tf ðr;oÞ
log r

:ð2:5Þ

Since X is compact, rf is independent of the choice of a Hermitian metric form
o on X .

2.2. Relations between orders and one-dimensional image spaces
Possible values of orders are a¤ected by image spaces. To get a better

comprehension of our results, we recall the following facts of one dimensional
case.

Fact 2.6. Let X be a closed Riemann surface of genus g.
(i) Let gb 2 and let f be a holomorphic mapping from C into X. Then f

is constant.
(ii) Let g ¼ 1 and let f be a non-constant holomorphic mapping from C into

X. Then the order satisfies rf b 2.
(iii) Let g ¼ 0 and let sb 0 be a given real number. Then there exists a non-

constant holomorphic mapping f : C ! X with order s. ([5], Theorem
7.5.9, p. 241.)
Here it is noted that every meromorphic mapping from C into a compact
complex manifold is holomorphic since codim Ið f Þb 2 (Ið f Þ ¼ j in this
case).

2.3. Di¤erence between Kähler and non-Kähler surfaces
J. Noguchi and J. Winkelmann proved the following theorems, giving the

first instance where Kähler or non-Kähler conditions of image spaces make a
di¤erence in value distribution.

Theorem 2.7 (J. Noguchi-J. Winkelmann [7]). Let X be a compact Kähler
surface. Assume that there is a di¤erentiably non-degenerate meromorphic map-
ping f : C2 ! X. If rf < 2, then X is rational.

The Kähler condition is necessary by the following:

Theorem 2.8 (J. Noguchi-J. Winkelmann [7]). Let a be a complex number
with jaj > 1. Let Sa;a be a Hopf surface defined as the quotient of C2nfð0; 0Þg
by a Z-action n : ðx; yÞ 7! ðanx; anyÞ. Then there exists a di¤erentiably non-
degenerate holomorphic mapping f : C2 ! Sa;a such that rf a 1.

3. General Hopf surfaces: Proof of Main Theorem 1.1

Our Main Theorem 1.1 asserts that Theorem 2.8 still holds for more general
Hopf surfaces.
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Proof. We may assume 1 < jbja jaj without loss of generality. We prove
the theorem in two steps. In the first step, we prove it under the additional
condition that jaj and jbj are close to each other. Under this condition, we can
apply some estimates introduced by J. Noguchi-J. Winkelmann [7] to prove the
case of a ¼ b. In the second step, we construct a branched covering to remove
this additional condition.

3.1. The first step
We assume that

1 < jbja jaja jbj3=2:ð3:1Þ

We prove under this condition that the holomorphic mapping f : C2 ! Sa;b

induced by

~ff : C2 ! C2nfð0; 0Þg ðz;wÞ 7! ðz; 1þ zwÞ

is di¤etentiably non-degenerate and its order satisfies rf a 1.

Let a be as in (2.1). Setting g ¼ logjaj
logjbj � 1 and d ¼ 1� logjbj

logjaj , we have

0a da ga 1
2 by (3.1). We define a continuous positive Hermitian form on

C2nfð0; 0Þg which is invariant under the above Z-action as follows,

~oo ¼ i

2p
� dx5dxþ ðjyj2g þ jxj2dÞ dy5dy

jxj2 þ ðjyj2g þ jxj2dÞjyj2
;

and denote by o the induced continuous positive Hermitian form on the quotient
space Sa;b. Although this induced Hermitian form is not always smooth Hermi-
tian metric form, it it su‰cient to calculate orders by the compactness of Sa;b.

We show the following inequality

lim
r!y

1

log r
log

ð r
1

dt

t3

ð
BðtÞ

f �o5aa 1:

Note that

f �o5a ¼ 1þ ðjzj2 þ jwj2Þðj1þ zwj2g þ jzj2dÞ
jzj2 þ j1þ zwj2ðj1þ zwj2g þ jzj2dÞ

a2:

We define

I 0r ¼
ð
SðrÞ

r2 þ 1

j1þ zwj2g þ jzj2d

jzj2

j1þ zwj2g þ jzj2d
þ j1þ zwj2

dV ; r ¼ kðz;wÞk;
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Ir ¼
ð
SðrÞ

r2

jzj2

j1þ zwj2g þ jzj2d
þ j1þ zwj2

dV ; r ¼ kðz;wÞk:

Here dV is the euclidean volume element on SðrÞ.
Then we have

I 0r a 2Irð3:2Þ
for all large r. Indeed,

� When jzjb r�1=d, we have j1þ zwj2g þ jzj2d b jzj2d b r�2.
� When jzja r�1=d, we have jzwja r1�1=d a r�1. This implies

j1þ zwj2g þ jzj2d b j1þ zwj2g b ð1� r1�1=dÞ2g b ð1� r1�1=dÞb r�2

for all large r.

