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ORDERS OF MEROMORPHIC MAPPINGS
INTO HOPF AND INOUE SURFACES

TAKUSHI AMEMIYA

Abstract

In a late paper of J. Noguchi and J. Winkelmann [7] (J. Math. Soc. Jpn., Vol. 64
No. 4 (2012), 1169-1180) they gave the first instance where Kihler or non-Kéhler
conditions of the image spaces make a difference in the value distribution theory. In
this paper, we will investigate orders of meromorphic mappings into a Hopf surface
which is more general than dealt with by Noguchi-Winkelmann, and an Inoue surface.
They are non-Kéhler surfaces and belong to VIIj-class. For a general Hopf surface
S, we prove that there exists a differentiably non-degenerate holomorphic mapping
f:C? = S with order at most one. For any Inoue surface S’, we prove that every
non-constant meromorphic mapping f : C" — S’ is holomorphic and its order satisfies
Pr > 2.

1. Main results

In Nevanlinna theory, there are many studies on value distributions of
meromorphic mappings whose image spaces are Kéihler, especially complex
projective algebraic manifolds. On the other hand, however, little are known
for non-Kéhler cases. The first instance where Kéhler or non-Kéihler conditions
of the image spaces make a difference in the value distribution theory was given
by J. Noguchi and J. Winkelmann [7]. They proved a theorem on order of
meromorphic mappings and rationality of the image space under a Kéihler
condition, and showed that without the Kéhler condition, there is a counter-
example by constructing a holomorphic mapping to a special Hopf surface with
low order. The purpose of this paper is to investigate orders of meromorphic
mappings into Hopf surfaces which are more general than dealt with by them and
Inoue surfaces. They are non-Kéhler surfaces and belong to VIlj-class. The
two main theorems are as follows.

MAIN THeorReM 1.1. Let S, be a Hopf surface defined by the action,
n:(x,9) € C\{(0,0)} — (a"x,0"y) € C\{(0,0)}, neZ
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where a, b are complex numbers with |a|,|b| > 1. Then there exists a differ-
entiably non-degenerate holomorphic mapping f : C* — Sap with order at most
one.

N.B. In general, whether there exists a differentiably non-degenerate mer-
omorphic mapping to a compact complex manifold with order less than two or
not are big difference. Because if there is such a map, every global covariant
holomorphic tensor on the manifold must vanish [7].

MAIN THEOREM 1.2. Let S be an Inoue surface. Let n>1 be an arbi-
trary natural number.  Then every non-constant meromorphic mapping f : C" — S
is  holomorphic and its order satisfies p, >2. In addition to this, when
n>dimc S(=2), f is differentiably degenerate.

Acknowledgement. 1 would like to express my deep gratitude to my advisor
Professor Junjiro Noguchi for his great advice, helpful comments and warm
encouragements. 1 would also thank Dr. Yusaku Tiba for giving me a number
of invaluable comments.

2. Preliminaries

2.1. Notation

We fix the following notation.

+ Let f:C" — X be a meromorphic mapping to a complex manifold. We
denote by I(f) the indeterminancy locus of f.

« If the rank(df) is equal to the dimension of the image space generically, f
is said to be differentiably non-degenerate.

* For z = (z;) e C", we set

(2.1) o =dd°|z|)?,
(2.2) ¢ =d log||z||* A (dd® log]|z||*)" ",
where d¢ = i(é —d) and ||z|* = 2%, |z)?

4n g=1 1571 -

*B(r)y={zeC":|z|| <r}, S(r)={zeC": |z =r} (r>0).

DEerFINITION 2.3, Let f: C" — X be a meromorphic mapping to a compact
complex manifold and let « be a Hermitian metric form on X. We define a
function

which is called the characteristic function of f with respect to w.
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DEeriNITION 2.4, In above setting we define the order of f as follows,

Since X is compact, p, is independent of the choice of a Hermitian metric form
w on X.

2.2. Relations between orders and one-dimensional image spaces

Possible values of orders are affected by image spaces. To get a better
comprehension of our results, we recall the following facts of one dimensional
case.

