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Abstract

Given a bounded open set W of Rn, nb 2, and a A R, let us consider

mðW; aÞ ¼ min
v AW 1; 2

0
ðWÞ

v20

ð
W

j‘vj2 dxþ a

ð
W

jvjv dx
����

����ð
W

jvj2 dx
:

We study some properties of mðW; aÞ and of its minimizers, and, depending on a, we

determine the sets Wa among those of fixed measure such that mðWa; aÞ is the smallest

possible.

1. Statement of the problem and main result

Let W be a bounded open set of Rn, nb 2, and consider the following
minimum problem

mðW; aÞ ¼ min
v AW 1; 2

0
ðWÞ

v20

Qðv; aÞð1:1Þ

where a is a fixed real number and

Qðv; aÞ ¼

ð
W

j‘vj2 dxþ a

ð
W

jvjv dx
����

����ð
W

jvj2 dx
:

The objective of this paper is to study some properties of mðW; aÞ and of its
minimizers. Moreover, we aim to determine and to characterize the sets ~WW
among those of fixed measure such that mð~WW; aÞ is the smallest possible. As we
will show, the shape of ~WW depends on a. More precisely if we denote, as usual,
by on the measure of the unit ball in Rn, and by jn=2�1;1 the first zero of the
Bessel function of first kind of order n=2� 1, the main result of the paper is the
following.
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Theorem 1.1. Let nb 2. There exists a positive number

ac ¼ j2n=2�1;1o
2=n
n ½22=n � 1�

such that, for every bounded open set WHRn and for every a A R, it holds

mðW; aÞb
mðWa; aÞ if ajWj2=n a ac;

22=no
2=n
n j2n=2�1;1

jWj2=n
if ajWj2=n b ac;

8>><
>>:ð1:2Þ

where Wa is the ball centered at the origin with Lebesgue measure jWaj ¼ jWj. If
the equality sign holds when ajWj2=n < ac, then W is a ball. If the equality sign
holds when ajWj2=n > ac, then W is the union of two disjoint balls of equal measure.

If ajWj2=n ¼ ac and the equality sign holds, W is a ball or the union of two disjoint
balls of equal measure.

On the other hand, the above result provides the best constant mð~WW; aÞ in the
corresponding Sobolev-Poincaré inequality:

mð~WW; aÞ
ð
W

jvj2 dxa
ð
W

j‘vj2 dxþ a

ð
W

jvjv dx
����

����; v A W 1;2
0 ðWÞ;

among all the open bounded sets W with fixed measure.
Let us observe that when a ¼ 0, the above inequality reduces to the classical

Poincaré inequality. Moreover, QðW; 0Þ is the Rayleigh quotient associated to
the Dirichlet Laplacian eigenvalue problem, and mðW; 0Þ corresponds to its first
eigenvalue in W. Then, it is well known the Faber-Krahn inequality:

mðW; 0Þb mðWa; 0Þ:
Moreover if the equality replaces the inequality, then W is a ball.

The problem of finding the optimal shape of set-dependent functionals is
largely studied in many settings. Several results can be found for example in
[14], related to eigenvalue problems, or in [16]. Recent results are contained for
example in [1–3, 5–13, 17]. Moreover, we recall that in [2] a result analogous to
Theorem 1.1 is given for the functional

~llðW; aÞ ¼ min
v AW 1; 2

0
ðWÞ

v20

ð
W

j‘vj2 dxþ a

ð
W

v dx

� �2

ð
W

jvj2 dx
;

which is related to a nonlocal eigenvalue problem. It has been proved that there
exists a positive threshold value ~aa such that if a < ~aa, the minimum of ~llðW; aÞ
among the sets with fixed measure is attained at one ball, while for a greater
than ~aa, such minimum is given at two balls of equal measure.

The paper is organized as follows. In Section 2, we recall some basic results
on Schwarz symmetrization and on the Dirichlet Laplacian. Moreover, depend-
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ing on a, we give some properties of mðW; aÞ and of its minimizers. Finally, in
Section 3 we give the proof of the main result.

