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Abstract

Let p be a prime integer, and q a power of p. The Ballico-Hefez curve is a non-

reflexive nodal rational plane curve of degree qþ 1 in characteristic p. We investigate

its automorphism group and defining equation. We also prove that the surface

obtained as the cyclic cover of the projective plane branched along the Ballico-Hefez

curve is unirational, and hence is supersingular. As an application, we obtain a new

projective model of the supersingular K3 surface with Artin invariant 1 in characteristic

3 and 5.

1. Introduction

We work over an algebraically closed field k of positive characteristic p > 0.
Let q ¼ pn be a power of p.

In positive characteristics, algebraic varieties often possess interesting prop-
erties that are not observed in characteristic zero. One of those properties is the
failure of reflexivity. In [4], Ballico and Hefez classified irreducible plane curves
X of degree qþ 1 such that the natural morphism from the conormal variety
CðXÞ of X to the dual curve X4 has inseparable degree q. The Ballico-
Hefez curve in the title of this note is one of the curves that appear in their
classification. It is defined in Fukasawa, Homma and Kim [8] as follows.

Definition 1.1. The Ballico-Hefez curve is the image of the morphism
f : P1 ! P2 defined by

½s : t� 7! ½sqþ1 : tqþ1 : stq þ sqt�:

Theorem 1.2 (Ballico and Hefez [4], Fukasawa, Homma and Kim [8]).
(1) Let B be the Ballico-Hefez curve. Then B is a curve of degree qþ 1 with

23

2000 Mathematics Subject Classification. primary 14H45, secondary 14J25, 14J28.

Key words and phrases. plane curve, positive characteristic, supersingularity, K3 surface.

Partially supported by JSPS Grant-in-Aid for Challenging Exploratory Research No. 23654012

and JSPS Grants-in-Aid for Scientific Research (C) No. 25400042.

Received May 21, 2013; revised February 4, 2014.



ðq2 � qÞ=2 ordinary nodes, the dual curve B4 is of degree 2, and the natural
morphism CðBÞ ! B4 has inseparable degree q.

(2) Let X HP2 be an irreducible singular curve of degree qþ 1 such that
the dual curve X4 is of degree > 1 and the natural morphism CðXÞ ! X4 has
inseparable degree q. Then X is projectively isomorphic to the Ballico-Hefez
curve.

Recently, geometry and arithmetic of the Ballico-Hefez curve have been
investigated by Fukasawa, Homma and Kim [8] and Fukasawa [7] from various
points of view, including coding theory and Galois points. As is pointed out in
[8], the Ballico-Hefez curve has many properties in common with the Hermitian
curve; that is, the Fermat curve of degree qþ 1, which also appears in the
classification of Ballico and Hefez [4]. In fact, we can easily see that the image
of the line

x0 þ x1 þ x2 ¼ 0

in P2 by the morphism P2 ! P2 given by

½x0 : x1 : x2� 7! ½xqþ1
0 : xqþ1

1 : xqþ1
2 �

is projectively isomorphic to the Ballico-Hefez curve. Hence, up to linear trans-
formation of coordinates, the Ballico-Hefez curve is defined by an equation

x
1=ðqþ1Þ
0 þ x

1=ðqþ1Þ
1 þ x

1=ðqþ1Þ
2 ¼ 0

in the style of ‘‘Coxeter curves’’ (see Gri‰th [9]).
In this note, we prove the the following:

Proposition 1.3. Let B be the Ballico-Hefez curve. Then the group

AutðBÞ :¼ fg A PGL3ðkÞ j gðBÞ ¼ Bg

of projective automorphisms of BHP2 is isomorphic to PGL2ðFqÞ.

Proposition 1.4. The Ballico-Hefez curve is defined by the following
equations:

� When p ¼ 2,

x
q
0x1 þ x0x

q
1 þ x

qþ1
2 þ

Xn�1

i¼0

x2 i

0 x2 i

1 x
qþ1�2 iþ1

2 ¼ 0; where q ¼ 2n:

� When p is odd,

2ðxq
0x1 þ x0x

q
1 Þ � x

qþ1
2 � ðx2

2 � 4x1x0Þðqþ1Þ=2 ¼ 0:
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Remark 1.5. In fact, the defining equation for p ¼ 2 has been obtained by
Fukasawa in an apparently di¤erent form (see Remark 3 of [6]).