Fact 2.6. Let X be a closed Riemann surface of genus g.

(i) Let g =2 and let f be a holomorphic mapping from C into X. Then f
is constant.

(i) Let g =1 and let f be a non-constant holomorphic mapping from C into
X. Then the order satisfies p; > 2.

(i) Let g =0 and let s > 0 be a given real number. Then there exists a non-
constant holomorphic mapping f : C — X with order s. ([5], Theorem
7.5.9, p. 241))

Here it is noted that every meromorphic mapping from C into a compact
complex manifold is holomorphic since codim I(f) >2 (I(f) =0 in this
case).

2.3. Difference between Kihler and non-Kihler surfaces

J. Noguchi and J. Winkelmann proved the following theorems, giving the
first instance where Kdhler or non-Kédhler conditions of image spaces make a
difference in value distribution.

THEOREM 2.7 (J. Noguchi-J. Winkelmann [7]). Let X be a compact Kihler
surface. Assume that there is a differentiably non-degenerate meromorphic map-
ping f:C* = X. If py <2, then X is rational.

The Kaihler condition is necessary by the following:

THEOREM 2.8 (J. Noguchi-J. Winkelmann [7]). Let a be a complex number
with |a| > 1. Let S, be a Hopf surface defined as the quotient of C*\{(0,0)}
by a Z-action n: (x,y)— (a"x,a"y). Then there exists a differentiably non-
degenerate holomorphic mapping f : C* — Sa,a such that p, < 1.

3. General Hopf surfaces: Proof of Main Theorem 1.1

Our Main Theorem 1.1 asserts that Theorem 2.8 still holds for more general
Hopf surfaces.
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Proof: We may assume 1 < |b| < |a| without loss of generality. We prove
the theorem in two steps. In the first step, we prove it under the additional
condition that |a| and || are close to each other. Under this condition, we can
apply some estimates introduced by J. Noguchi-J. Winkelmann [7] to prove the
case of @ = b. In the second step, we construct a branched covering to remove
this additional condition.

3.1. The first step
We assume that

(3.1) 1< || < la| < |b)**.

We prove under this condition that the holomorphic mapping f : C? — @b
induced by

£:C2 = CMN{(0,00} (z,w) — (z,1+zw)

is diffetentiably non-degenerate and its order satisfies p, < 1.
. . 1 ' log|b
Let o be as in (2.1). Setting y = ogldl —1and 6=1- o |,
log|b| loglal
0<o<y s% by (3.1). We define a continuous positive Hermitian form on

C?\{(0,0)} which is invariant under the above Z-action as follows,

we have

_diodxnads 4 ([y]7 + x*) dy ady
©=5 ) % 2\ o2
X"+ (™ 4 X[ |yl

)

and denote by w the induced continuous positive Hermitian form on the quotient

space S, 5. Although this induced Hermitian form is not always smooth Hermi-

tian metric form, it it sufficient to calculate orders by the compactness of S, 5.
We show the following inequality

— 1 r
lim —— logJ dtJ fforna <l
B(1)

r— logr lt_3
Note that
. L+ (121 + )1+ 20 + 12
ffone= 5 5 % S50 O
|27 4+ [+ 2w~ (|1 4+ 2w|™ + [2])
We define
1
2
e+ 2 26
- | el A e ]
S(r) |Z| +|1+ZW|2
25

11+ zw|” + 2|
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2
I :J d av, r=|(zw)].
S)

|Z|2 2
——|— 1+ZW
1+ zw]7 + [z | |

Here dV is the euclidean volume element on S(r).
Then we have
(3.2) I <21,

for all large r. Indeed, ) ‘
* When 2| = r~/%, we have |1 +zw|” + [z** > 2|** = r2%.
* When |z| <771 we have |zw| <r'"1/% <r~!. This implies

142w + 21 = 142w = (1 =72 > (1 = p1710) > 2

for all large r.