2. Notation and preliminary results

2.1. Schwarz symmetrization. Let W be a bounded open set of Rn, nb 2
and let u : W ! R be a measurable function. We denote by Wa the ball centered
at the origin with the same Lebesgue measure of W. The Schwarz rearrangement
of u is the spherically symmetric decreasing function

ua : Wa! ½0;þy½
whose level sets are balls having the same measure of the level sets of juj, that is

jfua> tgj ¼ jfjuj > tgj; tb 0:

The Schwarz symmetrization enjoys the following properties.
a) By definition, ua preserves the Lp-norm of u:

kukLpðWÞ ¼ kuakLpðWaÞ; 1a paþy:ð2:1Þ
b) The Pólya-Szegö inequality holds: if u A W

1;2
0 ðWÞ is a nonnegative func-

tion, then ð
W

j‘uj2 dxb
ð
Wa

j‘uaj2 dx:ð2:2Þ

Moreover, if the above inequality becomes an equality, and

jfj‘uaj ¼ 0gV ðuaÞ�1ð0; ess sup uÞj ¼ 0;

then, up to translations, W ¼ Wa and u ¼ ua almost everywhere (see [4]).
For an exhaustive treatment on rearrangements and symmetrization, we refer

the reader, for example, to [15].

2.2. Some basic facts about the Dirichlet Laplacian. Given G a bounded
open set of Rn, nb 2, throughout the paper we will denote by lDðGÞ the first
Dirichlet-Laplace eigenvalue relative to G:

lDðGÞ ¼ min
v AW 1; 2

0
ðGÞnf0g

ð
G

j‘vj2 dxð
G

jvj2 dx
;ð2:3Þ

and by lTðGÞ the minimum of the constrained problem

lTðGÞ ¼ min
v AW 1; 2

0
ðGÞnf0gÐ

G
jvjv dx¼0

ð
G

j‘vj2 dxð
G

jvj2 dx
:ð2:4Þ
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As regards (2.3), we recall the following basic properties.
(1) The Faber-Krahn inequality: for any bounded open set in WHRn, nb 2,

it holds that

lðWÞb lðWaÞ ¼ o
2=n
n

jWj2=n
j2n=2�1;1;

where jn=2�1;1 denotes, as usual, the first zero of the Bessel function of
first kind of order n=2� 1. If equality sign occurs, then W is a ball.

(2) If W ¼ B1 UB2 is the union of two disjoint balls B1, B2 with di¤erent
radii R1 > R2 > 0, then

lDðWÞ ¼ lDðB1Þ ¼
j2n=2�1;1

R2
1

:

Hence lDðWÞ is simple, any associated eigenfuction does not change sign
in the largest ball B1, and it is identically zero in B2.

(3) If W ¼ B1 UB2 is the union of two disjoint balls B1, B2 with equal radii
0 < R1 ¼ R2, the first eigenvalue is not simple, and there exists an eigen-
function u positive in B1, negative in B2 and such that

Ð
B1UB2

juju dx ¼ 0.

In particular, this eigenfunction coincides with the positive first eigen-
function of lDðB1Þ, and to its opposite (up to a translation) in B2.

2.3. Some properties of mðW; aÞ. In what follows, for a given function
u : W ! R, the functions uþ ¼ maxfu; 0g and u� ¼ maxf�u; 0g will denote its
positive and negative part, and

Wþ ¼ fuþ > 0g; W� ¼ fu� > 0g:

Proposition 2.1. Let W be a bounded open set of Rn. The following
properties for mðW; aÞ hold.

(a) The minimum mðW; aÞ is 1-Lipschitz continuous and non-decreasing with
respect to a A R.