In both cases,
1

j1þ zwj2g þ jzj2d
a r2 for all large r, implying (3.2). Hence it is

su‰cient to show

Ir ¼ Oðr2þeÞ; Ee > 0:ð3:3Þ
In fact, from this and (3.2), we obtain

ð
BðrÞ

r2 þ 1

j1þ zwj2g þ jzj2d

jzj2

j1þ zwj2g þ jzj2d
þ j1þ zwj2

a2 ¼ O

ð r
I 0r dr

� �
¼ Oðr3þeÞ; Ee > 0;

implying

Tf ðr;oÞ ¼
ð r
1

dt

t3

ð
BðtÞ

r2 þ 1

j1þ zwj2g þ jzj2d

jzj2

j1þ zwj2g þ jzj2d
þ j1þ zwj2

a2 ¼ Oðr1þeÞ; Ee > 0;

implying

rf ¼ lim
r!y

log Tf ðr;oÞ
log r

a 1:

To show (3.3), we set

h ¼ r2

jzj2

j1þ zwj2g þ jzj2d
þ j1þ zwj2

:

To estimate Ir ¼
Ð
SðrÞ h dV , we divide SðrÞ into eleven regions, A, B, C, D�2,

D�1, D0, D1, E, F , G, H which are defined later, and estimate the volume and
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the integrand on each region. We introduce some geometric and arithmetic
estimates used in [7].

Geometric estimates.
For ðz;wÞ A C2 with z0 0 and w0 0, set y A ½0; 2pÞ by eiyjzwj ¼ zw. For

K > 0, �y < l < 1 and mb 0, we set

WK ;l;m ¼ fðz;wÞ A SðrÞ j z ¼ 0 or ð0 < jzjaKrl; jsin yja r�mÞg:

We define a mapping F : C2nfz ¼ 0 or w ¼ 0g ! C� R2 as follows,

F : ðz;wÞ 7! ðz; r argðzwÞ; rÞ

where r ¼ kðz;wÞk ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
jzj2 þ jwj2

q
. To show the Jacobian of F is identically

�1 we set z ¼ xþ
ffiffiffiffiffiffiffi
�1

p
y, w ¼ uþ

ffiffiffiffiffiffiffi
�1

p
v and write F with real coordinates as

follows,

F : ðx; y; u; vÞ 7! ðx; y; rðarg zþ arg wÞ; rÞ A R4

with r ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x2 þ y2 þ u2 þ v2

p
. The Jacobian of F is

jJFj ¼

1 0 0 0

0 1 0 0

� � u

r
ðarg zþ arg wÞ þ r

q

qu
arg w

v

r
ðarg zþ arg wÞ þ r

q

qv
arg w

� � u

r

v

r

������������

������������
¼

r
q

qu
arg w

u

r

r
q

qv
arg w

v

r

��������
��������

1�1

Furthermore the gradient gradðrÞ is of length one and normal on the level
set SðrÞ.

Hence the euclidean volume of WK;l;m is the same as the euclidean volume of

fz A C : jzjaKrlg � fyr : y A ½0; 2pÞ; jsin yja r�mg � frg
becuase

volðWK ;l;mÞ ¼ volðWK ;l;mnfz ¼ 0gÞ
¼ volðFðWK;l;mnfz ¼ 0gÞÞ

¼ volðfz A C : 0 < jzjaKrlg � fyr : y A ½0; 2pÞ; jsin yja r�mg � frgÞ

¼ volðfz A C : jzjaKrlg � fyr : y A ½0; 2pÞ; jsin yja r�mg � frgÞ
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Using sinðyÞb 2

p
y y A 0;

p

2

� �� �
, it follows that for rb 1 the volume of

WK ;l;m is bounded from above by

pðKrlÞ2 � 2r�mpr ¼ 2K 2p2r2lþ1�m:

In particular,

volðWK;l;mÞ ¼ Oðr2lþ1�mÞ:ð3:4Þ

Arithmetic estimates.
Besides the Landau O-symbols we also use the notation l: If f , g are

functions of a real parameter r, then f ðrÞl gðrÞ indicates that

lim
r!y

f ðrÞ
gðrÞ b 1:

Similarly f @ g indicates

lim
r!y

f ðrÞ
gðrÞ ¼ 1:

In the sequel, we will work with domains WHSðrÞ (i.e. for each r > 0
some subset W ¼ Wr HSðrÞ is chosen). In this context, given functions f , g
on C2 we say f ðz;wÞl gðz;wÞ holds on W if for every sequence ðzn;wnÞ A Wr

ðr ¼ kðzn;wnÞkÞ with

lim
n!y

kðzn;wnÞk ¼ þy

and we have

lim
n!y

f ðzn;wnÞ
gðzn;wnÞ

b 1:

We show some estimates for h ¼ r2

jzj2

j1þ zwj2g þ jzj2d
þ j1þ zwj2

. Fix �y <
l < 1.

(i) Suppose ðz;wÞ A SðrÞ and jzja 1

2r
. Since jwja r, we have jzwja 1

2 ,

implying j1þ zwjb 1
2 . Therefore ha

r2

j1þ zwj2
a 4r2.

(ii) Suppose jzja rl. Then we have jwj@ r.

(iii) Suppose jzjb 3

2r
and jzja rl. Using (ii), we obtain jzwjl 3

2 (equiv-

alently, 1k 2
3 jzwj), which implies j1þ zwjb jzwj � 1l 1

3 jzwj. Hence

ha
cr2

jzwj2
. (Here c is a positive constant greater than nine)

499orders of meromorphic mappings into hopf and inoue surfaces



(iv) For all z and w,
jzj2

j1þ zwj2g þ jzj2d
þ j1þ zwj2 b jImð1þ zwÞj2 ¼

ðjzwj sin yÞ2.

Estimates on each regions.
We are going to prove the following claim

Ir ¼ Oðr2þeÞ; Ee > 0

by dividing SðrÞ into eleven regions A, B, C, D�2, D�1, D0, D1, E, F , G, H, each
of which is investigated separately.

� A ¼ ðz;wÞ A SðrÞ j jzja 1

2r

� �
, i.e., A ¼ W1=2;�1;0. By (3.4), we have volðAÞ

¼ Oðr�1Þ. Due to (i), restriction of integrand h to A is hjA ¼ Oðr2Þ. Thusð
A

h dV a volðAÞ � sup
ðz;wÞ AA

hðz;wÞaOðrÞ:

Hence the contribution of A to the integral Ir ¼
Ð
SðrÞ h dV is bounded by

OðrÞ.
� B ¼ ðz;wÞ A SðrÞ

���� 1

2r
a jzja 3

2r
and jsin yj < 1

r

� �
. Thus BHW3=2;�1;1.

Due to (3.4), we have volðBÞ ¼ Oðr�2Þ. Since jzwja 3
2 , the function

j1þ zwj2g is bounded on B. Therefore we obtain

hjB a
r2

jzj2
ðj1þ zwj2g þ jzj2dÞ ¼ Oðr4Þ:

At the last estimate we used the inequality jzjb 1

2r
. Hence we haveð

B

h dV a volðBÞ � sup
ðz;wÞ AB

hðz;wÞ ¼ Oðr2Þ;

which implies the contribution of B to the integral Ir is bounded by Oðr2Þ.
� C ¼ ðz;wÞ A SðrÞ

���� 12ra jzja 3

2r
and jsin yj> 1

r

� �
. Then its image by F is

FðCÞ ¼ z A C

���� 1

2r
a jzja 3

2r

� �
� yr j y A ½0; 2pÞ; jsin yj > 1

r

� �
� frg:

For z A C with
1

2r
a jzja 3

2r
, we define

JrðzÞ :¼
ð
0<y<2p; jsin yj>1=r

hðF�1ðz; ry; rÞÞr dy:
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Since jwj@ r, we obtain 1
2 k jzwjk 3

2 . Using arithmetic estimate (iv), we
get

ha
r2

j1þ zwj2
a

r2

jsin2 yj jzwj2
a

c � r2

jsin2 yj
:

Here c is a constant greater than four. Hence we obtain

JrðzÞa
ð
0<y<2p; jsin yj>1=r

c � r2

jsin2 yj
r dy

¼ 4

ðp=2
arcsin 1=r

c � r3

jsin2 yj
dy ¼ 4c � r4

ffiffiffiffiffiffiffiffiffiffiffiffiffi
1� 1

r2

r
a 4c � r4:

Therefore it follows thatð
C

h dV ¼
ð
1=2rajzja3=2r

Jr

ffiffiffiffiffiffiffi
�1

p

2
dz5dza c 0r2ð3:5Þ

where c 0 is a positive constant. Thus the contribution of C to the integral
Ir is bounded by Oðr2Þ.

