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Abstract

In this short note we show how, by exploiting the regularity theory for solutions to

the Monge-Ampère equation, Petty’s equation characterizes ellipsoids without assuming

any a priori regularity assumption.

1. Introduction

A‰ne inequalities play a very important role in the study of the geometry
of convex bodies and they also find applications in several di¤erent fields (e.g.
ordinary and partial di¤erential equation, functional analysis). In [13] Petty
treated three closely related a‰ne problems, namely the Blaschke-Santalò in-
equality, the a‰ne isoperimetric inequality and the geominimal surface area
inequality1, and he characterized ellipsoids as the only extremal bodies for these
inequalities. In order to establish this characterization he proved that if KHRN

is an extremal convex body for these inequalities, then necessarily there must exist
a positive constant cK such that

fKðoÞ ¼ cKh
�N�1
K ðoÞ;ð1:1Þ

for every o A SN�1. Here

hKðoÞ ¼ maxfo � x : x A Kg
denotes the support function of the convex body K and fK is the curvature
function of K , see Section 2.1.

Petty was then able to show that (1.1) implies that K is an ellipsoid if
N ¼ 2. If Nb 3 he obtained the same result only under the assumption that K
is a C2-regular convex body or that K is a body of revolution. In any case this
was su‰cient to prove that extremal sets for the above mentioned problems are
ellipsoids since symmetrization techniques allow to reduce to the case of axially
symmetric sets.
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It remains however an interesting question to understand to which extent
(1.1) characterizes ellipsoids without assuming any a priori regularity assumption
on K , see for instance [6]. In this short note we prove that every convex body
satisfying (1.1) is actually an ellipsoid. More precisely we prove

Theorem 1.1. Let K be a convex body which possesses a curvature function
fK ; if equation (1.1) is satisfied for some positive constant cK , then K is an
ellipsoid.

Besides its own interest Theorem 1.1 will have applications in several
problems in which (1.1) characterizes extremal bodies, but for which it is a
priori unknown their regularity as well as it can provide new short proofs of some
results in which (1.1) appears. As examples let us quote [9, 21, 7, 8] concerning,
respectively, convolution bodies, floating bodies and K-dense sets.

In order to prove Theorem 1.1 we closely follow Petty’s strategy. Petty’s
argument was based on the observation that if K is a smooth convex body
satisfying (1.1) and we define hKðxÞ ¼ jxjhKðx=jxjÞ, then h2K is a solution of the
Monge-Ampère equation

det
1

2
D2h2KðxÞ ¼ cK ; x A RN :ð1:2Þ

Combining this remark with classical results due to Pogorelov, [14, 15, 16], Petty
proved that h2K is a quadratic polynomial and hence that K is an ellipsoid. By
an approximation procedure we show that if a convex set K satisfies (1.1), then
its support function still satisfies (1.2) in the Aleksandrov sense, see Section 2.2
for the definition. By relying on standard techniques one can then show that any
Aleksandrov solution of (1.2) is smooth and hence, by Pogorelov’s Theorem, a
quadratic polynomial.

The paper is organized as follows: in Section 2 we recall some preliminaries
concerning Convex Geometry and weak solution of the Monge-Ampère equation,
in Section 3 we provide a proof of Theorem 1.1.

After we finished writing this note, Prof. Schneider informed us that in the
new edition of his book, there is a sketch of the proof of Theorem 1.1 based on
Ca¤arelli’s regularity results for the solutions of the Minkowski problem, see the
Remark after Theorem 10.5.1 in [20].

2. Prelimanaries

In this section we recall some basic notions concerning convex bodies and
solutions of the Monge-Ampère equation.