(b) For a < 0,

mðW; aÞ ¼ lDðWÞ þ a:

(c) For ab 0,

lDðWÞa mðW; aÞaminflT ðWÞ; lDðWÞ þ ag:ð2:5Þ

(d) As a ! þy, we have that

lim
a!þy

mðW; aÞ ¼ lTðWÞ:

Proof. (a) For any e > 0,

Qðv; aÞaQðv; aþ eÞaQðv; aÞ þ e:
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Taking the minimum over W
1;2
0 ðWÞnf0g, we have

0a mðW; aþ eÞ � mðW; aÞa e;

and the proof of (a) is concluded.
(b) Being a < 0, we have that Qðv; aÞbQðjvj; aÞ ¼ Qðv; 0Þ þ ab lDðWÞ þ a,

for any v A W
1;2
0 ðWÞ. On the other hand, if u A W

1;2
0 ðWÞ is a non-

negative minimizer for (2.3), Qðu; aÞ ¼ lDðWÞ þ a, and then necessarily
lDðWÞ þ a ¼ mðW; aÞ.

(c) It follows immediately from the definitions of m, lD and lT .
(d) Let 0a ak, k A N, be a positively divergent sequence. For any k,

consider a minimizer uk A W 1;2
0 ðWÞ of (1.1) such that kukk2 ¼ 1. We

have that

mðW; akÞ ¼
ð
W

j‘ukj2 dxþ ak

ð
W

jukjuk dx

����
����a lT ðWÞ:

Then uk converges (up to a subsequence) to a function U A W
1;2
0 ðWÞ

strongly in L2ðWÞ and weakly in W 1;2
0 ðWÞ. Moreover, kUkL2ðWÞ ¼ 1 andð

W

jukjuk
����

����a lTðWÞ
ak

! 0 as k ! þy;

which gives that
Ð
W jU jU dx ¼ 0. On the other hand, the weak conver-

gence in W
1;2
0 ðWÞ implies thatð

W

j‘U j2 dxa lim inf

ð
W

j‘ukj2 dx:

Finally, by definition of lTðWÞ, and (2.5) we have

lT ðWÞa
ð
W

j‘U j2 dx

a lim inf
k!þy

ð
W

j‘ukj2 dxþ ak

ð
W

jukjuk dx

����
����

� �

¼ lim
k!þy

mðW; akÞa lTðWÞ;

and the proof is completed. r

Remark 2.1. Let us observe that from the above proposition, (b) gives that
mðW; �Þ is unbounded from below. Moreover, mðW; aÞ ¼ 0 corresponds to �a ¼
lðWÞ.

Remark 2.2. Among the properties of mðW; aÞ, we observe also that it does
not have the same behavior of the usual Dirichlet Laplacian with respect to the
rescaling of the domain, being also the term a a¤ected of the rescaling. Indeed,
while lDðtWÞ ¼ t�2lðWÞ, it holds that mðtW; aÞ ¼ t�2mðW; t2aÞ.
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In the lemma below, we describe some features of mðW; aÞ by computing the
associated Euler equation. Without loss of generality we may assume that a
minimizer u satisfies

Ð
W juju dxb 0.

Lemma 2.1. Consider ab 0 and W bounded open set of Rn, nb 2, and
suppose that u A W 1;2

0 ðWÞ is a minimizer for (1.1). Then uþ A W 1;2
0 ðWþÞ and u� A

W
1;2
0 ðW�Þ are first eigenfunctions of the Dirichlet Laplacian associated to Wþ and

W� respectively. Moreover:
(1) suppose that

Ð
W juju dx > 0.