� For n A f�2;�1; 0; 1g, set Dn ¼
�
ðz;wÞ A SðrÞ

���� jzjb 3

2r
; jzja r1�e and

rn=2 a jzja rðnþ1Þ=2
�
. For each n, the integrand h is bounded by Oðr�nÞ

on Dn due to (ii) and (iii), and volðDnÞ ¼ Oðr2þnÞ because Dn HW1; ðnþ1Þ=2;0.
Thus the contribution of Dn to the integral Ir is bounded by Oðr2Þ.

� E ¼ fðz;wÞ A SðrÞ j jzjb r1�e; jwjb r1=2g. Since jzwjb r3=2�e, we have

hjE a
r2

j1þ zwj2
a

r2

ðjzwj � 1Þ2
a

r2

ðr3=2�e � 1Þ2
¼ Oðr2e�1Þ:

Because volðEÞ is bounded by the total volume of SðrÞ, volðEÞ ¼ Oðr3Þ.
Thus the contribution of E to Ir is bounded by Oðr2þ2eÞ.

� F ¼ fðz;wÞ A SðrÞ j 1a jwja r1=2g. Since jzj ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
r2 � jwj2

q
b

ffiffiffiffiffiffiffiffiffiffiffiffi
r2 � r

p
> 1,

we have

hjF a
r2

j1þ zwj2
a

r2

ð
ffiffiffiffiffiffiffiffiffiffiffiffi
r2 � r

p
� 1Þ2

¼ Oð1Þ:

Because the volume of F agrees with the volume of fðz;wÞ A SðrÞ j 1a
jzja r1=2gHW1;1=2;0, we obtain

volðFÞa volðW1;1=2;0Þ ¼ Oðr2Þ:

Thus the contribution of F to Ir is bounded by Oðr2Þ.
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� G ¼ fðz;wÞ A SðrÞ j r�1 a jwja 1g. Since jzja r, we have jzwja r. This

implies j1þ zwj2g a ðr2 þ 2rþ 1Þg. Hence we obtain

hjG a
r2

jzj2
ðj1þ zwj2g þ jzj2dÞaOðr2gÞaOðrÞ:

Here we used jzj@ r and 0a da ga 1
2 . Because volðGÞa volðW1;0;0Þ ¼

OðrÞ, the contribution of G to Ir is bounded by Oðr2Þ.
� H ¼ fðz;wÞ A SðrÞ j 0a jwja r�1g. Since jwja r�1, we have jzj@ r and
jzwja 1. Hence we obtain

hjH a
r2

jzj2
ðj1þ zwj2g þ jzj2dÞaOðr2dÞaOðrÞ:

Because volðHÞaOðr�1Þ, the contribution of H to the integral Ir is
bounded by Oð1Þ.

Eleven regions A, B, C, D�2, D�1, D0, D1, E, F , G, H cover the sphere SðrÞ.
On each such region W we have verifiedð

W

h dV ¼ Oðr2þeÞ; e > 0:

Therefore those establish our claim

Ir ¼ Oðr2þeÞ; e > 0:

As a consequence, the holomorphic mapping f : C2 ! Sa;b induced by ~ff : ðz;wÞ
7! ðz; 1þ zwÞ is of order at most one.

3.2. The second step: To remove assumption (3.1)
We show by constructing a covering that for every a; b A C with 1 < jbja jaj,

there exists a di¤erentiably non-degenerate meromorphic mapping from C2 into
Hopf surface Sa;b with order at most one.

Take a; b A C with 1 < jbja jaj. Then there exist p; q A N such that jbjq a
jajp a jbjð3=2Þq. Let Pa;b be the universal covering of Sa;b, and Pap;bq be the
one of Sap;bq . We define a holomorphic mapping ~CC as follows,

~CC : C2nfð0; 0Þg ! C2nfð0; 0Þg; ðx; yÞ 7! ðxq; ypÞ:
Then ~CC induces a branched covering C,

C2nfð0; 0Þg ���!~CC C2nfð0; 0Þg

Pap ; bq

???y Pa; b

???y
Sap;bq ���!