2.1. Convex Geometry. We denote by KN the set of convex bodies (a
convex body is a compact convex set with nonempty interior) of RN . We can
associate a convex body K with a measure mK supported on the unit sphere,
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called the surface area measure, with the property that, for every Borel set
AHSN�1, mKðAÞ is the ðN � 1Þ-dimensional Hausdor¤ measure of the set of the
points in the boundary of K whose normal cone has nonempty intersection with
A. More precisely, if for x A qK , we define the possibly multivalued map

NKðxÞ ¼ fo A SN�1 : o � ðy� xÞa 0 for all y A Kg;
then

mKðAÞ ¼ HN�1ðN�1
K ðAÞÞ:

It is possible to show (see [19, Proposition 4.10]) that such measures are
continuous in the K-variable with respect to the Hausdor¤ convergence. Namely

lim
i

ð
SN�1

j dmKi
¼
ð
SN�1

j dmK ;ð2:3Þ

for every j A CðSN�1Þ, whenever Ki ! K in the Hausdor¤ distance.
When K is C2

þ, i.e. if it is C 2-regular body with strictly positive Gauss-
Kronecker curvature k, the surface area measure is absolutely continuous with
respect to the Hausdor¤ measure HN�1

OS
N�1 and its density is given by

k �N�1
k (note that NK is single valued and injective since K has di¤erentiable

boundary and it is strictly convex).
A convex body K is said to possess a curvature function provided there

exists a positive and continuous function fK : SN�1 ! R such that2

mK ¼ fKH
N�1

OS
N�1:

Conversely given a positive and continuous function f : SN�1 ! R, Minkowski
existence and uniqueness Theorem, [2, 10, 11, 12, 15], asserts that, provided f
fulfills the following (necessary) conditionð

SN�1
of ðoÞ dHN�1ðoÞ ¼ 0;ð2:4Þ

there exists a unique (up to translation) convex body K whose curvature function
equals f .

The above condition leads us to the following observation: while the left-
hand side of (1.1) is invariant under translations of K the right-hand is a¤ected
by translations. However we shall note that, for every convex body K , there
exists a point, say pK , such that h�N�1

K�pK
is a curvature function. To see this let

us recall that the polar reciprocal of a convex body K with respect to the point p
is definend as

K �
p ¼

�
x A RN : x � ðy� pÞa 1 for all y A K

�
:

2 In [13] mixed volumes are used to define curvature functions, however the definition given by

Petty coincide with the one above by virtue of [20, Theorem 4.2.3].
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One can show that there exists a unique point, pK , such that

VðK �
pK
Þ ¼ minfVðK �

p Þ : p A RNg;

this point is the Santalò point of K . We denote by K � the set K �
pK
. It is well-

known that the polar reciprocal of a convex body with respect to its Santalò
point has its barycenter at the origin (see [17]), this implies thatð

SN�1
orNþ1

K � ðoÞ dHN�1ðoÞ ¼ 0;

where rK � denotes the radial function of the convex set K �, i.e. rK � ðoÞ ¼
supfl : lo A K �g. Since one can easily show that hK ¼ 1=rK � , then h�N�1

K

satisfies condition (2.4) and hence, by Minkowski Theorem, for every K A KN ,
there exists a body K 0 such that fK 0 ¼ h�N�1

K�pK
.

From these considerations we note that, if we define a map L, from the
set of convex bodies whose Santalò point is the origin in itself, associating each
convex body K the solution of the Minkoski problem with data h�N�1

K , then K is
a solution of (1.1) if and only if its image LðKÞ is a dilation of K . We refer the
reader to [6] for more details.

2.2. Aleksandrov solutions of the Monge-Ampère equation. In this section
we recall the notion of Aleksandrov solutions of the Monge-Ampère equation and
we summarize the properties of these solutions which we will need in the sequel,
see [3, 5] for a more detailed exposition.

Let u be a convex function defined on a convex open domain WHRN , the
subdi¤erential of u, qu, is the multi-valued map given by

quðxÞ ¼ fp A RN : uðyÞb uðxÞ þ py � ðy� xÞ; Ey A Wg:

We define a measure nu, and we call it Monge-Ampère measure of u, as follows:
for a Borel set AHW

nuðAÞ ¼ VðquðAÞÞ :¼ V 6
x AA

quðxÞ
 !

:ð2:5Þ

Note that if u A C2, the change of variable formula gives that dnu ¼ det D2u dx.
We then call u an Alexandrov solution of the equation

det D2u ¼ fð2:6Þ
provided nu ¼ f dx. Among several properties of Aleksandrov solutions we are
going to use the following concerning their stability under uniform limit, see
[5, Lemma 1.2.3] for a proof.

Lemma 2.1. If uk are convex functions defined on an open set W and uk ! u
uniformly, then

nuk *
�
nu
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as Radon measures in W, that isð
j dnuk !

