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NONEXISTENCE OF POSITIVE VERY WEAK SOLUTIONS TO

AN ELLIPTIC PROBLEM WITH BOUNDARY REACTIONS

Futoshi Takahashi

Abstract

We consider a semilinear elliptic problem with the boundary reaction:

�Du ¼ 0 in W;
qu

qn
þ u ¼ aðxÞup þ f ðxÞ on qW;

where WHRN , Nb 3, is a smooth bounded domain with a flat boundary portion,

p > 1, a; f A L1ðqWÞ are nonnegative functions, not identically equal to zero. We

provide a necessary condition and a su‰cient condition for the existence of positive very

weak solutions of the problem. As a corollary, under some assumption of the potential

function a, we prove that the problem has no positive solution for any nonnegative

external force f A LyðqWÞ, f 2 0, even in the very weak sense.

1. Introduction

In this paper, we consider the semilinear elliptic boundary value problem
with the boundary reaction:

�Du ¼ 0 in W;

ub 0 in W;

qu

qn
þ u ¼ aðxÞup þ f ðxÞ on qW

8>>><
>>>:

ð1:1Þ

where WHRN , Nb 3, is a smooth bounded domain, n is the exterior unit
normal vector to qW, p > 1, a; f A L1ðqWÞ are nonnegative functions, not
identically equal to zero.

In the recent paper, Quittner and Reichel [6] consider the more general
problem with nonlinear Neumann boundary conditions:

�Du ¼ 0 in W;
qu

qn
þ u ¼ gðx; uÞ on qWð1:2Þ
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where g : qW� R ! R is a Carathéodory function. They call a function
u : W ! R a very weak solution of the problem (1.2) if ujW A L1ðWÞ, ujqW,
gð�; ujqWÞ A L1ðqWÞ and

�
ð
W

uDz dx ¼
ð
qW

gðx; uÞz dsx �
ð
qW

u zþ qz

qn

� �
dsxð1:3Þ

holds for any z A C2ðWÞ. In [6], Quittner and Reichel prove several properties of
very weak solutions, such as regularity and the integral representation formula of
the very weak solution to (1.2) for the linear case, regularity and a priori bounds
in nonlinear case, and so on. See §2 for some of their results. Moreover, the
authors obtain the interesting existence results of singular very weak solutions to
the model problem, i.e., gðx; uÞ ¼ ðuþÞp in (1.2), on a special domain W as

described below: Let WHRN
þ ¼ fx ¼ ðx 0; xNÞ : xN > 0g be a smooth bounded

domain with a flat boundary portion G1, that is, there exist two closed sets
G1;G2 H qW such that

(i) qW ¼ G1 UG2, G1 H qRN
þ GRN�1 and 0 A intðG1Þ,

(ii) intðGiÞ ¼ Gi for i ¼ 1; 2 and intðG1ÞV intðG2Þ ¼ j.
By perturbing the explicit singular half-space solution and using a variational
method, the authors prove the following existence result for the very weak

solutions: For N ¼ 3; 4 and p >
N � 1

N � 2
but very close to

N � 1

N � 2
, the problem

�Du ¼ 0 in W;
qu

qn
þ u ¼ up on qW

admits at least two positive, unbounded very weak solutions, blowing up at

0 A intðG1Þ, see [6]: Theorem 17. Also for any p >
N � 1

N � 2
, there exists a

function f A LyðqWÞ such that the problem

�Du ¼ 0 in W;
qu

qn
¼ up þ f ðxÞ on qW

admits a positive, unbounded very weak solution, see [6]: Theorem 12.
However, if we introduce a (singular) potential function into the equation,

the situation is drastically changed. Actually, main result in this paper concerns
the nonexistence of positive very weak solutions to (1.1) as follows:

Theorem 1.1. Let WHRN , Nb 3, be a smooth bounded domain with
0 A qW. Let p > 1 and f A LyðqWÞ, f b 0, f 2 0 on qW. Assume that a A
L1ðqWÞ is a function such that ab 0 on qW, and there exists R > 0 such that

ð
BN
R
ð0ÞVqW

aðyÞ
jyjN�2

dsy ¼ þy;ð1:4Þ
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where BN
R ð0Þ denotes a N-dimensional ball with radius R center 0. Then there

exists no positive solution of the problem

�Du ¼ 0 in W;
qu

qn
þ u ¼ aðxÞup þ f ðxÞ on qW;

even in the very weak sense.