Another property of algebraic varieties peculiar to positive characteristics
is the failure of Lüroth’s theorem for surfaces; a non-rational surface can be
unirational in positive characteristics. A famous example of this phenomenon is
the Fermat surface of degree qþ 1. Shioda [18] and Shioda-Katsura [19] showed
that the Fermat surface F of degree qþ 1 is unirational (see also [16] for another
proof ). This surface F is obtained as the cyclic cover of P2 with degree qþ 1
branched along the Fermat curve of degree qþ 1, and hence, for any divisor d
of qþ 1, the cyclic cover of P2 with degree d branched along the Fermat curve of
degree qþ 1 is also unirational.

We prove an analogue of this result for the Ballico-Hefez curve. Let d be a
divisor of qþ 1 larger than 1. Note that d is prime to p.

Proposition 1.4. Let g : Sd ! P2 be the cyclic covering of P2 with degree d
branched along the Ballico-Hefez curve. Then there exists a dominant rational
map P2 � � � ! Sd of degree 2q with inseparable degree q.

Note that Sd is not rational except for the case ðd; qþ 1Þ ¼ ð3; 3Þ or ð2; 4Þ.
A smooth surface X is said to be supersingular (in the sense of Shioda) if

the second l-adic cohomology group H 2ðX Þ of X is generated by the classes
of curves. Shioda [18] proved that every smooth unirational surface is super-
singular. Hence we obtain the following:

Corollary 1.7. Let r : ~SSd ! Sd be the minimal resolution of Sd. Then the
surface ~SSd is supersingular.

We present a finite set of curves on ~SSd whose classes span H 2ð ~SSdÞ. For a
point P of P1, let lP HP2 denote the line tangent at fðPÞ A B to the branch of
B corresponding to P. It was shown in [8] that, if P is an Fq2 -rational point of
P1, then lP and B intersect only at fðPÞ, and hence the strict transform of lP by
the composite ~SSd ! Sd ! P2 is a union of d rational curves l

ð0Þ
P ; . . . ; l

ðd�1Þ
P .

Proposition 1.8. The cohomology group H 2ð ~SSdÞ is generated by the classes
of the following rational curves on ~SSd ; the irreducible components of the excep-
tional divisor of the resolution r : ~SSd ! Sd and the rational curves l

ðiÞ
P , where P runs

through the set P1ðFq2Þ of Fq2 -rational points of P1 and i ¼ 0; . . . ; d � 1.

Note that, when ðd; qþ 1Þ ¼ ð4; 4Þ and ð2; 6Þ, the surface ~SSd is a K3 surface.
In these cases, we can prove that the classes of rational curves given in Proposition
1.8 generate the Néron-Severi lattice NSð ~SSdÞ of ~SSd , and that the discriminant of
NSð ~SSdÞ is �p2. Using this fact and the result of Ogus [13, 14] and Rudakov-
Shafarevich [15] on the uniqueness of a supersingular K3 surface with Artin
invariant 1, we prove the following:
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Proposition 1.9. (1) If p ¼ q ¼ 3, then ~SS4 is isomorphic to the Fermat
quartic surface

w4 þ x4 þ y4 þ z4 ¼ 0:

(2) If p ¼ q ¼ 5, then ~SS2 is isomorphic to the Fermat sextic double plane

w2 ¼ x6 þ y6 þ z6:

Recently, many studies on these supersingular K3 surfaces with Artin
invariant 1 in characteristics 3 and 5 have been carried out. See [10, 12] for
characteristic 3 case, and [11, 17] for characteristic 5 case.

Thanks are due to Masaaki Homma and Satoru Fukasawa for their
comments. We also thank the referee for his/her suggestion on the first version
of this paper.

2. Basic properties of the Ballico-Hefez curve

We recall some properties of the Ballico-Hefez curve B. See Fukasawa,
Homma and Kim [8] for the proofs.

