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A NOTE ON PARABOLIC POWER CONCAVITY

Kazuhiro Ishige and Paolo Salani

Abstract

We investigate parabolic power concavity properties of the solutions of the heat

equation in W� ½0;TÞ, where W ¼ Rn or W is a bounded convex domain in Rn.

1. Introduction

Consider the Cauchy-Dirichlet problem for the heat equation

qtu ¼ Du in W� ð0;yÞ;
uðx; tÞ ¼ 0 on qW� ð0;yÞ if qW0j;

uðx; 0Þ ¼ jðxÞb 0 in W;

8><
>:ð1:1Þ

where qt ¼ q=qt, W ¼ Rn or W is a bounded convex domain in Rn ðnb 1Þ and
j A CðWÞVLyðWÞ. This paper is concerned with concavity properties involving
the space and the time variables jointly for the solution of (1.1).

Questions about geometric properties of solutions are quite natural in the
theory of elliptic and parabolic equations. In this regard, convexity and
convexity-like properties have been investigated extensively, especially in the
field of elliptic equations. See [21] for a good introduction to this subject;
see also [2, 3, 20, 25, 29] as some of the most recent results, to our knowledge,
for elliptic equations. A typical question is the following: if u > 0 solves an
elliptic Dirichlet problem in a bounded convex domain W with constant vanishing
boundary data, does u have to be concave? As it is easily seen, the answer to
this question is in general negative: it is possible to construct examples in which
concavity goes completely lost (see for instance [12]) and one can hardly expect a
genuinely concave solution even to a simple Dirichlet problem like the following
torsion problem

Du ¼ �1 in W;

u ¼ 0 on qW;

�
ð1:2Þ
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where indeed concavity does not hold true even for very simple geometries, like W
being a square (see [26, page 613]). On the other hand, the solution u of (1.2)
somehow gains the convexity of the domain: precisely

ffiffiffi
u

p
is concave, as proved

by Makar-Limanov in [30] for dimension 2 and by Kennington in [23] for general
n. Another classical result by Brascamp and Lieb [5] states that the first positive
eigenfunction u of the Laplace operator in a convex domain is log-concave, i.e.
logðuÞ is concave. These examples suggest that in general one can look for some
power concavity of the solution of the involved problem. We recall the following
definition: a positive function u is said p-concave for some p A ð�y;yÞ if

p

jpj u
p is concave for p0 0

logðuÞ is concave for p ¼ 0:

8<
:

Usually, 0-concave functions are said log-concave. When p ! �y we get the
notion of quasi-concavity: a function u is said quasi-concave if all its super level
sets are convex. Quasi-concavity is the weakest conceivable concavity property.

When dealing with a parabolic problem like (1.1), the geometry of the
solution u is influenced not only by the domain W but also by the initial datum
j. Moreover, the concavity of the solution can be intended in two di¤erent
ways: spatial concavity, i.e. we can ask whether u is (power) concave when
regarded as a function of the spatial variable x only at every fixed time, or space-
time concavity, i.e. (power) concavity with respect to ðx; tÞ. Most of the results
in literature regard spatial concavity. For instance, it is easily seen that, when
W ¼ Rn, every solution u of (1.1) with moderate growth at space infinity preserves
the spatial concavity of j at every time t > 0: just consider any direction x, then
uxx solves the heat equation in Rn with initial datum jxx a 0, hence uxx a 0 for
every direction x and u is concave in x for every time t. Related results and
extensions can be found in [9], [19] and [27], for instance. It is also well known
that heat flow pushes forward the spatial log-concavity of the initial datum in a
convex domain, as proved by Brascamp and Lieb in the already quoted classical
paper [5]. An alternative proof of this result can be obtained with the methods
of another famous paper by Korevaar [26]. Further investigations on spatial
log-concavity in parabolic problems can be found in [10]. Moreover, Lee and
Vázquez proved in [28] that, if the initial function j has a compact support, then
the solution of (1.1) is spatially log-concave after a finite time. Also Kennington
considered the spatial power concavity of solutions of parabolic problems (see
[23] and [24]). The quoted results show that log-concavity has a special role in
the parabolic case; and indeed weaker properties than log-concavity are not
necessarily preserved by the heat flow (see [14] and [15]).