1 . . .
m < r? for all large r, implying (3.2). Hence it is

sufficient to show
(3.3) I, = O(r*™), Ve>0.
In fact, from this and (3.2), we obtain
1
Pt
2 25 r
J [L+ 2] + || o = 0<J I dr) = 0(r**%), Ve>0,
B(r)

|Z|2 2 '
—_— ¥+ 1-|—ZW
11+ zw] ¥ + |2 | |

In both cases,

implying
1
. S ¥
'éj L il
B(1)

1 £ 2
% 55+ [1+ zw|
[1 4 zw|™ + |2]

Ty(r,w) = J = 0@, Ve>0,

implying
— log Ty
py = Tim € T(ne)
r—o0 log r
To show (3.3), we set

2

S |
—————+ |l +zw 2
1+ zw|2}' + \z|25 | |
To estimate I, = fs(,,)ndV, we divide S(r) into eleven regions, 4, B, C, D_,,
D_y, Dy, Dy, E, F, G, H which are defined later, and estimate the volume and
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the integrand on each region. We introduce some geometric and arithmetic
estimates used in [7].

Geometric estimates. '
For (z,w) e C* with z#0 and w # 0, set 0 € [0,27) by e”|zw| = zw. For
K>0, —0o<iA<1and >0, we set

Q= 1{(z,w)eS(r)|z=0 or (0< |z| < Kr*,|sin 0] <r *)}.
We define a mapping @ : C*\{z =0 or w=0} — C x R? as follows,
D:(z,w) — (z,r arg(zw),r)

where r=||(z,w)|| = \/|z1* + |w|>. To show the Jacobian of ® is identically

—1 we set z=x++vV—1y, w=u-++v—1v and write ® with real coordinates as
follows,

@ : (x,y,u,0) — (x, y,r(arg z + arg w),r) e R*

with r = /x2+ 2 +u? +v2. The Jacobian of ® is

1 0 0 0
0 1 0 0

A

0
Vol =1+ « E(argz—i—arg w) s arg w E(argz+arg W) +r— argw
r ou r v

u v
* % - -
P

r— argw
u

0
_ | ou
e
o

arg w

N lce R

r
= -1

Furthermore the gradient grad(r) is of length one and normal on the level
set S(r).
Hence the euclidean volume of Q ; , is the same as the euclidean volume of

{zeC:|z| < Kr*} x {0r:0€[0,2n),|sin 0] < r *} x {r}
becuase
vol(Qk ;) = vol(Qk ;. ,\{z = 0})
= vol(®(Qk, 2, \{z = 0}))
=vol({ze C:0 < |z| < Kr*} x {0r: 0€0,27),|sin 0] < r*} x {r})
=vol({zeC:|z] < Kr'} x {0r:0€0,2n),|sin 0] < r "} x {r})
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Using sin(6) > %6’ (06 [O,g)), it follows that for r > 1 the volume of
Qk ;.. is bounded from above by
n(Kr')? - 28 F e = 2K 2 p
In particular,
(3.4) vol(Qk 1) = O(r*11).

Arithmetic estimates.
Besides the Landau O-symbols we also use the notation =: If f, g are

~

functions of a real parameter r, then f(r) = g(r) indicates that

lim Jr) > 1.

r—o0 g(r)
Similarly f ~ g indicates

lim M =1.

F— o0 (}’)

In the sequel, we will work with domains Q < S(r) (i.e. for each r >0
some subset Q =Q, = S(r) is chosen). In this context, given functions f, g
on C? we say f(z,w) 2 g(z,w) holds on Q if for every sequence (z,,w,) € Q,
(r = |[(zn, wy)||) with

lim [|(z,, w,)|| = +o0
n— oo

and we have

UGN

lim
n?oo g(zn, Wn)