It is easy to see that the morphism f : P1 ! P2 is birational onto its image
B, and that the degree of the plane curve B is qþ 1. The singular locus SingðBÞ
of B consists of ðq2 � qÞ=2 ordinary nodes, and we have

f�1ðSingðBÞÞ ¼ P1ðFq2ÞnP1ðFqÞ:

In particular, the singular locus SingðSdÞ of Sd consists of ðq2 � qÞ=2 ordinary
rational double points of type Ad�1. Therefore, by Artin [1, 2], the surface Sd is
not rational if ðd; qþ 1Þ0 ð3; 3Þ; ð2; 4Þ.

Let t be the a‰ne coordinate of P1 obtained from ½s : t� by putting s ¼ 1,
and let ðx; yÞ be the a‰ne coordinates of P2 such that ½x0 : x1 : x2� ¼ ½1 : x : y�.
Then the morphism f : P1 ! P2 is given by

t 7! ðtqþ1; tq þ tÞ:

For a point P ¼ ½1 : t� of P1, the line lP is defined by

x� tqyþ t2q ¼ 0:

Suppose that P B P1ðFq2Þ. Then lP intersects B at fðPÞ ¼ ðtqþ1; tq þ tÞ with
multiplicity q and at the point ðtq2þq; tq

2 þ tqÞ0 fðPÞ with multiplicity 1. In
particular, we have lP V SingðBÞ ¼ j.

Suppose that P A P1ðFq2ÞnP1ðFqÞ. Then lP intersects B at the node fðPÞ
of B with multiplicity qþ 1. More precisely, lP intersects the branch of B
corresponding to P with multiplicity q, and the other branch transversely.

Suppose that P A P1ðFqÞ. Then fðPÞ is a smooth point of B, and lP inter-
sects B at fðPÞ with multiplicity qþ 1. In particular, we have lP V SingðBÞ ¼ j.

Combining these facts, we see that fðP1ðFqÞÞ coincides with the set of
smooth inflection points of B. (See [8] for the definition of inflection points.)
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3. Proof of Proposition 1.3

We denote by fB : P1 ! B the birational morphism t 7! ðtqþ1; tq þ tÞ from
P1 to B. We identify AutðP1Þ with PGL2ðkÞ by letting PGL2ðkÞ act on P1 by

½s : t� 7! ½asþ bt : csþ dt� for
a b

c d

� �
A PGL2ðkÞ:

Then PGL2ðFqÞ is the subgroup of PGL2ðkÞ consisting of elements that leave the
set P1ðFqÞ invariant. Since fB is birational, the projective automorphism group
AutðBÞ of B acts on P1 via fB. The subset fBðP1ðFqÞÞ of B is projectively
characterized as the set of smooth inflection points of B, and we have P1ðFqÞ ¼
f�1
B ðfBðP1ðFqÞÞÞ. Hence AutðBÞ is contained in the subgroup PGL2ðFqÞ of

PGL2ðkÞ. Thus, in order to prove Proposition 1.3, it is enough to show that
every element

g :¼ a b

c d

� �
with a; b; c; d A Fq

of PGL2ðFqÞ is coming from the action of an element of AutðBÞ. We put

~gg :¼
a2 b2 ab

c2 d 2 cd

2ac 2bd ad þ bc

2
64

3
75;

and let the matrix ~gg act on P2 by the left multiplication on the column vector
t½x0 : x1 : x2�. Then we have

f � g ¼ ~gg � f;

because we have lq ¼ l for l ¼ a; b; c; d A Fq. Therefore g 7! ~gg gives an iso-
morphism from PGL2ðFqÞ to AutðBÞ.

4. Proof of Proposition 1.4

We put

F ðx; yÞ :¼ xþ xq þ yqþ1 þ
Pn�1

i¼0 x2 i

yqþ1�2 iþ1

if p ¼ 2 and q ¼ 2n;

2xþ 2xq � yqþ1 � ðy2 � 4xÞðqþ1Þ=2 if p is odd;

(

that is, F is obtained from the homogeneous polynomial in Proposition 1.4
by putting x0 ¼ 1, x1 ¼ x, x2 ¼ y. Since the polynomial F is of degree qþ 1
and the plane curve B is also of degree qþ 1, it is enough to show that
Fðtqþ1; tq þ tÞ ¼ 0.

