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ON THE PROFILE OF SOLUTIONS WITH TIME-DEPENDENT
SINGULARITIES FOR THE HEAT EQUATION

TorUu KAN AND JIN TAKAHASHI

Abstract

Let N > 2, T €(0,00] and & e C(0, T;RY). Under some regularity condition for ¢,
it is known that the heat equation

u—Au=0, xeR¥\{&()}, te(0,T)

has a solution behaving like the fundamental solution of the Laplace equation as
x — &(7) for any fixed #. In this paper we construct a singular solution whose behavior
near x = £(¢) suddenly changes from that of the fundamental solution of the Laplace
equation at some ¢.

1. Introduction

This paper is concerned with the following inhomogeneous linear heat
equation.

(1.1) uy — Au=w(t)d,) in RY x (0,7).

Here N >2, T € (0,0], w is a weight function satisfying we L'(0,¢) for each
te(0,7), ¢:(0,T) — R" is a continuous curve and Og(y 1s the Dirac distribution
concentrated at ¢(f) e RY. The main purpose of this paper is to investigate the
behavior of a solution of (1.1) near x = &(7).

Removability of singularities and existence of singular solutions in partial
differential equations have been studied as interesting problems. As a simple
example, let us consider the Laplace equation in Q\{0}, where Q is a neigh-
borhood of 0 in RY. It is known that the singularity of a solution u at 0 is
removable, which means that u can be extended as a solution in Q, if u(x) =
o(|x|*™™) for N >3 and u(x) = o(log|x|) for N =2 as x — 0. We immediately
see that this condition is optimal since a fundamental solution of the Laplace
equation is given by
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I aw _TOV2-1) oy
N(N —2)oy X 4rN/2 o iLN=3,
Y(x):= 1 i
— log — it N=2,
2n | x|

where wy is the volume of the unit ball in RY and T’ denotes the gamma
function. For nonlinear elliptic equations, this kind of problems were examined
by many authors, see, e.g., [1, 12, 8, 2, 13] and references therein.

In the recent works by [5, 6, 4], a condition for removability of singularities
was considered in a certain class of nonlinear parabolic equations including the
Fujita equation

(1.2) uy = Au+ |ul?u

with N >3 and 0 < p < N/(N —2). More precisely, it was shown that a solu-
tion u of (1.2) in (Q\{0}) x (0, T) can be extended as a solution in Q x (0, T) if
u satisfies u(x, 1) = o(|x|* ™) locally uniformly for 7 e (0,T) as x — 0.

An interesting problem on singular solutions of parabolic equations is the
existence of solutions with a time-dependent singularity. Here, by time-dependent
singularity, we mean a singularity with respect to the space variable whose position
depends on the time variable. The existence of such solutions were revealed in
[9, 10] for the equation (1.2) with N >3 and p in a certain range. Recently,
solutions with a time-dependent singularity were constructed also in the Navier-
Stokes equation [7].

In this paper, we focus on the linear heat equation

(1.3) u—Au=0, xeRV\{&1)}, te(0,T).

For this equation, the following were shown in [11, 7]. A condition for the
removability of singularities is given by u(x,?) = o(W(x — £(7))) locally uniformly
for te(0,7) as x — &(7), if & is 1/2-Holder continuous. At the same time,
under the condition that ¢ has o-Hoélder continuity with o > 1/2, there is a
solution # satisfying

u(x,t) = (1+0(1))¥Y(x—&(¢)) for every t€(0,T) as x — &(1).

These results are analogous to the case of the Laplace equation. Our interest
here is a solution which has a singularity at x = () but does not always behave
like W(x — &(7)) as x — &(¢).  In order to construct such a solution, we consider
the equation (1.1). Then a desired solution can be found by considering two
effects. One is due to the quick movement of &. We will observe that the
profile of a solution of (1.1) is distorted when ¢ loses a-Holder continuity with
o> 1/2. The other one is the weight w. We will show that if w is forced to
vanish or diverge as ¢ ¢y, then the strength of a singularity suddenly changes
at 1.

This paper is organized as follows. In the next section, we set up our
problem precisely and state main results. Section 3 is devoted to proving the
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results. In Section 4, we discuss the precise behavior at x = £(¢) in the case
where w(f) =1 and & is a-Holder continuous with o > 1/2.