On the other hand, space-time concavity properties are also very interesting
(and may be more natural) for parabolic problems. Inspired by [4], the authors
of this paper introduced in [16] and [17] the notions of parabolic and a-parabolic
quasi-concavity, and studied quasi-concavity properties involving the space and
the time variables jointly for particular parabolic boundary value problems in
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a convex ring. Furthermore, they developed in [18] the notion of a-parabolic
q-concavity for nonnegative functions and study parabolic power concavity
properties of solutions to parabolic boundary value problems in a convex cylinder
with vanishing initial datum and a suitable source term. See also [6, 7, 8, 13, 31]
for further results related to space-time concavity of solutions of parabolic
problems.

In this paper we investigate the parabolic log-concavity of the solutions
of (1.1) when W ¼ Rn. Moreover, in the case where W is a bounded convex
domain, we apply the results of [18] to study the a-parabolic power concavity for
the quantity

Uðx; tÞ :¼
ð t
0

uðx; sÞ ds;

which could be regarded as the cumulative heat at the point x at time t.
The rest of this paper is organized as follows. In Section 2 we introduce

some notation and recall some known results on concavity properties. In
Section 3 we state the main theorems of this paper, Theorems 3.1 and 3.2,
which are concerned with parabolic log-concavity for the solution of (1.1) in the
case W ¼ Rn. In Section 4 we prove Theorems 3.1 and 3.2. In Section 5 we
consider problem (1.1) in the case where W is a bounded convex domain, and
study a-parabolic q-concavity of U .
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2. Preliminaries

We introduce some notation and recall some preliminary properties of the
solutions of the heat equation and quasi-concave functions.

For any x A Rn and r > 0, we put Bðx; rÞ ¼ fy A Rn : jx� yj < rg. For any
set DHRn, we denote by wD the characteristic function of D, that is, wDðxÞ ¼ 1
for x A D and wDðxÞ ¼ 0 for x B D. For any nonnegative function j A CðWÞV
LyðRnÞ, there is a unique nonnegative solution of (1.1) in the case W ¼ Rn, that
is the following

ð4ptÞ�n=2

ð
Rn

e�jx�yj2=4tjðyÞ dy; ðx; tÞ A Rn � ð0;yÞ:ð2:1Þ
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2.1. Power concave and parabolic power concave functions. For a; b > 0,
l A ð0; 1Þ and p A ½�y;y�, we define

Mpða; b; lÞ ¼

½ð1� lÞap þ lbp�1=p if p B f�y; 0;yg;
a1�lbl if p ¼ 0;

maxfa; bg if p ¼ y;

minfa; bg if p ¼ �y;

8>>><
>>>:

which is the p-(weighted) mean of a and b with ratio l. Furthermore, for
a; bb 0, we define Mpða; b; lÞ as above if pb 0 and

Mpða; b; lÞ ¼ 0 if p < 0 and a � b ¼ 0:

Definition 2.1. Let K be a convex set in Rm and p A ½�y;y�. A
nonnegative function v defined in K is said p-concave if

vðð1� lÞxþ lyÞbMpðvðxÞ; vðyÞ; lÞ
for all x; y A K and l A ð0; 1Þ. Moreover, vb 0 is said p-concave in Rm if it has
a convex support K and it is p-concave in K. In the cases p ¼ 0 and p ¼ �y, v
is also said log-concave and quasi-concave, respectively.

Then the following holds.

Lemma 2.1.
(i) If v is p-concave, then v is q-concave for every qa p.
(ii) For any �y-concave function v, define

aðvÞ :¼ supfb A R : v is b-concaveg:
Then v is aðvÞ-concave.

Proof. Properties (i) and (ii) are well-known (see [23] for instance); we
just give a sketch of the proof for reader’s convenience. Property (i) follows
from Jensen’s inequality, which implies that Mqða; b; lÞaMpða; b; lÞ if qa p.
Property (ii) follows from the continuity of Mpða; b; lÞ with respect to p A
½�y;þy�. r

Notice that (i) implies that quasi-concavity is the weakest concavity property
one can imagine.

For more details on power concave functions, we address the reader to [5]
and [23]. Here we just recall the following result from [5, Corollary 3.5].

Proposition 2.1. Let ab�1=n and let F ðx; yÞb 0 be a-concave in
Rm � Rn. Then the function

GðxÞ ¼
ð
R n

F ðx; yÞ dy

is g-concave in Rm with g ¼ a=ð1þ naÞ. In particular, if F is log-concave, so is G.
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Next we follow [16, 17, 18] and give the definition of a-parabolic q-concavity
for nonnegative functions in a convex cylinder. See also [4].