Suppose that p ¼ 2 and q ¼ 2n. We put

Sðx; yÞ :¼
Xn�1

i¼0

x

y2

� �2 i

:
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Then Sðx; yÞ is a root of the Artin-Schreier equation

s2 þ s ¼ x

y2

� �q
þ x

y2
:

Hence S1 :¼ Sðtqþ1; tq þ tÞ is a root of the equation s2 þ s ¼ b, where

b :¼ tqþ1

ðtq þ tÞ2

" #q

þ tqþ1

ðtq þ tÞ2
¼ t2q

2þqþ1 þ tq
2þ3q þ tq

2þqþ2 þ t3qþ1

ðtq þ tÞ2qþ2
:

We put

S 0ðx; yÞ :¼ xþ xq þ yqþ1

yqþ1
:

We can verify that S2 :¼ S 0ðtqþ1; tq þ tÞ is also a root of the equation s2 þ s ¼ b.
Hence we have either S1 ¼ S2 or S1 ¼ S2 þ 1. We can easily see that both of the
rational functions S1 and S2 on P1 have zero at t ¼ y. Hence S1 ¼ S2 holds,
from which we obtain F ðtqþ1; tq þ tÞ ¼ 0.

Suppose that p is odd. We put

Sðx; yÞ :¼ 2xþ 2xq � yqþ1; S1 :¼ Sðtqþ1; tq þ tÞ; and

S 0ðx; yÞ :¼ ðy2 � 4xÞðqþ1Þ=2; S2 :¼ S 0ðtqþ1; tq þ tÞ:

Then it is easy to verify that both of S2
1 and S2

2 are equal to

t2q
2þ2q � 2t2q

2þqþ1 þ t2q
2þ2 � 2tq

2þ3q þ 4tq
2þ2qþ1 � 2tq

2þqþ2 þ t4q � 2t3qþ1 þ t2qþ2:

Therefore either S1 ¼ S2 or S1 ¼ �S2 holds. Comparing the coe‰cients of the
top-degree terms of the polynomials S1 and S2 of t, we see that S1 ¼ S2, whence
Fðtqþ1; tq þ tÞ ¼ 0 follows.

5. Proof of Propositions 1.6 and 1.8

We consider the universal family

L :¼ fðP;QÞ A P1 � P2 jQ A lPg

of the lines lP, which is defined by

x� tqyþ t2q ¼ 0

in P1 � P2, and let

p1 : L ! P1; p2 : L ! P2

be the projections. We see that p1 : L ! P1 has two sections

s1 : t 7! ðt; x; yÞ ¼ ðt; tqþ1; tq þ tÞ;

sq : t 7! ðt; x; yÞ ¼ ðt; tq2þq; tq
2 þ tqÞ:
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For P A P1, we have p2ðs1ðPÞÞ ¼ fðPÞ and lP VB ¼ fp2ðs1ðPÞÞ; p2ðsqðPÞÞg. Let
S1 HL and Sq HL denote the images of s1 and sq, respectively. Then S1 and
Sq are smooth curves, and they intersect transversely. Moreover, their inter-
section points are contained in p�1

1 ðP1ðFq2ÞÞ.
We denote by M the fiber product of g : Sd ! P2 and p2 : L ! P2 over P2.

The pull-back p�
2B of B by p2 is equal to the divisor qS1 þ Sq. Hence M is

defined by

zd ¼ ðy� tq � tÞqðy� tq
2 � tqÞ;

x� tqyþ t2q ¼ 0:

�
ð5:1Þ

We denote by M ! M the normalization, and by

a : M ! L; h : M ! Sd

the natural projections. Since d is prime to q, the cyclic covering a : M ! L
of degree d branches exactly along the curve S1 USq. Moreover, the singular
locus SingðMÞ of M is located over S1 VSq, and hence is contained in

a�1ðp�1
1 ðP1ðFq2ÞÞÞ.
Since h is dominant and r : ~SSd ! Sd is birational, h induces a rational map

h 0 : M � � � ! ~SSd :