By a simple calculation, we check that aðxÞ ¼ 1

jxj satisfies the assumptions in

Theorem 1.1 on a smooth bounded domain in RN , Nb 3, with a flat boundary
portion G1. Actually, we compute

ð
BN
R
ð0ÞVqW

aðyÞ
jyjN�2

dsy b

ð
BN
R
ð0ÞVG1

dsy

jyjN�1

¼
ð
BN�1
R

ð0ÞVG1

dy 0

jy 0jN�1
¼ jSN�2j

ðR

0

rN�2

rN�1
dr ¼ þy;

where y ¼ ðy 0; 0Þ A G1, y 0 ¼ ðy1; . . . ; yN�1Þ, and dy 0 ¼ dy1 � � � dyN�1. Thus we
have the nonexistence of positive very weak solutions to the simple elliptic
problem like

�Du ¼ 0 in W;
qu

qn
þ u ¼ up

jxj þ f ðxÞ on qW;

for any nonnegative bounded external force f 2 0 on such a domain when
Nb 3. This fact contrasts with the existence results by Quittner and Reichel
mentioned above.

This paper is organized as follows: In §2, we collect several useful facts on
very weak solutions, which will be used in later sections. Main source of this
part is [6], however, some basic lemmas, such as weak maximum principle or
existence of very weak solutions by the method of sub-super solutions, are also
proved in this section. In §3, we provide a necessary condition and a su‰cient
condition for the existence of very weak solutions to (1.1). The result proved
here is an extension of that of Brezis and Cabré [1], to the nonlinear Neumann
boundary condition cases. Finally in §4, we prove Theorem 1.1.

2. Several facts about very weak solutions

In this section, we collect several facts about the very weak solutions which
will be useful later. We refer the reader to the paper by Quittner and Reichel [6]
for complete descriptions and proofs.

In the following, let W be a smooth bounded domain in RN , Nb 2 (not
necessarily with a flat boundary portion). As in [6], we define L1ðW� qWÞ as the
space of functions u : W ! R such that ujW A L1ðWÞ and ujqW A L1ðqWÞ. This is a
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Banach space under the norm kukL1ðW�qWÞ ¼ kukL1ðWÞ þ kukL1ðqWÞ, and isomorphic

to L1ðWÞ � L1ðqWÞ. Note that, generally, ujqW is not the trace of ujW. With
admitting some ambiguity, we will use the symbol u to denote both ujW and ujqW
for simplicity.

First we recall the linear theory developed in [6]. Let u A L1ðW� qWÞ be a
very weak solution to the linear problem

�Du ¼ 0 in W;
qu

qn
þ u ¼ gðxÞ on qW;ð2:1Þ

where g A L1ðqWÞ. Recall a function u A L1ðW� qWÞ is a very weak solution of
(2.1) if

�
ð
W

uDz dx ¼
ð
qW

gðxÞz dsx �
ð
qW

u zþ qz

qn

� �
dsx

holds for any z A C 2ðWÞ.
Next lemma concerns the unique solvability and a priori estimate of very

weak solutions to (2.1).

Lemma 2.1 ([6]: Lemma 3). Let g A L1ðqWÞ. Then (2.1) admits a unique
very weak solution u A L1ðW� qWÞ with the estimate

kukL1ðW�qWÞ aCkgkL1ðqWÞ

for some C > 0. Moreover, ub 0 a.e. (with respect to N-dimensional Lebesgue
measure) in W and a.e. (with respect to the surface measure on qW) on qW, if gb 0
a.e. on qW.

Next lemma concerns the weak maximum principle.