C
Sa;b

:

Note that ap and bq satisfy (3.1). By the first step, there exists a di¤erentiably
non-degenerate holomorphic mapping g : C2 ! Sap;bq with order at most one.
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Then C � g is also a di¤erentiably non-degenrate holomorphic mapping from C2

into Sa;b with order at most one since dC is generically rank 2. r

4. Inoue surfaces: Proof of the Main Theorem 1.2

M. Inoue constructed in [2], three type of surfaces SM , S
ðþÞ
N;p;q; r; t and S

ð�Þ
N;p;q; r,

which are called Inoue surfaces. It is known that a VII0 surface with second
betti number zero is either an Inoue surface or a Hopf surface, and that an Inoue
surface contains no closed curve. In this section we recall the definition of SM ,
S
ðþÞ
N;p;q; r; t, S

ð�Þ
N;p;q; r and prove the Main Theorem 1.2 as S ¼ SM , S

ðþÞ
N;p;q; r; t, S

ð�Þ
N;p;q; r

respectively.

The case of S ¼ SM : Let H ¼ fx A C j Im x > 0g be the upper half plane. Let
M ¼ ðmijÞ A SLð3;ZÞ be a unimodular matrix with one real eigenvalue l1 > 1
and two complex conjugate eigenvalues l2 0 l2. Note that l1jl2j2 ¼ 1 and that
real number l1 is necessarily irrational. Let ða1; a2; a3Þ be a real eigenvector with
eigenvalue l1 and let ðb1; b2; b3Þ be an eigen vector with eigen value l2. Since

ða1; a2; a3Þ, ðb1; b2; b3Þ, ðb1; b2; b3Þ are C-linearly independent, it follows that
ða1; b1Þ, ða2; b2Þ, and ða3; b3Þ are R-linearly independent. Let GM be the group
of analytic automorphisms of H� C generated by

g0ðx; yÞ ¼ ðl1x; l2 yÞ;
gjðx; yÞ ¼ ðxþ aj ; yþ bjÞ; 1a ja 3:

Then GM acts on H� C properly discontinuously without fixed points. Hence

SM ¼ ðH� CÞ=GM

is a complex surface. Furthermore by the definition of the action, SM becomes
a compact complex surface, which is di¤eomorphic to a 3-torus bundle over a
circle. Relations between the generators g0, g1, g2, g3 of GM are as follows:

gigj ¼ gjgi for i; j ¼ 1; 2; 3;

g0gig
�1
0 ¼ gmi1

1 gmi2

2 gmi3

3 for i ¼ 1; 2; 3:

It follows that

H1ðSM ;ZÞG p1ðSMÞ=½p1ðSMÞ; p1ðSMÞ�GGM=½GM ;GM � ¼ ZlZe1 lZe2 lZe3 ;

where e1; e2; e3 0 0 are the elementary divisors of M � I . Hence b1ðSMÞ ¼ 1.
Thus we deduce b2ðSMÞ ¼ 0, since Euler characteristic of SM is zero.

Proof. We first prove that meromorphic mapping f : Cn ! S is holo-
morphic. Let p : H� C ! S be the universal covering mapping. Since
codim Ið f Þb 2, CnnIð f Þ is simply connected. Then we get a holomorphic liftgfC nnIð f ÞfC nnIð f Þ : C

nnIð f Þ ! H� C
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of

f jCnnIð f Þ : C
nnIð f Þ ! S:

Since codim Ið f Þb 2, the holomorphic mapping gfC nnIð f ÞfC nnIð f Þ : C
nnIð f Þ ! H� C

extends to a holomorphic mapping ~ff : Cn ! H� C. Because f ¼ p � ~ff , we
deduce that f is holomorphic.

We now calculate the order of f . Since SM is compact, the order is
independent of the choice of Hermitian metric forms on SM . We define a
Hermitian metric form on H� C which is invariant under the action of GM

as follows

~oo ¼
ffiffiffiffiffiffiffi
�1

p

2p

1

ðIm xÞ2
dx5dxþ ðIm xÞ dy5dy

 !
:

Here we used l1jl2j2 ¼ 1.
Let ~ff ¼ ð f1; f2Þ : Cn ! H� C be a holomorphic lift of f . Then f1 is

constant. Set Im f1 ¼ c. Since

~ff � ~oo ¼
ffiffiffiffiffiffiffi
�1

p

2p

1

c2
df15df1 þ c df25df2

� �
¼

ffiffiffiffiffiffiffi
�1

p

2p
ðc df25df2Þ ¼

ffiffiffiffiffiffiffi
�1

p

2p
ðcqf25qf2Þ;

we obtain

~ff � ~oo5an�1 ¼ c dd cj f2j25an�1:

Therefore we have

Tf ðr;oÞ ¼
ð r
1

dt

t2n�1

ð
BðtÞ

f �o5an�1 ¼
ð r
1

dt

t2n�1

ð
BðtÞ

c dd cj f2j25an�1:

From Jensen’s formula we obtainð r
1

dt

t2n�1

ð
BðtÞ

c dd cj f2j25an�1 ¼ c

2

ð
SðrÞ

j f2j2z�
c

2

ð
Sð1Þ

j f2j2z:

Let f2ðzÞ ¼
P

kb0 Pkðz1; :::; znÞ be the expansion with homogeneous polynomials
Pk of degree k. Since f2 is not constant, there exists k0 b 1 such that Pk0 0 0.
Hence we obtain

c

2

ð
SðrÞ

j f2j2z ¼
c

2

X
kb0

r2k
ð
Sð1Þ

jPkj2zb
c � r2k0

2

ð
Sð1Þ

jPk0 j
2zb

c � r2
2

ð
Sð1Þ

jPk0 j
2:

Therefore we deduce the order of f satisfies rf b 2, since c0 0 andÐ
Sð1Þ jPk0 j

2 0 0.
When nb dimC Sð¼ 2Þ, arguing on di¤erentiably degeneracy of f make

sense. Since the first component f1 of a holomorphic lift of f is constant, f
must di¤erentiably degenerate. r
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The case of S ¼ S
ðþÞ
N; p;q; r; t: Here we study Inoue surface S

ðþÞ
N;p;q; r; t. Let N ¼

ðnijÞ A SLð2;ZÞ be a matrix with two real eigenvalues l > 1 and
1

l
. Let ða1; a2Þ

and ðb1; b2Þ be two real eigen vectors of N corresponding to l and
1

l
respectively

(l is necessarily irrational).
Fix integers p, q, r with r0 0 and a complex number t. Set real numbers

ðc1; c2Þ as the solution of the following linear equation

ðc1; c2Þ ¼ ðc1; c2Þ � t N þ ðe1; e2Þ þ
b1a2 � b2a1

r
ðp; qÞ;

where

ei ¼
1

2
ni1ðni1 � 1Þa1b1 þ

1

2
ni2ðni2 � 1Þa2b2 þ ni1ni2b1a2; i ¼ 1; 2:

Let G
ðþÞ
N;p;q; r; t be the group of analytic automorphisms of H� C generated by

g0ðx; yÞ ¼ ðlx; yþ tÞ;
gjðx; yÞ ¼ ðxþ aj; yþ bjxþ cjÞ; j ¼ 1; 2;

g3ðx; yÞ ¼ x; yþ b1a2 � b2a1

r

� �
:

They satisfy the following relations:

g3gi ¼ gig3 for i ¼ 0; 1; 2;

g1g2 ¼ g2g1g
r
3;

g0g1g
�1
0 ¼ gn11

1 gn12
2 g

p
3 ;

g0g2g
�1
0 ¼ gn21

1 gn22
2 g

q
3 :

ð4:1Þ

Then Sþ
N;p;q; r; t ¼ ðH� CÞ=GðþÞ

N;p;q; r; t is an Inoue surface. Since the action is

properly discontinuously with no fixed points, S
ðþÞ
N;p;q; r; t becomes a complex

surface. Moreover it is a compact complex surface. It is known that S
ðþÞ
N;p;q; r; t

is di¤eomorphic to a fiber bundle over a circle whose fiber is a circle bundle over
a two torus ([2]). It is known that b1ðSþ

N;p;q; r; tÞ ¼ 1 and b2ðSþ
N;p;q; r; tÞ ¼ 0.

Proof. Let p : H� C ! S
ðþÞ
N;p;q; r; t be the universal covering. As in the case

of SM , every meromorphic mapping f : Cn ! S
ðþÞ
N;p;q; r; t is holomorphic. We

construct an Hermitian metric form on H� C which is invariant under the
action of G

ðþÞ
N;p;q; r; t and which makes it easier to calculate the order of f . Take
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an arbitrary Hermitian metric form o on S
ðþÞ
N;p;q; r; t. Let ~oo be the pull-back

p�o. Then ~oo is invariant under the action. Write ~oo in coordinates,

~oo ¼
ffiffiffiffiffiffiffi
�1

p

2p
ðh11 dx5dxþ h12 dx5dyþ h21 dy5dxþ h22 dy5dyÞ:

Then h22 0 0 since ~oo is a positive Hermitian metric form. Therefore we can

define a Hermitian metric form ~ss ¼ ~oo

h22
. Note that the coe‰cient of dy5dy of

~ss is one. Since g�
i ~oo ¼ ~oo, we obtain h22ðgiðx; yÞÞ ¼ h22ðx; yÞ for i ¼ 0; 1; 2; 3.