Let A denote the a‰ne open curve P1nP1ðFq2Þ. We put

LA :¼ p�1
1 ðAÞ; MA :¼ a�1ðLAÞ:

Note that MA is smooth. Let p1;A : LA ! A and aA : MA ! LA be the restrictions
of p1 and a, respectively. If P A A, then lP is disjoint from SingðBÞ, and hence
hða�1ðp�1

1 ðPÞÞÞ ¼ g�1ðlPÞ is disjoint from SingðSdÞ. Therefore the restriction of h 0

to MA is a morphism. It follows that we have a proper birational morphism

b : ~MM ! M

from a smooth surface ~MM to M such that b induces an isomorphism from
b�1ðMAÞ to MA and that the rational map h 0 extends to a morphism ~hh : ~MM ! ~SSd .
Summing up, we obtain the following commutative diagram:

MA ,! ~MM �!~hh ~SSd

jj k # b # r

MA ,! M �!h Sd

aA # k # a # g

LA ,! L �!p2 P2

p1;A # k # p1

A ,! P1 :

ð5:2Þ
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Since the defining equation x� tqyþ t2q ¼ 0 of L in P1 � P2 is a polynomial
in k½x; y�½tq�, and its discriminant as a quadratic equation of tq is y2 � 4x0 0, the
projection p2 is a finite morphism of degree 2q and its inseparable degree is
q. Hence h is also a finite morphism of degree 2q and its inseparable degree
is q. Therefore, in order to prove Proposition 1.6, it is enough to show that M
is rational. We denote by kðMÞ ¼ kðMÞ the function field of M. Since
x ¼ tqy� t2q on M, the field kðMÞ is generated over k by y, z and t. Let
c denote the integer ðqþ 1Þ=d, and put

~zz :¼ z

ðy� tq � tÞc A kðMÞ:

Then, from the defining equation (5.1) of M, we have

~zzd ¼ y� tq
2 � tq

y� tq � t
:

Therefore we have

y ¼ ~zzdðtq þ tÞ � ðtq2 þ tqÞ
~zzd � 1

;

and hence kðMÞ is equal to the purely transcendental extension kð~zz; tÞ of k.
Thus Proposition 1.6 is proved.

We put

X :¼ ~MMnMA ¼ b�1ða�1ðp�1
1 ðP1ðFq2ÞÞÞÞ:

Since the cyclic covering a : M ! L branches along the curve S1 ¼ s1ðP1Þ, the

section s1 : P
1 ! L of p1 lifts to a section ~ss1 : P

1 ! M of p1 � a. Let ~SS1 denote
the strict transform of the image of ~ss1 by b : ~MM ! M.

Lemma 5.1. The Picard group Picð ~MMÞ of ~MM is generated by the classes of
~SS1 and the irreducible components of X.

Proof. Since S1 VSq VLA ¼ j, the morphism

p1;A � aA : MA ! A

is a smooth P1-bundle. Let D be an irreducible curve on ~MM, and let e be the
degree of

p1 � a � bjD : D ! P1:

Then the divisor D� e~SS1 on ~MM is of degree 0 on the general fiber of the smooth

P1-bundle p1;A � aA. Therefore ðD� e~SS1ÞjMA
is linearly equivalent in MA to a

multiple of a fiber of p1;A � aA. Hence D is linearly equivalent to a linear
combination of ~SS1 and irreducible curves in the boundary X ¼ ~MMnMA. r
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The rational curves on ~SSd listed in Proposition 1.8 are exactly equal to the
irreducible components of

r�1 g�1 6
P AP1ðF

q2
Þ
lP

0
@

1
A

0
@

1
A:

Let V HH 2ð ~SSdÞ denote the linear subspace spanned by the classes of these
rational curves. We will show that V ¼ H 2ð ~SSdÞ.