Lemma 2.2. Let h; k A L1ðqWÞ. Let u A L1ðW� qWÞ denote a very weak
supersolution to

�Dub 0 in W;
qu

qn
þ ub h on qW;

in the sense that

�
ð
W

uDz dxb

ð
qW

hz dsx �
ð
qW

u zþ qz

qn

� �
dsx

for any z A C2ðWÞ, zb 0 on W, and let v A L1ðW� qWÞ be the unique very weak
solution to

�Dv ¼ 0 in W;
qv

qn
þ v ¼ k on qW;

respectively. If hb k on qW, then we have ub v on W.
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Proof. For any j A Cy
0 ðWÞ, jb 0, put z be the unique solution to

�Dz ¼ j in W;
qz

qn
þ z ¼ 0 on qW:ð2:2Þ

Then z A C2ðWÞ and zb 0 on W by the maximum principle. Testing by z and
subtracting, we have

�
ð
W

ðu� vÞDz dxb
ð
qW

ðh� kÞz dsx �
ð
qW

ðu� vÞ zþ qz

qn

� �
dsx;

which yields ð
W

ðu� vÞj dxb

ð
qW

ðh� kÞz dsx b 0:

Since j A Cy
0 ðWÞ, jb 0 is arbitrary, we have u� vb 0 a.e. on W.

Also, for any h A CyðqWÞ, hb 0, let x A C 2ðWÞ be the unique solution to

�Dx ¼ 0 in W;
qx

qn
þ x ¼ h on qW:ð2:3Þ

Maximum principle implies xb 0 on W. Testing by x and subtracting, we have
in this case ð

qW

ðu� vÞh dsx b

ð
qW

ðh� kÞx dsx b 0:

Since h A CyðqWÞ, hb 0 is arbitrary, again we have u� vb 0 a.e. on qW.
r

Lemma 2.3. Let g : qW� R C ðx; sÞ 7! gðx; sÞ A Rþ be a nonnegative Cara-
théodory function, increasing with respect to s for any x A qW. Assume (1.2) has a
weak supersolution w A L1ðW� qWÞ, in the sense that gð�;wÞ A L1ðqWÞ and

�
ð
W

wDz dxb

ð
qW

gðx;wÞz dsx �
ð
qW

w zþ qz

qn

� �
dsx

for any z A C2ðWÞ, zb 0 on W. Then (1.2) has a very weak solution u A
L1ðW� qWÞ.

Proof. Proof will be done by a standard monotone iteration argument.

See for example, [2]: Lemma 3, or [7]: Lemma 8. Define wð1Þ ¼ w A
L1ðW� qWÞ. By the definition, we have gð�;wð1ÞÞ A L1ðqWÞ. Let wð2Þ be the
unique weak solution of

�Dwð2Þ ¼ 0 in W;

qwð2Þ

qn
þ wð2Þ ¼ gðx;wð1ÞÞ on qW

8><
>:
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obtained by Lemma 2.1. Thus,ð
W

ð�DzÞðwð1Þ � wð2ÞÞ dxb�
ð
qW

qz

qn
þ z

� �
ðwð1Þ � wð2ÞÞ dsx

holds for any z A C2ðWÞ, zb 0 on W. As before, for given j A Cy
0 ðWÞ, jb 0 on

W, take z A C2ðWÞ as the solution of (2.2). Then we haveð
W

ðwð1Þ � wð2ÞÞj dxb 0;

and since jb 0 can be chosen arbitrary, we conclude that wð1Þ bwð2Þ a.e. on W.
Similarly, for any h A CyðqWÞ, hb 0 on qW, let x A C2ðWÞ, xb 0, be the solution
to (2.3). Then we have

0b�
ð
qW

hðwð1Þ � wð2ÞÞ dsx;

which implies that wð1Þ bwð2Þ a.e. on qW. By induction, we obtain

w ¼ wð1Þ
bwð2Þ

b � � �bwðnÞ
b � � � ; a:e: on W;

w ¼ wð1Þ
bwð2Þ

b � � �bwðnÞ
b � � � ; a:e: on qW:

By Lemma 2.1, we know wðnÞ b 0 since g is nonnegative. By the monotone
convergence theorem, wðnÞ converges to u in L1ðW� qWÞ. Since gðx; sÞ is increas-
ing with respect to s for any x A qW, we have also 0a gð�;wðnÞÞa gð�;wð1ÞÞ A
L1ðqWÞ for any n A N, which leads to gð�; uÞ A L1ðqWÞ. Finally, it is easy to
check that u is a desired weak solution to ð1:2Þ. r

The following lemma is an integral representation formula of the unique very
weak solution to (2.1).