This implies

g�
i ~ss ¼ g�

i

~oo

h22

� �
¼ ~oo

h22
¼ ~ss:

Let ~ff ¼ ð f1; f2Þ : Cn ! H� C be a holomorphic lift of f : Cn ! S
ðþÞ
N;p;q; r; t. We

calculate the order of ~ff with respect to ~ss. Since f1 is constant, we have

~ff �~ss ¼
ffiffiffiffiffiffiffi
�1

p

2p

�
h11

h22
ð ~ff Þ df15df1 þ

h12

h22
ð ~ff Þ df15df2

þ h21

h22
ð ~ff Þ df25df1 þ

h22

h22
ð ~ff Þ df25df2

�
¼

ffiffiffiffiffiffiffi
�1

p

2p
ðdf25df2Þ:

Hence we obtain

T ~ff ðr; ~ssÞ ¼
ð r
1

dt

t2n�1

ð
BðtÞ

~ff �~ss5an�1 ¼
ð r
1

dt

t2n�1

ð
BðtÞ

dd cj f2j25an�1:ð4:2Þ

Note that f2 is not constant. As in the case of SM , we deduce from (4.2) that
the order of f satisfies rf b 2.

In addition to this, when nb dimC S
ðþÞ
N;p;q; r; tð¼ 2Þ, f must di¤erentiably

degenerate for the same reason as in the case of SM . r

The case of S ¼ S
ð�Þ
N;p;q; r: We define an Inoue surface S

ð�Þ
N;p;q; r as follows. Let

N ¼ ðnijÞ A GLð2;ZÞ be a matrix with det N ¼ �1 and with two real eigenvalues

l and � 1

l
. Let ða1; a2Þ and ðb1; b2Þ be two real eigenvectors for N with

eigenvalues l and � 1

l
respectively. Fix integers p, q, r, with r0 0. Define two

real numbers ðc1; c2Þ as the solution of the following linear equation

�ðc1; c2Þ ¼ ðc1; c2Þ tN þ ðe1; e2Þ þ
b1a2 � b2a1

r
ðp; qÞ;
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where ei are the same as for the surface S
ðþÞ
N;p;q; r; t. Let G

ð�Þ
N;p;q; r be a group of

analytic automorphisms of H� C generated by

g0ðx; yÞ ¼ ðlx;�yÞ;
gjðx; yÞ ¼ ðxþ aj; yþ bjxþ cjÞ; j ¼ 1; 2;

g3ðx; yÞ ¼ x; yþ b1a2 � b2a1

r

� �
:

Then S
ð�Þ
N;p;q; r ¼ ðH� CÞ=G ð�Þ

N;p;q; r is an Inoue surface.

Proof. As we have seen in other Inoue surfaces, meromorphic mapping f is
holomorphic. As in the case of S

ðþÞ
N;p;q; r; t, we can construct a Hermitian metric

form ~ss on H� C which is invariant under the action of G
ð�Þ
ðN;p;q; rÞ and is written

in coordinates as follows,

~ss ¼
ffiffiffiffiffiffiffi
�1

p

2p
ðh11 dx5dxþ h12 dx5dyþ h21 dy5dxþ dy5dyÞ:

Note that the coe‰cient of dy5dy is one. This implies that the order of a non-
constant holomorphic mapping f : Cn ! S

ð�Þ
N;p;q; r satisfies rf b 2.

In addition to this, when nb dimC S
ð�Þ
N;p;q; rð¼ 2Þ, f must di¤erentiably

degenerate as we have seen in other Inoue surfaces. r

5. Inoue surfaces: Restriction of the universal covering to a leaf

We now prove that the restriction of the universal covering mapping to a
leaf fx0g � C (Ex0 A H) is of order two.

Proposition 5.1. Let S be an Inoue surface and let p : H� C ! S be the
universal covering mapping. Fix an arbitrary x0 A H. Let ~ff be a holomorphic
mapping w A C 7! ðx0;wÞ A H� C. Then p � ~ff has order two.