Let h A H 2ð ~SSdÞ denote the class of the pull-back of a line of P2 by the

morphism g � r : ~SSd ! P2. Suppose that P A P1ðFqÞ. Then lP is disjoint from
SingðBÞ. Therefore we have

h ¼ ½ðg � rÞ�ðlPÞ� ¼ ½lð0ÞP � þ � � � þ ½lðd�1Þ
P � A V :

Let ~BB denote the strict transform of B by g � r. Then ~BB is written as d � R, where
R is a reduced curve on ~SSd whose support is equal to ~hhð~SS1Þ. On the other hand,
the class of the total transform ðg � rÞ�B of B by g � r is equal to ðqþ 1Þh. Since
the di¤erence of the divisors d � R and ðg � rÞ�B is a linear combination of
exceptional curves of r, we have

~hh�ð½~SS1�Þ A V :ð5:3Þ
By the commutativity of the diagram (5.2), we have

~hhðXÞH r�1 g�1 6
P AP1ðF

q2
Þ
lP

0
@

1
A

0
@

1
A:

Hence, for any irreducible component G of X, we have

~hh�ð½G�Þ A V :ð5:4Þ
Let C be an arbitrary irreducible curve on ~SSd . Then we have

~hh�~hh
�ð½C�Þ ¼ 2q½C�:

By Lemma 5.1, there exist integers a, b1; . . . ; bm and irreducible components
G1; . . . ;Gm of X such that the divisor h�C of ~MM is linearly equivalent to

a~SS1 þ b1G1 þ � � � þ bmGm:

By (5.3) and (5.4), we obtain

½C� ¼ 1

2q
~hh�~hh

�ð½C�Þ A V :

Therefore V HH 2ð ~SSdÞ is equal to the linear subspace spanned by the classes of
all curves. Combining this fact with Corollary 1.7, we obtain V ¼ H 2ð ~SSdÞ.

6. Supersingular K3 surfaces

In this section, we prove Proposition 1.9. First, we recall some facts on
supersingular K3 surfaces. Let Y be a supersingular K3 surface in characteristic
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p, and let NSðYÞ denote its Néron-Severi lattice, which is an even hyperbolic
lattice of rank 22. Artin [3] showed that the discriminant of NSðYÞ is written
as �p2s, where s is a positive integera 10. This integer s is called the Artin
invariant of Y . Ogus [13, 14] and Rudakov-Shafarevich [15] proved that, for
each p, a supersingular K3 surface with Artin invariant 1 is unique up to
isomorphism. Let Xp denote the supersingular K3 surface with Artin invariant 1
in characteristic p. It is known that X3 is isomorphic to the Fermat quartic
surface, and that X5 is isomorphic to the Fermat sextic double plane. (See, for
example, [12] and [17], respectively.) Therefore, in order to prove Proposition
1.9, it is enough to prove the following:

Proposition 6.1. Suppose that ðd; qþ 1Þ ¼ ð4; 4Þ or ð2; 6Þ. Then, among the
curves on ~SSd listed in Proposition 1.8, there exist 22 curves whose classes together
with the intersection pairing form a lattice of rank 22 with discriminant �p2.

Proof. Suppose that p ¼ q ¼ 3 and d ¼ 4. We put a :¼
ffiffiffiffiffiffiffi
�1

p
A F9, so that

F9 :¼ F3ðaÞ. Consider the projective space P3 with homogeneous coordinates
½w : x0 : x1 : x2�. By Proposition 1.4, the surface S4 is defined in P3 by an
equation

w4 ¼ 2ðx3
0x1 þ x0x

3
1Þ � x4

2 � ðx2
2 � x1x0Þ2:

Hence the singular locus SingðS4Þ of S4 consists of the three points

Q0 :¼ ½0 : 1 : 1 : 0� ðlocated over fð½1 : a�Þ ¼ fð½1 : �a�Þ A BÞ;
Q1 :¼ ½0 : 1 : 2 : 1� ðlocated over fð½1 : 1þ a�Þ ¼ fð½1 : 1� a�Þ A BÞ;
Q2 :¼ ½0 : 1 : 2 : 2� ðlocated over fð½1 : 2þ a�Þ ¼ fð½1 : 2� a�Þ A BÞ;

and they are rational double points of type A3. The minimal resolution
r : ~SS4 ! S4 is obtained by blowing up twice over each singular point Qa