Lemma 2.4 ([6]: Lemma 5). There exists a linear operator T such that T
is a bounded, self-map from LpðqWÞ to LpðqWÞ for every p A ½1;þy�, and if
g A L1ðqWÞ, then the unique very weak solution u A L1ðW� qWÞ to (2.1) can be
written as

uðxÞ ¼ 1

2p

ð
qW

TgðyÞ logjx� yj�1
dsy þ dW

ð
qW

TgðyÞ dsy; if N ¼ 2;

uðxÞ ¼ 1

ðN � 2ÞjSN�1j

ð
qW

TgðyÞjx� yj2�N
dsy; if Nb 3

for all x A W. Here dW is a constant depending on W. Furthermore, T�1 exists
and is bounded from LpðqWÞ to LpðqWÞ for every p A ½1;þy� when Nb 3.

The last claim follows from the proof of [6], since T is an inverse operator of
a compact perturbation of the identity, and the compact part maps bounded sets
of LpðqWÞ to compact sets in LpðqWÞ for every p A ½1;þy�.
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By using the integral representation formula in Lemma 2.4, the following
regularity result for very weak solutions to (2.1) is established in [6].

Lemma 2.5 ([6]: Theorem 6). If g A LpðqWÞ for some p A ½1;y�, then the
followings are true for the very weak solution u A L1ðW� qWÞ to (2.1).

(i) qb p and
1

p
� 1

q
<

1

N � 1
) u A LqðqWÞ,

(ii) qb p and
1

p
� N

ðN � 1Þq <
1

N � 1
) u A LqðWÞ,

(iii) qb p and
1

p
� N

ðN � 1Þq < 0 ) u A W 1;qðWÞ.

3. A necessary condition and a su‰cient condition for the existence of
very weak solutions

In this section, we provide a necessary condition and a su‰cient condition
for the existence of a positive very weak solution to (1.1) on a general bounded
smooth domain WHRN . The result can be considered as a generalization of
that of Brezis-Cabré [1] to the nonlinear Neumann boundary condition case, and
Theorem 1.1 is a direct consequence of this. In [1], Brezis and Cabré establishes
a necessary condition and a su‰cient condition for the existence of positive very
weak solutions to the problem

�Du ¼ aðxÞup þ f ðxÞ in W; u ¼ 0 on qW;

where a, f are nonnegative L1ðWÞ functions, not identically zero. Our proof is
a direct modification of that of Brezis and Cabré to the nonlinear Neumann
boundary condition case.

In the following, let GðhÞ A L1ðW� qWÞ denote the unique very weak
solution to the linear problem

�DGðhÞ ¼ 0 in W;

qGðhÞ
qn

þ GðhÞ ¼ h on qW

8><
>:

for h A L1ðqWÞ; see Lemma 2.1.

Theorem 3.1. Let p > 1. Assume that f A L1ðqWÞ, f b 0, f 2 0 on qW,
and a A L1ðqWÞ, ab 0, a2 0 on qW. Put v ¼ Gð f Þ A L1ðW� qWÞ.

(i) If the problem (1.1) has a very weak solution ub 0, then avp A L1ðqWÞ and

GðavpÞa 1

p� 1

� �
v in Wð3:1Þ

holds true.
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(ii) If avp A L1ðqWÞ and

GðavpÞa p� 1

p

� �p
1

p� 1
v in Wð3:2Þ

holds true, then the problem (1.1) has a very weak solution ub 0. Furthermore,

va ua
p

p� 1
v holds on W.

The proof of Theorem 3.1 consists of several lemmas, which are described
below.

Lemma 3.2. Let u; v A C2ðWÞ, v > 0 on W. Let f A C2ðRÞ be a concave
function. Then we have

q

qn
þ 1

� �
vf

u

v

� �� �
¼ f 0 u

v

� �
qu

qn
þ u

� �
þ f

u

v

� �
� u

v

� �
f 0 u

v

� �� �
qv

qn
þ v

� �
ð3:3Þ

on qW. In particular, if
qv

qn
þ vb 0 on qW, then

q

qn
þ 1

� �
vf

u

v

� �� �
b f 0 u

v

� �
qu

qn
þ u

� �
� qv

qn
þ v

� �� �
þ fð1Þ qv

qn
þ v

� �
ð3:4Þ

holds.