(a) If u� 1 0 in W, then

mðW; aÞ ¼ lDðWþÞ þ a:ð2:6Þ
(b) If u� 2 0 in W, then

mðW; aÞ ¼ lDðWþÞ þ a ¼ lDðWþÞ þ lDðW�Þ
2

;ð2:7Þ

and then the parameter a corresponds to

a ¼ lDðW�Þ � lDðWþÞ
2

:ð2:8Þ
In both cases (a) and (b),

lDðWþÞ ¼ lDðWÞ;ð2:9Þ
and

mðW; aÞ ¼ lDðWÞ þ a ¼ lDðWþÞ þ a:ð2:10Þ
(2) Suppose that

Ð
W juju dx ¼ 0. Then

mðW; aÞ ¼ lT ðWÞ ¼ lDðWþÞ þ lDðW�Þ
2

:ð2:11Þ

More precisely, if there exists a such that a minimizer u of mðW; aÞ satisfiesÐ
W
juju dx ¼ 0, then for any a > a, u is a minimizer for mðW; aÞ, the

equality in (2.11) holds, and u is a minimizer also for lTðWÞ.

Proof. For sake of simplicity, here we write m ¼ mðW; aÞ, and distinguish
two cases.

Case 1.
Ð
W juju dx > 0. We have that u solves

�Du ¼ mu� ajuj in W;

u ¼ 0 on qW:

�

If ub 0 in W, then uþ satisfies

�Duþ ¼ ðm� aÞuþ in Wþ;

uþ ¼ 0 on qWþ:

�
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The positivity of the eigenfunction uþ in Wþ guarantees that m� a coincides with
the first eigenvalue lþðWÞ on Wþ, and then (2.6) holds. Moreover, (2.9) follows
from the inequalities

lDðWþÞ þ aa lDðWÞ þ aa lDðWþÞ þ a;

obtained by substituting (2.6) in (2.5), and recalling the monotonicity of the
Dirichlet-Laplace eigenvalues with respect to the inclusion of sets.

If u changes sign in W, then uþ and u� satisfy

�Duþ ¼ ðm� aÞuþ in Wþ;

u ¼ 0 on qWþ;

�
and

�Du� ¼ ðmþ aÞu� in W�;

u� ¼ 0 on qW�:

�

Hence

lDðWþÞ ¼ m� a; lDðW�Þ ¼ mþ a;

that give (2.7) and (2.8). Similarly as before, substituting (2.7) and (2.8) in (2.5)
and using the monotonicity of lDð�Þ, the equality (2.9) holds. By (2.6), (2.7) and
(2.9) we get also (2.10).

Case 2.
Ð
W
juju dx ¼ 0. First, we observe that in this case

mðW; aÞ ¼ lTðWÞ:

Indeed, by definition of m and lT , and being u an admissible function for (2.4),
we have

lTðWÞb mðW; aÞ ¼ Qðu; aÞb lT ðWÞ:

Computing the Euler equation with the constraint
Ð
W
juju dx ¼ 0, the functions

uþ A W
1;2
0 ðWþÞ and u� A W

1;2
0 ðW�Þ satisfy

�Duþ ¼ lþuþ in Wþ;

uþ ¼ 0 on qWþ;

�
and

�Du� ¼ l�u� in W�;

u� ¼ 0 on qW�;

�
ð2:12Þ

for some positive values lþ and l� (see also [17]). Moreover, being uþ and u�
positive functions in Wþ and W� respectively, it follows that

lþ ¼ lDðWþÞ; l� ¼ lDðW�Þ:

Hence, in this case we have that
Ð
Wþ

u2þ dx ¼
Ð
W�

u2� dx, and from the minimality
of u and using (2.12) it follows that

mðW; aÞ ¼ Qðu; aÞ ¼

ð
Wþ

j‘uþj2 dxþ
ð
W�

j‘u�j2 dxð
Wþ

u2þ dxþ
ð
W�

u2� dx

¼ lDðWþÞ þ lDðW�Þ
2

;

and (2.11) is proved. The proof of (2) is completed by recalling that the function
mðW; �Þ is nondecreasing and bounded from above by lTðWÞ. r
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Using the above lemma, the minimum mðW; aÞ can be characterized as
follows.