Definition 2.2. Let WJRn be a convex set, Q ¼ W� ½0;yÞ and a; p A
½�y;y�. A nonnegative function v A CðQÞ is said a-parabolically p-concave if

vðð1� lÞx1 þ lx2;Maðt1; t2; lÞÞbMpðvðx1; t1Þ; vðx2; t2Þ; lÞð2:2Þ

for all ðx1; t1Þ; ðx2; t2Þ A Q and l A ð0; 1Þ.

For p ¼ 0 and p ¼ �y we speak again of a-parabolic log-concavity and
quasi-concavity. Roughly speaking, for any a A Rnf0g, v is a-parabolically
p-concave in Q if

� v is a constant function in Q for p ¼ y;
� vðx; t1=aÞp is concave in Q for p > 0;
� log vðx; t1=aÞ is concave in Q for p ¼ 0;
� vðx; t1=aÞp is convex in Q for p < 0;
� the superlevel sets fðx; tÞ A Q : vðx; t1=aÞ > mg are convex for every mb 0
for p ¼ �y.

Obviously, if v is a-parabolically p-concave for some a A ½�y;þy�, then vð�; tÞ is
spatially p-concave at any fixed time t.

Remark 2.1. Due to the homogeneity of the heat equation with respect to
time and space, the case corresponding to a ¼ 1=2 plays a special role and a 1

2-
parabolically p-concave function is simply said parabolically p-concave. Ana-
logously, thanks to the properties of the heat kernel in Rn, a special role is also
played by the case corresponding to p ¼ 0, that is log-concavity.

3. Solutions in Rn

In this section we consider problem (1.1) in the case W ¼ Rn, and state our
theorems about the parabolic concavity properties of the solution.

Theorem 3.1. Let W ¼ Rn and let u be the nonnegative solution of (1.1). If
the initial function j A CðRnÞVLyðRnÞ is such that

fðx; tÞ ¼ jðt�bxÞ is log-concave in Rn � ð0;yÞð3:3Þ

for some b > 0, then the function

vbðx; tÞ :¼ uðt�bx; t�2bÞ

is log-concave in Rn � ð0;yÞ. Equivalently, the function

wbðx; tÞ ¼ t log uðtb�1x; t2bÞ
is concave in Rn � ð0;yÞ.
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Notice that the conclusion of the above theorem can be also equivalently

expressed by saying that the function uðt�1x; t�2Þ is
1

b
-parabolically log-concave,

or by saying that the function uðt�b=2x; t�bÞ is parabolically log-concave, or by
similar statement referred to the function wb. In any case, it is apparent that
Theorem 3.1 implies the spatial log-concavity of u at every fixed time t > 0.

As a corollary of Theorem 3.1 with b ¼ 1, we obtain:

Theorem 3.2. Let W ¼ Rn and let u be the nonnegative solution of (1.1). If
j is the characteristic function of a convex set, then the function

wðx; tÞ ¼
ffiffi
t

p
log uðx; tÞ

is parabolically concave in Rn � ð0;yÞ.

The proofs of Theorems 3.1 and 3.2 are given in Section 4.

Remark 3.1. As said in the Introduction, Lee and Vázquez proved that any
solution of (1.1) becomes spatially log-concave after a possibly large time T > 0
when the initial function j has a compact support. One can wonder whether a
similar property hold for space-time log-concavity, i.e. whether it is possible to
find conditions on the initial datum j such that the solution u surely becomes
somehow space-time log-concave after a possibly large time T . This is an inter-
esting question and we conjecture the answer to be positive for any initial datum
with compact support.

The same question naturally arises for a bounded convex domain W. In this
case, following the suggestion of an unknown referee, we conjecture that some
kind of large-time parabolic log-concavity hold for the solution of (1.1) when the
initial datum j satisfies

Ð
W ju1 dx > 0, with u1 the first positive Dirichlet eigen-

function of the Laplace operator in W.

In the rest of this section we discuss assumption (3.3) in order to show that
there is plenty of functions j satisfying it.