Proof. By direct computation, we have

‘ vf
u

v

� �� �
¼ f 0 u

v

� �
‘uþ f

u

v

� �
� u

v

� �
f 0 u

v

� �� �
‘v;

which implies

q

qn
vf

u

v

� �� �
¼ f 0 u

v

� �
qu

qn

� �
þ f

u

v

� �
� u

v

� �
f 0 u

v

� �� �
qv

qn

� �

on qW. Adding this to the identity

vf
u

v

� �
¼ f 0 u

v

� �
uþ f

u

v

� �
� u

v

� �
f 0 u

v

� �� �
v;

we have (3.3). Since f is concave on R, we have fðsÞ þ ð1� sÞf 0ðsÞb fð1Þ for

any s A R. Putting s ¼ u

v
, we get

f
u

v

� �
� u

v

� �
f 0 u

v

� �
b�f 0 u

v

� �
þ fð1Þ:

Thus if
qv

qn
þ vb 0 on qW, we obtain (3.4) by inserting the above inequality

into (3.3). r
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Next lemma is a weak form of Lemma 3.2.

Lemma 3.3. Let f A C1ðRÞ be a concave function with f 0 bounded on R.
For h; k A L1ðqWÞ, kb 0, k2 0 on qW, let u, v be the unique very weak solution of

�Du ¼ 0 in W;
qu

qn
þ u ¼ h on qW;

and

�Dv ¼ 0 in W;
qv

qn
þ v ¼ k on qW;

respectively. Then it holds

�D vf
u

v

� �� �
b 0 in W;

q

qn
þ 1

� �
vf

u

v

� �� �
b f 0 u

v

� �
ðh� kÞ þ fð1Þk on qW

8>>>><
>>>>:

in the weak sense. That is, vf
u

v

� �
A L1ðW� qWÞ, f 0 u

v

� �
ðh� kÞ þ fð1Þk A

L1ðqWÞ, and

�
ð
W

vf
u

v

� �
Dz dxb

ð
qW

f 0 u

v

� �
ðh� kÞ þ fð1Þk

� �
z dsxð3:5Þ

�
ð
qW

vf
u

v

� �
zþ qz

qn

� �
dsx

holds for any z A C2ðWÞ, zb 0 on W.

Proof. First, by mollifying f, we see that (3.4) holds for f A C1ðRÞ and
concave. Following the proof of [1], we approximate h; k A L1ðqWÞ by sequences
hn; kn A CyðqWÞ, kn b 0, kn 2 0. Let un and vn be the unique classical solutions

�Dun ¼ 0 in W;
qun

qn
þ un ¼ hn on qW;

and

�Dvn ¼ 0 in W;
qvn

qn
þ vn ¼ kn on qW;

respectively. Note that vn > 0 in W by the standard strong maximum principle
(see for example, [5] Theorem 2.2). Consider the problem

�Dz ¼ 1 in W;
qz

qn
þ z ¼ 0 on qW:
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Multiplying z to the equations satisfied by u and un, and subtracting, we have

�
ð
W

ðun � uÞDz dx
����

����¼
ð
qW

ðhn � hÞz dsx
����

����a khn � hkL1ðqWÞkzkLyðqWÞ;

which implies un ! u in L1ðWÞ, and also vn ! v in L1ðWÞ. By using the solution
of

�Dh ¼ 0 in W;
qh

qn
þ h ¼ 1 on qW;

we also obtain that un ! u, vn ! v in L1ðqWÞ. Since vn > 0 on W, vnfðun=vnÞ is

well defined and vnf
un

vn

� �
converges to vf

u

v

� �
(up to a subsequence) a.e. on W

and qW. Now, by (5.10) in [1]:

vnf
un

vn

� �����
���� ¼ vn f

un

vn

� �
� fð0Þ

� �
þ fð0Þvn

����
����

¼ vnf
0 y

un

vn

� �
un

vn

� �
þ fð0Þvn

����
����aCðjunj þ jvnjÞ;

for some y A ð0; 1Þ, we see that vnf
un

vn

� �
is dominated by some L1 functions in

L1ðWÞ and L1ðqWÞ respectively (recall f 0 is bounded). Thus by Dominated
Convergence Theorem, we have

vnf
un

vn

� �
! vf

u

v

� �

in L1ðWÞ and L1ðqWÞ, respectively. Now, since un; vn A C 2ðWÞ, vn > 0, we can
apply [1]: Lemma 5.3 (5.8) to obtain