We show some estimates for # = . Fix —w0 <

)
A<l || 2
— |l +zw
11+ zw|” + |2|* | |

BI—

<3
implying |1 4+ zw| > 1. Therefore <

. 1 :
(i) Suppose (z,w)e S(r) and |z| < —. Since |w| <r, we have |zw| <
2
s <4
ﬂ |1+ zw|
(i) Suppose |z| <r*. Then we have |w| ~r.
(iii) Suppose |z| > % and |z| <r*. Using (i), we obtain |zw| X 3 (equiv-
r
alently, 1 < |zw|), which implies |1 4+ zw| > |zw| — 1 2 {|zw|. Hence

cr . .. .
n< W (Here ¢ is a positive constant greater than nine)
zw
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2
(iv) For all z and w, %—&- 11+ zw]? > [Im(1 + zw)|* =
(|zw| sin 6)°. [T+ 2w]7 + 2]

Estimates on each regions.
We are going to prove the following claim

I =0(r*™), VYe>0

by dividing S(r) into eleven regions 4, B, C, D_», D_y, Dy, Dy, E, F, G, H, each
of which is investigated separately.

1
c A= {(z7 w) e S(r)|lz] < Z}’ ie, A=Q; 1. By (3.4), we have vol(4)
= O(r~!). Due to (i), restriction of integrand 7 to 4 is 7|, = O(r?). Thus
J ndV <vol(4)- sup n(z,w) < O(r).
A (z,w)ed

Hence the contribution of 4 to the integral I, = fs(r)” dV is bounded by
o(r).

*B= {(z,w) e S(r)

Due to (3.4), we have vol(B) = O(r?). Since |zw|< 3, the function
|1 +zw|* is bounded on B. Therefore we obtain

1 3 . 1
~ <|z[ < 5 and |sinf| <—-¢. Thus B<Qjp ;.
2r 2r r ’

2
r 2 )
nlp < —‘Z|2 (I +ZW|2} + \z|2 ) = 0@r").

. . . 1
At the last estimate we used the inequality |z| > 2 Hence we have
r

J ndV <vol(B)- sup #5(z,w) = O(r%),
B (z,w)eB

which implies the contribution of B to the integral I, is bounded by O(r?).

. Cz{(z,w)eS(r) 5 Sl<5

1 3 . 1 o .
— <|z|< = and |sin 0] > ;} Then its image by @ is

1 3 . 1
D(C) Z{ZGC‘ % s lz| < Z}x{@r|0€[0,2n),|sm 0| >;}>< {r}.

o1 3
For ze C with - < |z| < —, we define
2r 2r

Ji(z) = (@ (z,r0,7))r do.

J0<0<27z7 |sin 6]>1/r
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Since |w| ~ r, we obtain § < |zw| < 3. Using arithmetic estimate (iv), we
get

r2 r2 c-r?

< < < — )
I1+zw|> = |sin? 0] |zw|* ~ |sin® 0]

n

Here ¢ is a constant greater than four. Hence we obtain

C'}"z

J(z) < J rdo

)
0<0<2r,|sin 0]>1/r |SIN~ 0]

/2 3 1
:4J %d@:4c'r4\/l——2§4c~r4.
arcsin 1/r |sm 0| r

Therefore it follows that

V=1
(3.5) J ndv = J J, dzndz < c'v?
C 1/2r<|z|<3/2r 2

where ¢’ is a positive constant. Thus the contribution of C to the integral
I, is bounded by O(r?).
* For ne{-2,-1,0,1}, set D,,:{(z,w)eS(r)

3
|z| = 2 |z] < r'7% and
r

1?2 < |z| < #"+D/2 5 For each n, the integrand # is bounded by O(r~")

on D, due to (ii) and (iii), and vol(D,) = O(r*™") because D, = Q| (,11)/2,0-
Thus the contribution of D, to the integral I, is bounded by O(r?).
c E={(z,w) e S(r)||z| = r'7% |w| = r'/2}. Since |zw| > r¥>7* we have

r2 r2 7'2

< < <
1 +Z14/|2 (|lzw| — 1)2 (r3/2-¢ — 1)2

ng = o(r* ).