ð
j dnu Ej A C0

c ðWÞ:

By relying on the uniqueness of the Aleksandrov solution to the Dirichlet
problem for the Monge-Ampère equation, [5, Corollary 1.4.7] and on their
stability under uniform limits, one can prove the following classical theorem.
For the sake of completeness we sketch the main steps of its proof, see also
[3, Section 2] for a more detailed account.

Theorem 2.2. Let u be a strictly convex function defined on a convex set W
satisfying

nu ¼ f dx in W:

If f A CyðWÞ and la f aL for some l;L > 0, then for every W 0
T W,

u A CyðW 0Þ.

Proof. Fix x0 A W 0, p A quðx0Þ, and consider the section of u at height t
defined as

Sðx; p; tÞ :¼ fy A W : uðyÞa uðxÞ þ p � ðy� xÞ þ tg:

Since u is strictly convex we can choose t > 0 small enough so that Sðx0; p; tÞ T
W 0. Then we consider a sequence of smooth uniformly convex sets Si, converging
to Sðx0; p; tÞ and we apply classical continuity methods in order find a function
vi A CyðSeÞ solving

det D2vi ¼ f � %ei in Si

vi ¼ 0 on qSi;

�

where %�i is a sequence of mollifying kernels, see [3, Theorem 2.11] and [4,
Chapter 17]. We apply Pogorelov estimates, see for instance [3, Theorem 2.12],
to vi to infer that

jD2vijaC in Sðx0; p; t=2Þ T Sðx0; p; tÞ

for a constant C independent on i A N. Since Si ! Sðx0; p; tÞ and uðxÞ ¼
uðx0Þ þ p � xþ t on qSðx0; p; tÞ, by stability and uniqueness of weak solutions
we deduce that vi þ uðx0Þ þ p � xþ t ! u uniformly as i ! y, hence jD2ujaC in
Sðx0; p; t=2Þ. This makes the Monge-Ampère equation uniformly elliptic, hence
Evans-Krylov Theorem and Schauder theory imply that u A CyðSðx0; p; t=4ÞÞ,
see [4, Chapter 17]. By the arbitrariness of x0 we obtain that u A CyðW 0Þ, as
desired. r

By a well-known example, strict convexity of u is necessary in order to prove
the above Theorem. The following result, due to Ca¤arelli, implies that the
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obstruction to strict convexity can only arise from the boundary behavior. In
particular every entire solution has to be strictly convex. We recall that x is an
extremal point of a convex set K if x A K and Knfxg is convex.

Theorem 2.3 ([1]). Let W be an open convex and let u be a convex function
such that

l dxa nu aL dx

for some l;L > 0. For every x A W and p A quðxÞ, if the set

Gx;p :¼ fy A W : uðyÞ ¼ uðxÞ þ p � ðy� xÞg

contains more than one point, then it has no extremal points in W.

An easy corollary of the above theorem is the following:

Corollary 2.4. Let u : RN ! R be a convex function such that

l dxa nu aL dxð2:7Þ
for some l;L > 0, then u is strictly convex.

Proof. Let us assume by contradiction that for some x0 A RN and
p0 A quðx0Þ the set Gx0;p0 contains more than one point, then according to
Ca¤arelli’s Theorem it must contain a line. Up to subtracting a linear function
and to change the coordinates we can then assume that ub 0 and u ¼ 0 on

‘ :¼ fx A RN : x ¼ ðx1; 0; . . . ; 0Þg:

This easily implies that quðRNÞH e?1 and hence that nu ¼ 0, contradicting (2.7).
r

3. Proof of the main theorem

In this section we prove Theorem 1.1, the argument is based on an approx-
imation procedure in order to show that, for a convex body satisfying (1.1), h2K=2
is an Aleksandrov solution of (1.2). At this point we can apply Corollary 2.4
and Theorem 2.2 to show that h2k is smooth and hence the classical Pogorelov
argument can be applied. More in general we prove the following:

Theorem 3.1. Let K be a convex body which possesses a curvature function
fK and let hK be the one-homogeneous extension of its support function, hK ¼
jxjhKðx=jxjÞ, then

det
1

2
D2h2K ¼ fK

x

jxj

� �
hNþ1
K

x

jxj

� �
dx in RNð3:8Þ

in the Aleksandrov sense.
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In order to prove the above Theorem we need to approximate, in the
Hausdor¤ topology, a convex body with C 2