�D vnf
un

vn

� �� �
b f 0 un

vn

� �
ð�Dun þ DvnÞ þ fð1Þð�DvnÞ

¼ 0;

therefore vnf
un

vn

� �
is superharmonic in W. Thus, by integration by parts and

(3.4), it holds that

�
ð
W

vnf
un

vn

� �
Dz dxb

ð
qW

f 0 un

vn

� �
ðhn � knÞ þ fð1Þkn

� �
z dsx

�
ð
qW

vnf
un

vn

� �
zþ qz

qn

� �
dsx

for any z A C2ðWÞ, zb 0 on W. Passing to the limit in the above and using the
boundedness of f 0 again, we obtain (3.5). r
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Now, we prove Theorem 3.1.

Proof. Just as done by Brezis and Cabré [1], we use the concave function

fðsÞ ¼
ð s

1

1

tp
dt ¼ 1

p� 1
1� 1

sp�1

� �
for sb 1:

We see f 0ðsÞsp ¼ 1 for sb 1, f is concave, f 0 is bounded for sb 1, fð1Þ ¼ 0,

f 0ð1Þ ¼ 1 and 0a fðsÞa 1

p� 1
. We extend f on the interval ð�y; 1� by setting

fðsÞ ¼ s� 1. Then f thus obtained satisfies the assumptions in Lemma 3.3.
First, we prove (i) of Theorem 3.1. Assume there exists a very weak

solution ub 0 to (1.1):

�Du ¼ 0 in W;
qu

qn
þ u ¼ aðxÞup þ f ðxÞ on qW:

Since aðxÞup þ f ðxÞb f ðxÞ on qW, the weak maximum principle (Lemma 2.2)
implies

ubGð f Þ ¼ v on W:

Thus 0a aðxÞvp a aðxÞup on qW and since aup A L1ðqWÞ by the definition of the
very weak solution u, we have avp A L1ðqWÞ.

Then we take f as above and apply Lemma 3.3 with h ¼ aup þ f , k ¼ f .
Since u=vb 1, we obtain

�
ð
W

vf
u

v

� �
Dz dxb

ð
qW

f 0 u

v

� �
ðaup þ f � f Þ þ fð1Þ f

� �
z dsx

�
ð
qW

vf
u

v

� �
zþ qz

qn

� �
dsx

¼
ð
qW

avpz dsx �
ð
qW

vf
u

v

� �
zþ qz

qn

� �
dsx

for any z A C2ðWÞ, zb 0 on W by (3.5). This is the weak form of

�D vf
u

v

� �� �
b 0 in W;

q

qn
þ 1

� �
vf

u

v

� �� �
b aðxÞvp on qW;

8>>>><
>>>>:

therefore, again by the weak maximum principle Lemma 2.2, we have

GðavpÞa vf
u

v

� �
a

1

p� 1
v;

here we have used fðsÞa 1

p� 1
for sb 1. This proves (3.1) of part (i).
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Next, we prove (ii) of Theorem 3.1. Assume avp A L1ðqWÞ and (3.2) holds.
Put

w ¼ p

p� 1

� �p

GðavpÞ þ v A L1ðW� qWÞ:

Then �Dw ¼ 0 and (3.2) implies that wa
p

p� 1
v, thus

q

qn
þ 1

� �
w ¼ p

p� 1

� �p

avp þ f b awp þ f

on qW. That is, w is a very weak supersolution to (1.1). Always 0 is a
subsolution to (1.1). Therefore by the monotone iteration Lemma 2.3, we
have a very weak solution u satisfying 0a uaw. Actually, the weak maximum
principle implies

va uawa
p

p� 1
v:

This proves part (ii) of Theorem. r

Remark 3.4. Similar results as Theorem 3.1 hold true for other variants of
the problem ð1:1Þ, which are considered in [4], [3], or [7], [8]. For example, the
following claim can be proved in the same way as before.