Because vol(E) is bounded by the total volume of S(r), vol(E) = O(?).
Thus the contribution of E to I, is bounded by O(r**%).

s F={(z,w)eSF) |1 <|w <r'/2}. Since |z]=1/r2—|w*>ViIZ—r>1,
we have

},.2 V2

< <
1l |1+zw|2 (\/;’z—r—l)2

Because the volume of F agrees with the volume of {(z,w)e S(r)|l <
|z <2} = Q) 1/2,0, We obtain

= o(1).

vol(F) < vol(Q 1/2,0) = O(r?).

Thus the contribution of F to I, is bounded by O(r?).
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* G={(z,w)eS(r)|r~ ! <|w| <1}. Since |z| <r, we have |zw| <r. This
implies |1+ zw|” < (r>+2r+1)". Hence we obtain

r2

|22
Here we used |z[ ~r and 0 <J <y < 1. Because vol(G) < vol(Qy,0,0) =
O(r), the contribution of G to I, is bounded by O(r?).

* H={(z,w)eS(r)|0<|w <r'}. Since |w| <r~!, we have |z| ~r and
|zw] < 1. Hence we obtain

Mo < —5 (11 + 2wl +12) < 0(™) < O().

2
r M N
Ny < W(H + 2w 4 12*) < 0() < O(r).
z

Because vol(H) < O(r™!), the contribution of H to the integral I, is
bounded by O(1).

Eleven regions A, B, C, D_,, D_y, Dy, Dy, E, F, G, H cover the sphere S(r).
On each such region Q we have verified

JndV:O(r“e), e>0.
Q

Therefore those establish our claim
I =00, &>0.

As a consequence, the holomorphic mapping f : C* — «,» induced by f :(z,w)
— (z,1+zw) is of order at most one.

3.2. The second step: To remove assumption (3.1)

We show by constructing a covering that for every a,b € C with 1 < |b| < |d,
there exists a differentiably non-degenerate meromorphic mapping from C? into
Hopf surface S, , with order at most one.

Take a,b e C with 1 < |b| <|a|. Then there exist p,q € N such that |b|? <

la]” < |b|(3/2)". Let II,, be the universal covering of S,,, and Il s be the
one of Sy pe. We define a holomorphic mapping ¥ as follows,

P C\{(0,0)} — C*\{(0,0)}, (x,5) — (x%,»7).

Then ¥ induces a branched covering ¥,
C{(0,0)} —— C\{(0,0)}
Sar.ba — Sa.b

Note that a” and b9 satisfy (3.1). By the first step, there exists a differentiably
non-degenerate holomorphic mapping ¢ : C* — Sa» pe with order at most one.
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Then ¥ o g is also a differentiably non-degenrate holomorphic mapping from C>
into S, with order at most one since d'¥ is generically rank 2. O

4. Inoue surfaces: Proof of the Main Theorem 1.2

p.q,r;t and S]<V,p,q‘r’
which are called Inoue surfaces. It is known that a VII, surface with second
betti number zero is either an Inoue surface or a Hopf surface, and that an Inoue
surface contains no closed curve. In this section we recall the definition of Sy,
SI(\’T;q,r;t’ S](\,_?;W and prove the Main Theorem 1.2 as S = Sy, SJ(VJ.,F;)J.,qJ‘;t’ SI(V_,juq,r
respectively.

M. Inoue constructed in [2], three type of surfaces Sy, S](\ﬁ o)

The case of S = Sy: Let H={xe C|Im x > 0} be the upper half plane. Let
M = (m;) € SL(3,Z) be a unimodular matrix with one real eigenvalue 4; > 1
and two complex conjugate eigenvalues A, # 4. Note that /11|},2|2 =1 and that
real number /; is necessarily irrational. Let (a1, a2, a3) be a real eigenvector with
eigenvalue 4; and let (bl,_bz,_b32 be an eigen vector with eigen value ;. Since
(a1,a2,a3), (b1,b2,b3), (b1,by,b3) are C-linearly independent, it follows that
(ar1,b1), (a2,b7), and (as,bs3) are R-linearly independent. Let Gy be the group
of analytic automorphisms of H x C generated by

go(x, y) = ()L]X, /12)})7

gi(x,y)=(x+a,y+b;), 1<j<3.
Then Gy acts on H x C properly discontinuously without fixed points. Hence