Proposition 2.2. If W is a bounded open set of Rn, nb 2, then

mðW; aÞ ¼ minflDðWÞ þ a; lTðWÞg ¼ lDðWÞ þ a; if aa lT ðWÞ � lDðWÞ;
lTðWÞ; if ab lT ðWÞ � lDðWÞ:

�

Proof. Let ab 0 be fixed. We have to show that mðW; aÞ ¼
minflDðWÞ þ a; lTðWÞg.

Clearly if lDðWÞ þ a < lT ðWÞ, a minimizer u of mðW; aÞ cannot verifyÐ
W juju dx ¼ 0. Otherwise, by (2.11), and choosing a nonnegative first eigen-
function u1 of �D in W, we have

Qðu; aÞ ¼ mðW; aÞ ¼ lTðWÞ > lDðWÞ þ a ¼ Qðu1; aÞ;
contradicting the minimality of u. Hence

Ð
W juju dx > 0, and by (2.10), mðW; aÞ ¼

lDðWÞ þ a.
Analogously, if lDðWÞ þ a > lTðWÞ, a minimizer u necessarily satisfiesÐ

W
juju dx ¼ 0, and mðW; aÞ ¼ lT ðWÞ. r

Remark 2.3. We explicitly observe that, using the above proposition, if W
is connected a minimizer u of mðW; aÞ is either positive in W or

Ð
W juju dx ¼ 0.

Assuming now that W is the union of two disjoint balls (possibly one ball),
we have the following.

Corollary 2.1. If W ¼ B1, with radius R1 > 0, then

mðB1; aÞ ¼
j2n=2�1;1

R2
1

þ a; if aa lT ðB1Þ �
j2n=2�1;1

R2
1

;

lT ðB1Þ otherwise:

8><
>:ð2:13Þ

If W ¼ B1 UB2, where B1 and B2 are disjoint balls with radii R1, R2 such that
R1 bR2 > 0, then

mðB1 UB2; aÞ ¼
j2n=2�1;1

R2
1

þ a; if aa lT ðB1 UB2Þ �
j2n=2�1;1

R2
1

;

lT ðB1 UB2Þ otherwise:

8><
>:ð2:14Þ

In particular, if R1 ¼ R2, for any ab 0

mðB1 UB2; aÞ ¼ lTðB1 UB2Þ ¼
22=no

2=n
n j2n=2�1;1

jWj2=n
;ð2:15Þ

where the value in the right-hand side is lDðB1 UB2Þ, and any minimizer of
mðB1 UB2; aÞ is a minimizer of lTðB1 UB2Þ.
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Proof. The proof of (2.13) and (2.14) follows from Proposition 2.2 by
writing explicitly lD in the case of one ball or two disjoint balls. Then, we have
only to show last equality in (2.15). Observe first that

lTðB1 UB2Þb lDðB1 UB2Þ:

On the other hand, being B1 and B2 disjoint balls with equal measure, there
exists an eigenfunction V of the Dirichlet Laplacian relative to B1 UB2 such thatÐ
B1UB2

jV jV dx ¼ 0. More precisely, this eigenfunction corresponds to a first

positive Dirichlet Laplacian eigenfunction on B1, and to its opposite (up to a
translation) on B2. Then V is an admissible test function for the Rayleigh
quotient of lT ðB1 UB2Þ, and

lTðB1 UB2Þa

ð
B1UB2

j‘V j2 dxð
B1UB2

V 2 dx

¼ lDðB1 UB2Þ;

and then lDðB1 UB2Þ ¼ lT ðB1 UB2Þ. r

3. Proof of Theorem 1.1

The proof of Theorem 1.1 will be pursued in two main steps. First, we
show that the minimum of mðW; aÞ among all sets of fixed measure is reached at
the union of two disjoint balls. Second, we minimize mðW; aÞ among such sets.

3.1. An isoperimetric inequality for mðW; aÞ. The first step in order to prove
Theorem 1.1 is to show an isoperimetric inequality for mðW; aÞ. To this aim, let

BðjWjÞ ¼ fA ¼ B1 UB2 : B1;B2 open disjoint balls of Rn; jB1 UB2j ¼ jWjg:

In the above definition we are implicitly assuming that A A BðjWjÞ can be a
unique ball.