Let p > 1 and a, f satisfy the same assumption of Theorem 3.1. Consider
the problem

�Duþ u ¼ 0 in W;
qu

qn
¼ aðxÞup þ f ðxÞ on qWð3:6Þ

on a smooth bounded domain W. The notion of very weak solutions and the
corresponding linear theory (existence, uniqueness, and so on) are examined in
[7]. For any h A L1ðqWÞ, let GðhÞ A L1ðW� qWÞ be the unique very weak
solution of

�DGðhÞ þ GðhÞ ¼ 0 in W;
qGðhÞ
qn

¼ h on qW:

We have:
(i) If the problem (3.6) has a very weak solution ub 0, then aGð f Þp A L1ðqWÞ

and

GðaGð f ÞpÞa 1

p� 1

� �
Gð f Þ in W:

(ii) If aGð f Þp A L1ðqWÞ and

GðaGð f ÞpÞa p� 1

p

� �p 1

p� 1
Gð f Þ in W;
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then the problem (3.6) has a very weak solution ub 0 with Gð f Þa ua
p

p� 1
Gð f Þ on W.

4. Proof of Theorem 1.1

In this section, we prove Theorem 1.1.

Proof. Assume the contrary that there exists a very weak solution ub 0 to
(1.1) on a bounded smooth domain W with 0 A qW. Consider v ¼ Gð f Þ, i.e., the
unique weak solution of

�Dv ¼ 0 in W;
qv

qn
þ v ¼ f on qW:

We know that vb 0, v2 0 on W since f b 0, f 2 0 on qW. Note that, by the
definition of very weak solutions, v is a distributional solution of

�Dv ¼ 0 in D 0ðWÞ:

(Simply we restrict the class of test functions from C2ðWÞ to DðWÞ). Thus by
Weyl’s lemma, we see v A CyðWÞ. Also since f A LyðWÞ, the regularity The-
orem 2.5 implies that v A W 1;qðWÞ for any q < y, thus v A C0;aðWÞ for some
a A ð0; 1Þ. Hence by the standard strong maximum principle (see for example,
[5]), we have v > 0 on W. We have checked that there exists c > 0 such that
vb c > 0 on qW, since v A CðqWÞ and qW is compact. Now, let us consider
~ww ¼ GðacpÞ, i.e., the unique weak solution of

�D~ww ¼ 0 in W;
q~ww

qn
þ ~ww ¼ cpaðxÞ on qW:

Since aðxÞvp b aðxÞcp on qW, w ¼ GðavpÞ satisfies wb ~ww by the weak maximum
principle Lemma 2.2. By the integral representation formula Lemma 2.4, ~ww can
be written as

~wwðxÞ ¼ cp

ðN � 2ÞjSN�1j

ð
qW

TaðyÞjx� yj2�N
dsy;

where T : LqðqWÞ ! LqðqWÞ is a bounded linear operator with a bounded inverse
for any q A ½1;þy�. In the following, we prove that ~wwðxÞ ! þy as jxj ! 0.
Since T and T�1 are bounded linear from LqðqWÞ to LqðqWÞ for any q A ½1;þy�,
it is enough to prove thatð

qW

aðyÞ
jx� yjN�2

dsy ! þy as jxj ! 0:

This is assured by the assumption (1.4), because for jxja 1

n
, we have
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ð
qW

aðyÞ
jx� yjN�2

dsy b

ð
BN
R
ð0ÞVqW

aðyÞ
jx� yjN�2

dsy

b

ð
BN
R
ð0ÞVqW

aðyÞ

jyj þ 1

n

� �N�2
dsy ! þy

as n ! y. Thus we obtain w ¼ GðavpÞ also blows up as jxj ! 0. However,
this contradicts to the necessary condition (3.1) proved in Theorem 3.1:

w ¼ GðavpÞa 1

p� 1
v on W;

since v A CðWÞ. This proves Theorem 1.1. r
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