Proof. The case of S ¼ SM . Take the following Hermitian metric form on
H� C

~oo ¼
ffiffiffiffiffiffiffi
�1

p

2p

1

ðIm xÞ2
dx5dxþ ðIm xÞ dy5dy

 !
:

Let o be the induced Hermitian metric form on S by ~oo. We calculate the
characteristic function of p � ~ff with respect to o. Since ~ff � ~oo ¼ ðIm x0Þa,

Tp� ~ff ðr;oÞ ¼ T~ff ðr; ~ooÞ ¼
ð r
1

dt

t

ð
BðtÞ

~ff � ~oo ¼ 1

2
ðIm x0Þr2 �

1

2
ðIm x0Þ:

Hence we obtain rp� ~ff ¼ 2.
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The case of S ¼ S
ðþÞ
N;p;q; r; t;S

ð�Þ
N;p;q; r. Take the following Hermitian metric

form on H� C

~ss ¼
ffiffiffiffiffiffiffi
�1

p

2p
ðh11 dx5dxþ h12 dx5dyþ h21 dy5dxþ dy5dyÞ:

Let s be the induced Hermitian metric form on S. We calculate the charac-
teristic function of p � ~ff with respect to s. Since ~ff �~ss ¼ a, we have

Tp� ~ff ðr; sÞ ¼ T~ff ðr; ~ssÞ ¼
ð r
1

dt

t

ð
BðtÞ

~ff �~ss ¼ 1

2
r2 � 1

2
:

Hence we deduce rp� ~ff ¼ 2. r

Remark 5.2. By similar calculations, we get the order of the holomorphic
mapping from Cn to an Inoue surface S induced by ðz1; . . . ; zn�1;wÞ A Cn 7!
ðx0;wdÞ A H� C is 2d.

Remark 5.3. Let S be an Inoue surface. Let p : H� C ! S be the univer-
sal covering mapping. Fix an arbitrary x0 A H. Then its image pðfx0g � CÞHS
is Zariski dense, for there are no closed curves on an Inoue surface (see [2]), but
not dense with respect to the di¤erential topology. The di¤erential structure of
an Inoue surface S is as follows:

If S ¼ SM , S is di¤eomorphic to a real 3-torus bundle over a circle
parametrized by the imaginary part Im x of x A H.

If S ¼ S
ðþÞ
N;p;q; r; t, S is di¤eomorphic to a fiber bundle over a circle para-

metrized by Im x, whose fiber is a real three dimensional compact manifold.
According to [2], this three dimensional compact manifold is a circle bundle over
a real 2-torus.

If S ¼ S
ð�Þ
N;p;q; r, S is di¤eomorphic to a fiber bundle over a circle para-

metrized by Im x, whose fiber is a real three dimensional compact manifold.

6. Problems

Finally we pose some interesting questions related to characteristic functions
of meromorphic mappings from C2 into Hopf surfaces.

Problem 6.1. Let Sa;b be a Hopf surface defined in Main Theorem 1.1.
We define a non-negative number rðSa;bÞ as follows,

rðSa;bÞ ¼ inffrf j f : C2 ! Sa;b di¤erentiably

non-degenerate meromorphic mappingg:

Which number is rðSa;bÞ? Since there exists a holomorphic mapping from C2

into Sa;b with order at most one, we have at least rðSa;bÞa 1.
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Problem 6.2. Let Sa;a be a Hopf surface defined in theorem 2.8. Let
f : C2 ! Sa;a be a holomorphic mapping, and let ~ff ¼ ð f1; f2Þ : C2 ! C2nfð0; 0Þg

be its lift. Let ~oo ¼
ffiffiffiffiffiffiffi
�1

p

2p

dx5dxþ dy5dy

jxj2 þ jyj2
be a Hermitian metric form on

C2nfð0; 0Þg and let o be the induced Hermitian metric form on Sa;a. Let o0 be

Fubini-Study metric form on P1ðCÞ and let p : C2nfð0; 0Þg ! P1ðCÞ, ðx; yÞ 7!
½x : y� be the Hopf mapping. Set F ¼ p � ~ff . Then we found the following
decomposition of the characteristic function of f with respect to o,

Tf ðr;oÞ ¼ TF ðr;o0Þ þ
ð r
1

dt

t3

ð
BðtÞ

d logðj f1j2 þ j f2j2Þ5d c logðj f1j2 þ j f2j2Þ5a:

Let Rf ðrÞ denote the second term of the above formula. It is interesting to
compare the growth of TF ðr;o0Þ and Rf ðrÞ as r ! y or the growth of TF ðr;o0Þ
and Tf ðr;oÞ as r ! y.
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