SM = (H X C)/GM

is a complex surface. Furthermore by the definition of the action, S), becomes
a compact complex surface, which is diffeomorphic to a 3-torus bundle over a
circle. Relations between the generators go, g1, g2, g3 of Gy are as follows:

9i9; = 9;9: for i,j=1,2,3,
gogigy " = g"gingi for i=1,2,3.
It follows that
H\(Sy,Z) = 71 (Sy)/[71(Svr ), m1 (Sur)] = Gt /|G, Gu) = Z @ Loy @ L, @ Ly,
where e, er,e3 # 0 are the elementary divisors of M —I. Hence b(Sy) = 1.

Thus we deduce b,(Sy) =0, since Euler characteristic of Sy, is zero.

Proof. We first prove that meromorphic mapping f :C" — S is holo-
morphic. Let p:HxC — S be the universal covering mapping. Since
codim I(f) =2, C"\I(f) is simply connected. Then we get a holomorphic lift

Jenatp 1 €\I(f) = H x C
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of

ntCNI(f) = S.

Since codim /(f) =2, the holomorphic mapping femys) : C"\I(f) — HxC
extends to a holomorphic mapping f:C" — H x C. Because f = po f, we
deduce that f is holomorphic.

We now calculate the order of f. Since S, is compact, the order is
independent of the choice of Hermitian metric forms on Sj;;. We define a
Hermitian metric form on H x C which is invariant under the action of Gy,
as follows

V-1 1
= ——dxarndx+ (Imx)dyady|.
27[ (Imx2 ( ) y y

Here we used MlAa* =1

Let f=(f1,/2):C" —-HXxC be a holomorphic lift of f. Then f; is
constant. Set Im f; =c¢. Since

f*@:g(édfl Adf, +cdf2/\dfz)=

e dnndy = (o n ).

we obtain
fraona' =cdd|f]* na""

Therefore we have

Todt X "odt ,
Ty (r,w) :J ﬂ”—*lj ffona"! :J IZ”—*IJ cdde|fo]* Ao
1 B(1) 1 B(1)

From Jensen’s formula we obtain

r dt J 2 1 CJ 2 CJ 2
—_— cdd|fr|" A" =< Ll l—3 Sl
Jl 271 gy l 2 S(r)| 2 2 s(1)| 2

Let f2(z) = it~ Pr(z1,...,2z,) be the expansion with homogeneous polynomials
Py of degree k. Since f, is not constant, there exists ky > 1 such that Py, # 0.
Hence we obtain

¢ _ 2% P> &
), re=g | e

k>0

2k

2
2 c-r 2
J |Pk<1| (= ) J |Pk0| .
S(1) S(1)

Therefore we deduce the order of f satisfies p, >2, since ¢#0 and
IS ‘P ko 75 0.

When n > dimc S(= 2), arguing on differentiably degeneracy of f make
sense. Since the first component f; of a holomorphic lift of f is constant, f
must differentiably degenerate. ]
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Here we study Inoue surface S](\f]), gr Let N =

The case of S = S,(f[),

,q,r;t”
o . 1
(n;) € SL(2,Z) be a matrix with two real eigenvalues 4 > 1 and T Let (aj,a2)
and (b1, b,) be two real eigen vectors of N corresponding to 4 and 7 respectively
(4 is necessarily irrational).
Fix integers p, ¢, r with r # 0 and a complex number 7. Set real numbers
(c1,¢2) as the solution of the following linear equation

biay — bra
(c1,¢2) = (e1,¢2) " N + (e1, €2) +%(P,CI),
where
1 .
e = Enil(nil — Daiby +§ni2(ni2 — Daxby + njnpbiaz, i=1,2.
Let G/(v p.q.r,e e the group of analytic automorphisms of H x C generated by

go(x,y) = (Ax, y + 1),
gi(x,y) = (x+a,y+bx+c), j=1,2,

biay — b
g3(X,y) = (M}FFM)

They satisfy the following relations:

g39i = gigs for i=0,1,2,
9192 = 9249193,

ni ,ni2

goglgo =491 9> 937

ny N2

gogzgo =919, 93

Then SY, ... = (HxC)/GNpq,, is an Inoue surface. Since the action is

properly discontinuously with no fixed points, S](\,> becomes a complex

pqrt

surface. Moreover it is a compact complex surface. It is known that Sz(v ot
is diffeomorphic to a fiber bundle over a circle whose fiber is a circle bundle over

a two torus ([2]). It is known that b;(S5 Nopqr) =1 and bo( Npqr,) =0.