First notice that (3.3) implies that j be log-concave in Rn ( just fix t ¼ 1), i.e.
it is positive in a convex set K (possibly K ¼ Rn), vanishing outside of K and
there exists a convex function h (assuming the conventional value þy outside
of K) such that

jðxÞ ¼ e�hðxÞ:

Then assumption (3.3) asks hðt�bxÞ to be convex with respect to ðx; tÞ.
Let n ¼ 1. Then K must be an interval I in R. Assume h is not a constant

function in R and that hðxÞ ! y as jxj ! y. We can assume, without loss of
generality, that 0 A I and

hð0Þ ¼ min
x AR

hðxÞ;
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which implies that h is decreasing for x < 0 and it is increasing for x > 0. Set
f ðx; tÞ ¼ hðt�bxÞ. Then

fx ¼ t�bh 0; ft ¼ �bxt�b�1h 0;

fxx ¼ t�2bh 00; ftt ¼ bðb þ 1Þxt�b�2h 0 þ b2x2t�2b�2h 00;

fxt ¼ �bt�b�1h 0 � bxt�2b�1h 00;

where h 0 and h 00 are calculated at t�bx A I (and they exist almost everywhere by
convexity). These imply that

detðD2f Þ ¼ b2t�2b�2h 0 1� b

b
t�bxh 00 � h 0

� �
:

Then f is convex if and only if h (which is convex) satisfies

1� b

b
xh 00ðxÞ � h 0ðxÞa 0 for x < 0;

1� b

b
xh 00ðxÞ � h 0ðxÞb 0 for x > 0

8>>><
>>>:

ð3:4Þ

where x ¼ t�bx A I . Notice that, if h 0=ðxh 00Þ is bounded away from zero, i.e.
there exists e > 0 such that xh 00=h 0 > e for every x A I (for instance when
hðxÞ ¼ jxjg for some g > 1), then (3.4) is certainly satisfied for su‰ciently small
b > 0. Moreover, in the case b ¼ 1, (3.4) ( jointly with the fact that h is
decreasing for x < 0 and it is increasing for x > 0) implies h 0ðxÞ ¼ 0 for every
x A I . Then h must be a positive constant function in the interval I and þy
outside I , that is,

jðxÞ ¼ cwI

for some c > 0.
Similarly one can consider a convex function h which is increasing in R

(and tends to þy as x ! þy or assumes the conventional value þy for large
positive x) or which is decreasing in R (and tends to þy as x ! �y or assumes
the conventional value þy for large negative x).

Let nb 2 and let us consider the case where h is a g-homogeneous convex
function with gb 0, that is, h is convex and

hðtxÞ ¼ tghðxÞ for every t > 0:

Then, thanks to [16, Lemma A.1],

f ðx; tÞ ¼ hðt�bxÞ ¼ t�gbhðxÞ

is convex if and only if hðxÞ1=ð1þgbÞ is convex.
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4. Proofs of Theorem 3.1 and Theorem 3.2

Proof of Theorem 3.1. It follows from (2.1) that

vbðx; sÞ ¼ ð4ps�2bÞ�n=2

ð
R n

exp � js�bx� yj2

4s�2b

 !
jðyÞ dy

¼ ð4pÞ�n=2

ð
R n

exp � jx� zj2

4

 !
jðs�bzÞ dz:

Since jðs�bzÞ is log-concave with respect to ðz; sÞ, the function

Kðs; x; zÞ :¼ exp � jx� zj2

4

 !
jðs�bzÞ

is log-concave with respect to ðs; x; zÞ. Then we deduce from Proposition 2.1
that v is log-concave with respect to ðx; sÞ, and the proof of the first sentence of
the theorem is complete.

Then the assertion regarding the function wb is a straightforward conse-
quence of the following interesting algebraic lemma, applied to the function
�log vb.

Lemma 4.1. Let v be a function in Rn � ð0;yÞ. Then v is convex in
Rn � ð0;yÞ if and only if the function

wðx; sÞ ¼ svðs�1x; s�1Þ;

is convex with respect to ðx; sÞ A Rn � ð0;yÞ.

Proof. Assume that w is convex, i.e.

ðð1� mÞs0 þ ms1Þv
ð1� mÞx0 þ mx1
ð1� mÞs0 þ ms1

; ðð1� mÞs0 þ ms1Þ�1

� �
ð4:5Þ

a ð1� mÞs0v
x0
s0

; s�1
0

� �
þ ms1v

x1
s1

; s�1
1

� �

for x0; x1 A Rn, s0; s1 > 0 and m A ð0; 1Þ. Set

si ¼ t�1
i ; xi ¼ sixi; l ¼ ms1

ð1� mÞs0 þ ms1
;

for i ¼ 0; 1. Since

1� l ¼ ð1� mÞs0
ð1� mÞs0 þ ms1
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and

ð1� lÞt0 þ lt1 ¼
1� m

ð1� mÞs0 þ ms1
þ m

ð1� mÞs0 þ ms1

¼ ðð1� mÞs0 þ ms1Þ�1;