ða A F3Þ. The rational curves l
ðiÞ
P on ~SS4 given in Proposition 1.8 are the strict

transforms of the following 40 lines L
ðnÞ
t in P3 contained in S4, where n ¼ 0; . . . ; 3:

L
ðnÞ
0 :¼ fx1 ¼ w� anx2 ¼ 0g;

L
ðnÞ
1 :¼ fx0 þ x1 � x2 ¼ w� anðx2 þ x0Þ ¼ 0g;

L
ðnÞ
2 :¼ fx0 þ x1 þ x2 ¼ w� anðx2 � x0Þ ¼ 0g;

L
ðnÞ
y :¼ fx0 ¼ w� anx2 ¼ 0g;

L
ðnÞ
Ga :¼ f�x0 þ x1 G ax2 ¼ w� anx2 ¼ 0g;

L
ðnÞ
1Ga :¼ fGax0 þ x1 þ ð�1G aÞx2 ¼ w� anðx2 þ x0Þ ¼ 0g;

L
ðnÞ
2Ga :¼ fHax0 þ x1 þ ð1G aÞx2 ¼ w� anðx2 � x0Þ ¼ 0g:
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We denote by L
ðnÞ
t the strict transform of L

ðnÞ
t by r. Note that the image of L

ðnÞ
t

by the covering morphism S4 ! P2 is the line lfð½1:t�Þ. Note also that, if

t A F3 U fyg, then L
ðnÞ
t is disjoint from SingðS4Þ, whereas if t ¼ aþ ba A F9nF3

with a A F3 and b A F3nf0g ¼ fG1g, then L
ðnÞ
t V SingðS4Þ consists of a single point

Qa. Looking at the minimal resolution r over Qa explicitly, we see that the
three exceptional ð�2Þ-curves in ~SS4 over Qa can be labeled as Ea�a, Ea, Eaþa in
such a way that the following hold:

� hEa�a;Eai ¼ hEa;Eaþai ¼ 1, hEa�a;Eaþai ¼ 0.
� Suppose that b A fG1g. Then L

ðnÞ
aþba intersects Eaþba, and is disjoint from

the other two irreducible components Ea and Ea�ba.
� The four intersection points of L

ðnÞ
aþba (n ¼ 0; . . . ; 3) and Eaþba are distinct.

Using these, we can calculate the intersection numbers among the 9þ 40 curves
Et and L

ðnÞ
t 0 (t A F9, t

0 A F9 U fyg, n ¼ 0; . . . ; 3). From among them, we choose
the following 22 curves:

E�a; E0; Ea; E1�a; E1; E1þa; E2�a; E2; E2þa;

L
ð0Þ
0 ; L

ð1Þ
0 ; L

ð2Þ
0 ; L

ð3Þ
0 ; L

ð0Þ
1 ; L

ð1Þ
1 ; L

ð0Þ
2 ; L

ð1Þ
2 ; Lð1Þ

y ;

Lð0Þ
�a; L

ð1Þ
�a; L

ð2Þ
1�a; L

ð0Þ
2�a:

Their intersection numbers are calculated as in Table 6.1. We can easily check
that this matrix is of determinant �9. Therefore the Artin invariant of ~SS4 is 1.

�2 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 0 0

1 �2 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 1 �2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 �2 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0

0 0 0 1 �2 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 1 �2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 �2 1 0 0 0 0 0 0 0 0 0 0 0 0 0 1

0 0 0 0 0 0 1 �2 1 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 1 �2 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 �2 1 1 1 0 0 0 0 0 1 0 0 0

0 0 0 0 0 0 0 0 0 1 �2 1 1 0 0 0 0 1 0 1 0 0

0 0 0 0 0 0 0 0 0 1 1 �2 1 1 0 1 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 1 1 1 �2 0 1 0 1 0 0 0 1 1