Proof. Let p:HxC — SN gt be the universal covering. As in the case
of Sy, every meromorphic mapping f :C" — SN gt is holomorphic. We
construct an Hermitian metric form on H x C which is invariant under the

action of G1<v p.q.r.c and which makes it easier to calculate the order of /. Take
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an arbitrary Hermitian metric form @ on S;\f]), g Let @ be the pull-back
p*w. Then & is invariant under the action. Write & in coordinates,
. V-l - _ - _
cozz—(hn dx AdX + hy dx Ady + hay dy AdX + hyy dy Ady).
7

Then Ky, # 0 since @ is a positive Hermitian metric form. Therefore we can
.. . . o .
define a Hermitian metric form ¢ =-—. Note that the coefficient of dy A dy of

2
¢ is one. Since g/® =@, we obtain /i (gi(x,y)) = hn(x,y) for i=0,1,2,3.

This implies
‘o= ( @ ) — P g
gi I\l) " h

Let f = (fi, f») : C" — H x C be a holomorphic lift of f:C" — SNpqr, We
calculate the order of f with respect to 6. Since f] is constant, we have
. NVN=1/(h —  hp, - -
[ro =" 2 dfi adfy + 72 (f) dfi Adfy
2 \m ho
hay hy , = z
+h*2(f)dszdf1 22(f)dszdfz
A _
=~ (df> ndfy).

Hence we obtain
. "odt "odt _
4.2) T/;(r;a)zj 12”—*1J frena" :J WJ dd|fo]* Aot
1 B(t 1 B(1)

Note that f; is not constant. As in the case of Sy, we deduce from (4.2) that
the order of f satisfies p, > 2.

In addition to this, when n > dimc SN par(=2), f must differentiably
degenerate for the same reason as in the case of Sy,. O

The case of S = SI(VT;:, g We define an Inoue surface S](\f}), g as follows. Let

N = (nj;) € GL(2,Z) be a matrix with det N = —1 and with two real eigenvalues
A and —%. Let (a;,a;) and (b1,b;) be two real eigenvectors for N with
eigenvalues 4 and - respectively. Fix integers p, ¢, r, with r # 0. Define two
real numbers (cj,cz) as the solution of the following linear equation

b1a2 — bza]

—(c1,62) = (¢1,¢2)'N + (e1,€2) + .

(P, q),
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where e¢; are the same as for the surface S}J}, o Let GN p.qr D€ @ group of
analytic automorphisms of H x C generated by
go(x, ) (2%, =),
gi(x,y) = (x+a,y+bx+¢), j=12,
blaz b2a1>
(x,»)
Then S](\/j[)).,q,r = (H x C)/Ganq_’r is an Inoue surface.

Proof. As we have seen in other Inoue surfaces, meromorphic mapping f is
holomorphic. As in the case of SN p.g.r» WE can construct a Hermitian metric
form ¢ on H x C which is invariant under the action of G<N>p o) and is written
in coordinates as follows,
V-1
6':2—(h11 dx ndX + hyy dx Ady + hyy dy AdX + dy AdY).
n
Note that the coefficient of dy Ady is one. ThlS implies that the order of a non-

constant holomorphic mapping f : C" — SN p q, satisfies p, > 2.

In addition to this, when n > dimc SN pqr(=2), f must differentiably
degenerate as we have seen in other Inoue surfaces. O

5. Inoue surfaces: Restriction of the universal covering to a leaf

We now prove that the restriction of the universal covering mapping to a
leaf {xo} x C (Vxo € H) is of order two.