(4.5) reads

vðð1� lÞx0 þ lx1; ð1� lÞt0 þ lt1Þa ð1� lÞvðx0; t0Þ þ lvðx1; t0Þ;

which says that v is convex with respect to ðx; tÞ A Rn � ð0;yÞ. Similarly we see
that w is convex if v is convex. Thus Lemma 4.1 follows. r

Proof of Theorem 3.2. Let K be a convex set. By the second assertion of
Theorem 3.1 (and the discussion about parabolic concavity following Definition
2.2), it su‰ces to prove that the function

fðx; tÞ ¼ wKðx=tÞ

is log-concave with respect to ðx; tÞ A Rn � ð0;yÞ. Let l A ð0; 1Þ. Since fðx; tÞ ¼
wtKðxÞ, we have

fðx0; t0Þ1�l
fðx1; t1Þl ¼

1 if x0 A t0K and x1 A t1K ;

0 otherwise;

�
ð4:6Þ

for all ðx0; t0Þ and ðx1; t1Þ A Rn � ð0;yÞ. On the other hand, if x0 A t0K and
x1 A t1K , then

ð1� lÞx0 þ lx1 A ðð1� lÞt0 þ lt1ÞK ;

and we have

fðð1� lÞx0 þ lx1; ð1� lÞt0 þ lt1Þ ¼ 1:

This together with (4.6) implies that

fðð1� lÞx0 þ lx1; ð1� lÞt0 þ lt1Þb fðx0; t0Þ1�lfðx1; t1Þl

for all ðx0; t0Þ and ðx1; t1Þ A Rn � ð0;yÞ, which implies that f is log-concave with
respect to ðx; tÞ A Rn � ð0;yÞ. Thus Theorem 3.2 follows. r

5. Solutions in a bounded convex domain

Let W be a bounded convex domain in Rn and let u be the solution of (1.1).
In this section we discuss how the power concavity of the initial datum j
influences the solution u.

We recall the following result on parabolic power concavity for the heat
equation with a source term (see [18, Theorem 2]).
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Proposition 5.1. Let W be a bounded convex domain in Rn, D :¼
W� ð0;yÞ and f a nonnegative function in W. Let w A C2;1ðDÞVCðDÞ satisfy

qtw ¼ Dwþ f in D;

w ¼ 0 on qD:

�
ð5:7Þ

Then the following holds:
(i) if f is q-concave in W for some qb 1, then w is a-parabolically p-concave

in D with p ¼ q=ð1þ 2qÞ and ab 1=2;

(ii) if f is a positive constant in W, then
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
wðx; t1=aÞ

p
is concave in D for any

ab 1=2.

Proposition 5.1 shows that the power concavity of a source term compels
some concavity of the solution with respect to space and time jointly. In this
section we apply Proposition 5.1 to problem (1.1), and prove the following
theorem on problem (1.1), which establishes the parabolic power concavity of

Uðx; tÞ ¼
ð t
0

uðx; sÞ ds:ð5:8Þ

Roughly speaking, the function U represents the cumulative heat in x at time t.

Theorem 5.1. Let W be a bounded convex domain in Rn. Let u be the
solution of (1.1), where j A CðWÞVLyðWÞ and jb 0 in W. Then the following
holds for the function U defined by (5.8):

(i) if j is q-concave in W for some qb 1, then U is a-parabolically p-concave
in D with p ¼ q=ð1þ 2qÞ and ab 1=2;

(ii) if j is a positive constant in W, then
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Uðx; t1=aÞ

p
is concave in D for any

ab 1=2.

Proof. Since u is a solution of (1.1), we easily see that U satisfies

Ut ¼ DU þ jðxÞ in D;

U ¼ 0 on qD;

�
ð5:9Þ

where D ¼ W� ð0;yÞ. Then Theorem 5.1 immediately follows from Proposi-
tion 5.1. r

Remark 5.1. We remark that Theorem 5.1 contains as a particular case
concavity properties of positive solutions of

�DU ¼ j in W; U ¼ 0 on qW;

which corresponds to (5.8) with t ¼ þy. In particular, we notice that a possible
alternative definition of the torsion function of a set W is the following:

UðxÞ ¼
ðy
0

uðx; tÞ dx
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where u is the solution of (1.1) with initial value j1 1, see for example [1].
Then Theorem 5.1 implies the Makar-Limanov’s result and its generalization to
nb 2.
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