0 0 0 0 0 0 0 0 0 0 0 1 0 �2 1 0 0 0 0 1 0 0

0 0 0 0 0 0 0 0 0 0 0 0 1 1 �2 0 0 1 0 0 0 1

0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 �2 1 0 0 0 0 1

0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 1 �2 1 1 0 1 0

0 0 0 0 0 0 0 0 0 0 1 0 0 0 1 0 1 �2 0 1 0 0

1 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 1 0 �2 0 0 0

1 0 0 0 0 0 0 0 0 0 1 0 0 1 0 0 0 1 0 �2 1 1

0 0 0 1 0 0 0 0 0 0 0 0 1 0 0 0 1 0 0 1 �2 0

0 0 0 0 0 0 1 0 0 0 0 0 1 0 1 1 0 0 0 1 0 �2

2
666666666666666666666666666666666666666664

3
777777777777777777777777777777777777777775

Table 6.1. Gram matrix of NSð ~SS4Þ for q ¼ 3
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The proof for the case p ¼ q ¼ 5 and d ¼ 2 is similar. We put a :¼
ffiffiffi
2

p

so that F25 ¼ F5ðaÞ. In the weighted projective space Pð3; 1; 1; 1Þ with homo-
geneous coordinates ½w : x0 : x1 : x2�, the surface S2 for p ¼ q ¼ 5 is defined by

w2 ¼ 2ðx5
0x1 þ x0x

5
1Þ � x6

2 � ðx2
2 þ x0x1Þ3:

The singular locus SingðS2Þ consists of ten ordinary nodes

Qfaþba;a�bag ða A F5; b A f1; 2gÞ

located over the nodes fð½1 : aþ ba�Þ ¼ fð½1 : a� ba�Þ of the branch curve B.

Let Efaþba;a�bag denote the exceptional ð�2Þ-curve in ~SS2 over Qfaþba;a�bag by the
minimal resolution. As the 22 curves, we choose the following eight exceptional
ð�2Þ-curves

Ef�a;ag; Ef�2a;2ag; Ef1�a;1þag; Ef1�2a;1þ2ag;

Ef2�a;2þag; Ef3�2a;3þ2ag; Ef4�a;4þag; Ef4�2a;4þ2ag;

and the strict transforms of the following 14 curves on S2:

fx1 ¼ w� 2ax3
2 ¼ 0g;

fx1 ¼ wþ 2ax3
2 ¼ 0g;

fx0 þ x1 þ 4x2 ¼ wþ 2að3x0 þ x2Þ3 ¼ 0g;

f3x0 þ x1 þ 3ax2 ¼ w� 2ax3
2 ¼ 0g;

f2x0 þ x1 þ 4ax2 ¼ wþ 2ax3
2 ¼ 0g;

f3x0 þ x1 þ 2ax2 þ 3x0 ¼ w� 2ax3
2 ¼ 0g;

fð3þ 3aÞx0 þ x1 þ ð4þ aÞx2 ¼ wþ 2að3x0 þ x2Þ3 ¼ 0g;

fð4þ aÞx0 þ x1 þ ð4þ 2aÞx2 ¼ wþ 2að3x0 þ x2Þ3 ¼ 0g;

fð2þ 3aÞx0 þ x1 þ ð3þ 3aÞx2 ¼ w� 2aðx0 þ x2Þ3 ¼ 0g;

fð1þ aÞx0 þ x1 þ ð3þ aÞx2 ¼ w� 2aðx0 þ x2Þ3 ¼ 0g;

fð1þ aÞx0 þ x1 þ ð2þ 4aÞx2 ¼ w� 2aðx2 þ 4x0Þ3 ¼ 0g;

fð2þ 3aÞx0 þ x1 þ ð2þ 2aÞx2 ¼ wþ 2aðx2 þ 4x0Þ3 ¼ 0g;

fð3þ 3aÞx0 þ x1 þ ð1þ 4aÞx2 ¼ w� 2aðx2 þ 2x0Þ3 ¼ 0g;

fð4þ 4aÞx0 þ x1 þ ð1þ 2aÞx2 ¼ w� 2aðx2 þ 2x0Þ3 ¼ 0g:

Their intersection matrix is given in Table 6.2. It is of determinant �25.
Therefore the Artin invariant of ~SS2 is 1. r
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Remark 6.2. In the case q ¼ 5, the Ballico-Hefez curve B is one of the
sextic plane curves studied classically by Coble [5].
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