Proposition 3.1. Let WHRn, nb 2, be a bounded, open set such that
W B BðjWjÞ. Then there exists Aa ¼ B1 UB2 A BðjWjÞ such that

mðW; aÞ > mðAa; aÞ ¼ min
A ABðjWjÞ

mðA; aÞ:

Moreover,

mðAa; aÞ ¼ Qðv1wB1
� v2wB2

; aÞ;ð3:1Þ

for some nonnegative functions v1 and v2, radially decreasing in B1 and B2

respectively. More precisely, either v2 1 0, and v1 is positive in B1 ¼ W, or
v1 > 0 in B1 and v2 > 0 in B2.
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Proof. Let u A W
1;2
0 ðWÞ be a minimizer of (1.1). Using (2.1) and Pólya-

Szegö principle (2.2), we have that

mðW; aÞ

¼

ð
Wþ

j‘uþj2 dxþ
ð
W�

j‘u�j2 dxþ a

ð
Wþ

u2þ dx�
ð
W�

u2� dx

����
����ð

Wþ

u2þ dxþ
ð
W�

u2� dx

b

ð
Wa

þ

j‘uaþj
2
dxþ

ð
Wa

�

j‘ua�j
2
dxþ a

ð
Wa

þ

ðuaþÞ
2
dx�

ð
Wa

�

ðua�Þ
2
dx

�����
�����ð

Wa
þ

ðuaþÞ
2
dxþ

ð
Wa

�

ðua�Þ
2
dx

ð3:2Þ

b min
w AW 1; 2

0
ðWa

þÞ
z AW 1; 2

0
ðWa

�Þ

ð
Wa

þ

j‘wj2 dxþ
ð
Wa

�

j‘zj2 dxþ a

ð
Wa

þ

jwjw dxþ
ð
Wa

�

jzjz dx
�����

�����ð
Wa

þ

jwj2 dxþ
ð
Wa

�

jzj2 dx

b inf
A ABðjWjÞ

mðA; aÞ:ð3:3Þ

If uþ or u� is not radially symmetric, then the inequality (3.2) is strict. More-
over, if uþ and u� are both radially decreasing functions, then Wþ and W� are
balls such that jWþj þ jW�j < jWj, being W B BðjWjÞ. The monotonicity of mð�; aÞ
with respect to homotheties gives that in this case (3.3) is strict.

The arguments just used also give (3.1). r

In order to conclude the proof of Theorem 1.1, we recall an isoperimetric
inequality for lT ðWÞ given in [17], which assures that if B1, B2 are disjoint balls
with jB1j ¼ jB2j ¼ jWj=2, then

lTðWÞb lTðB1 UB2Þ:

Proof of Theorem 1.1. If aa 0, being mðW; aÞ ¼ lDðWÞ þ a the result is
given by the well-known Faber-Krahn inequality, which follows immediately
from the Pólya-Szegö principle and the properties of rearrangements:

Qðu; aÞbQðua; aÞb mðWa; aÞ:ð3:4Þ
Then we can assume that a > 0.

Proposition 3.1 allows to restrict to the case W A BðjWjÞ. We denote by Wd

the union of two disjoint balls with same measure, equal to jWj=2.
Then the proof is completed by observing that, by Proposition 2.1, and the

Faber-Krahn inequality and (3.4), each eigencurve a 7! mðW; aÞ, ab 0, is such
that mðW; 0Þb mðWa; 0Þ ¼ lDðWaÞ, then it increases linearly until it reaches the
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value lT ðWÞ which is greater than lT ðWdÞ (see also Figure 1). More precisely,
the eigencurve a 7! mðW; aÞ is above the curve

a 7! mðWa; aÞ if ajWj2=n a ac;

mðWd ; aÞ if ajWj2=n b ac;

(

obtaining (1.2). r
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