PropoSITION 5.1.  Let S be an Inoue surface and let p: Hx C — S be the
universal covering mapping. Fix an arbitrary xo e H.  Let f be a holomorphic
mapping w e C— (xo,w) e HXx C. Then po f has order two.

Proof. The case of S = S),. Take the following Hermitian metric form on
HxC

w = -
27\ (Im x)

D= _1< ! 2dxAd>‘c+(lmx)dy/\d)7>.

Let w be the induced Hermitian metric form on S by @. We calculate the
characteristic function of po f with respect to w. Since f*@ = (Im xo)a,

N Ldt ~*~ 1 2 l
T, i(r,w) = Tir,o) = Jl JB(t)f D= E(lm Xo)r —E(Im X0)-

Hence we obtain p,, 7 =2.
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The case of S:S[(Vf;‘me[(\,f[),‘
form on Hx C .
V-1

&:7(}111 dx AdX 4+ hyy dx Ady + hoy dy AdX + dy A dY).

. Take the following Hermitian metric

Let ¢ be the induced Hermitian metric form on S. We calculate the charac-
teristic function of po f with respect to 0. Since f*G = «, we have

i s 1, 1
Tpof(r,a):Tf(f,G)ZJITJB(I)f O'ZEV —5

Hence we deduce p,, ;= 2. U

Remark 5.2. By similar calculations, we get the order of the holomorphic
mapping from C” to an Inoue surface S induced by (zy,...,z,-1,w) € C" —
(xo,w?) eH x C is 2d.

Remark 5.3. Let S be an Inoue surface. Let p: H x C — S be the univer-
sal covering mapping. Fix an arbitrary xo € H.  Then its image p({xo} x C) = S
is Zariski dense, for there are no closed curves on an Inoue surface (see [2]), but
not dense with respect to the differential topology. The differential structure of
an Inoue surface S is as follows:

If S=S8y, S is difftomorphic to a real 3-torus bundle over a circle
parametrized by the imaginary part Im x of x e H.

If §= Sl(vfl),_ g S 18 diffeomorphic to a fiber bundle over a circle para-
metrized by Im x, whose fiber is a real three dimensional compact manifold.
According to [2], this three dimensional compact manifold is a circle bundle over
a real 2-torus.

If §= S](\,f;, 4r S 1s diffcomorphic to a fiber bundle over a circle para-
metrized by Im x, whose fiber is a real three dimensional compact manifold.

6. Problems

Finally we pose some interesting questions related to characteristic functions
of meromorphic mappings from C? into Hopf surfaces.

ProBLEM 6.1. Let S,, be a Hopf surface defined in Main Theorem 1.1.
We define a non-negative number p(S, ) as follows,

p(Sap) = inf{p| f: C? — S, differentiably
non-degenerate meromorphic mapping}.

Which number is p(S,)? Since there exists a holomorphic mapping from C?
into S,, with order at most one, we have at least p(S,,) < I.
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ProBLEM 6.2. Let S,, be a Hopf surface defined in theorem 2.8. Let
f:C*—S,, be a holomorphic mapping, and let f = (fi, 5) : C*> — C>\{(0,0)}
V=1 dx ndx +dy Ady .. .

5 5 be a Hermitian metric form on
2n X"+ |yl
C*\{(0,0)} and let  be the induced Hermitian metric form on S, ,. Let wy be
Fubini-Study metric form on P'(C) and let 7: C*\{(0,0)} — P'(C), (x,y)+—
[x: y] be the Hopf mapping. Set F==no f. Then we found the following
decomposition of the characteristic function of f with respect to w,

be its lift. Let & =

"dt )
Ty(r,w) = Tr(r,mo) + L 1_3J3< ) dlog(|fi]* + |51 nd® log(Ifil* + | A°) A
t

Let Ry(r) denote the second term of the above formula. It is interesting to
compare the growth of Tr(r,wy) and Ry(r) as r — oo or the growth of Tr(r,wo)
and Ty(r,w) as r — co.
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