þ bodies, for which we know that (3.8)
holds true at least in RNnf0g. We know from an old theorem by Minkowski
that convex sets with analytic boundary are dense in KN , several years later
Schmuckenschläger (see [18]) gave a simple proof of the theorem and showed that
one can explicitly write down an approximating sequence with further additional
properties; more precisely we have

Theorem 3.2 ([18]). Let K a convex body, there exist a sequence fKigi AN,
Kiþ1 JKi, such that

� Ki and K �
i have real analytic boundaries,

� The Gaussian curvature of both K and K � is strictly positive,
� Ki ! K in the Hausdor¤ distance.

We now discuss the proof of Theorem 3.1.

Proof of Theorem 3.1. We divide the proof in three steps:
� Step 1: Equation (3.8) holds true if K A C2

þ. Let K A C 2
þ, then hK A C2

and hK A C2ðRNnf0gÞ. Then a classical computation, see [13, Lemma 8.4],
implies that

det
1

2
D2h2KðxÞ ¼ fK

x

jxj

� �
hNþ1
K

x

jxj

� �
Ex A RNnf0g:

In particular, by the change of variable formula, if we denote by nK the Monge-
Ampére measure of h2K

nK ¼ fK
x

jxj

� �
hNþ1
K

x

jxj

� �
dx

as Radon measures on RNnf0g. Moreover since h2K is homogeneous of degree
two, it is di¤erentiable in 0 and qh2Kð0Þ ¼ f0g. Recalling the definition of Monge-
Ampère measure (2.5), we then see that for every Borel set AHRn

nKðAÞ ¼ nKðAnf0gÞ þ nKðf0gÞ
¼ nKðAnf0gÞ þ Vðf0gÞ ¼ nKðAnf0gÞ:

Hence (3.2) is valid (as equality between measures) also in RN .
� Step 2: Let Ki be a sequence of convex bodies for which Theorem 3.1 is

valid and let K be a convex body admitting a curvature function fK. If Ki ! K in
the Hausdro¤ distance, then the conclusion of the Theorem 3.1 holds true for K.

Since Ki ! K in the Hausdor¤ distance, hKi
! hK uniformly on SN�1 and

h2Ki
! h2K locally uniformly in RN . According to Lemma 2.1 it is enough to

show that

nKi
¼ fKi

x

jxj

� �
hNþ1
Ki

x

jxj

� �
dx *

�
fK

x

jxj

� �
hNþ1
K

x

jxj

� �
dx;ð3:9Þ
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as Radon measures in RN . To this end let j A C0
c ðRNÞ and note that for every

% A ½0;þyÞ, SN�1 C o 7! jð%oÞ is continuous. Since hKi
! hK uniformly on

Sn�1 and ð
j dnKi

¼
ðy
0

%N�1

ð
SN�1

jð%oÞ fKi
ðoÞhKi

ðoÞ dHN�1ðoÞ;

an application of Lebesgue Dominated Convergence Theorem (recall that j is
compactly supported) shows that in order to prove (3.9) it is enough to show that

fKi
ðoÞ dHN�1 *

�
fKðoÞ dHN�1

as Radon measures on SN�1. This however follows by the continuity of curva-
ture measures under the Hausdor¤ convergence, (2.3).

� Step 3: Conclusion. If K is a convex body admitting a curvature func-
tion we can apply Theorem 3.2 to approximate it with a sequence of convex
bodies Ki A C2

þ, by Step 1 the conclusion of the Theorem holds true for Ki and
hence by Step 2 also for K . r

Proof of Theorem 1.1. According to Theorem 3.1, if K is a convex body
satisfying (1.1), then

det
1

2
D2h2K ¼ cK dx on RN

in the Aleksandrov sense. By Corollary 2.4, h2K is strictly convex and by
Theorem 2.2, h2K A CyðRNÞ. By applying the classical Pogorelov argument (see
[5, Theorem 4.3.1] for a proof ) h2KðxÞ ¼ Ax � x for some positive symmetric
matrix A, which immediately implies that K is an ellipsoid. r
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