2. Main results

We introduce some definitions and notation before stating our results. Let
F be defined by

t

(2.1 F(x,1):= J w(s)D(x — &(s),t — s) ds,

0

where ® is the heat kernel, that is, ®(x, ¢) = (4n¢) “N2e=I/4  Note that F can
be defined for x e RM\{&(¢)} and t€ (0, T), since

sup D(x —&(s),t—s) < +o0
s€(0,1)

provided x # &(¢). Moreover,
[w(s)] (J DO(x —&(s),t— ) dx) ds = Jt [w(s)| ds,
RY 0

and so FeL”(0,t; L'(R")) for any te (0,7). We will prove that F satisfies
(1.1) in the distributional sense, that is, the equality

t

IEC Ol @y <
0

T T
(22) J J F(x.0)(~g,(x.1) — Ag(x,) dxdt:J w(t)p(E(1), 1) dr
0 JR’ 0

holds for all p e C*(RY x (0,T)) (see Proposition 3.1 in Section 3). In par-
ticular, by the Weyl lemma for the heat equation (see, e.g., [3, Section 6]), we see
that F satisfies (1.3) in the classical sense. For the same reason, we also find that
if ue Ll (RY x (0,T)) satisfies (1.1) in the distributional sense, then u — F is
smooth in R x (0, T). This implies that the singularity of any solution of (1.1)
is determined by F, and therefore our focus is on the behavior of F as x — &(¢).

Let 7o € (0,T) be fixed. As instantaneous quickness of &(#) and weight of
w(t) at ¢ =1y, we define

E(t0) — &) .
XTrtrol (0 —3)° (o> 0), wp = thrtrol s

i)ﬂ (B> 1)

if their respective limits exist. Throughout this paper, we suppose that

v, and wg exist for some o >0 and f > —I.

The goal of this study is to describe how the magnitude and the direction of v,
and the weight wg influence the singularity of F(x,1).
Set p:=N/2—f. If wg exists for some f with p <1, then we have

(s D(x — E(5), 1o — )] < (4m) Y w(s)] (10 —5) V2 < Cltg —5) 7
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for all xe R" and se (0,7). Here C >0 is a constant. This shows that the
value of F(x,#) at x =¢(#)) can be defined as a finite value. Furthermore,
Lebesgue’s dominated convergence theorem yields
lim F(x, ) = F(<(t), t0).-
XHC(I())
Therefore, in what follows, we only consider the case p > 1.
We perform the change of variables z = x — &(#)) and 7 =1 —s. Then

1
w(to — 1)t V2 exp <— e |z + r“ya(‘[)|2> dr,

T

)
F(x,19) = (4n) /2 J

0
where we write &(7)) — &(ty — 7) = t*y,(t). Put p, :=|v,| and v, :=v,/|v,]. We
write r = |z|, @ = z/|z| and denote 0 € [0, 7] by the angle between w and —v,,
that is, cos § = —w - v,. With this notation, we have the decomposition w =
—(cos O)v, + (sin O)n for some ne RY with |n| =1 and n-v, =0.

The effect of v, is considerably different depending on o. When o = 1/2, the

effect of v, appears in the coefficient of the leading term and F(x,fy) can lose
asymptotic radial symmetry as x — &(#).

THEOREM 2.1. Let a=1/2. Then the following (i) and (i) hold as z =
X — é(l‘o) — 0.
M Ifp=1,

2 1 1
F(x, 1)) = 21_N7z_N/2w/;e_”“/4 log P + o(log ;)
(i) If p> 1,

Pl = () ([

oP—2p—(1 /Ao, d(,)rz(pl) +o(r2r),
0

Remark 2.1.  Suppose that ws = 1 and vy, = 0. Then Theorem 2.1 implies
that, as x — &(1),

(27) " log %+ 0 <log i) (N =2)

F(X, l()) = o
(47) —N/2 (J N2 2p=(1/4)o da) N+ o(r*N) (N =3)

0

=(1+o0(1))¥(z).

Next, let us consider the case o < 1/2. We remark that if v, # 0 with some
o < 1/2, the integral

1
JO lw(s)|(to — S)*N/Ze*\f(lo)*f(é‘)\2/4(10*3) ds = J
0 0

. —(1-2: 2
Iw(ty — 7)|c N2e~ /AT N gy
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is finite, because the integrand is bounded by C|w(# — )| for some constant
C > 0. Therefore the value of F(x, 1)) at x = &(#p) can be defined as a finite
value. This fact suggests that there is some region /" containing the point &(#)
such that F(-,#) is bounded in .#". The problems in this case are to find such
a region ./ and to determine the asymptotic behavior of F(x 1) as x ¢ A,
x — &(ty). In order to state our result, we define, for ¢ >0 and M > 0,

S, == {zeRN\{O}; 1 —cos 0> 2,011/“<2p2;3+ 1 +a>r1/“2 log 1},

P
Ty = {ze RM\{0};1 — cos O < Mr'/*72},

THEOREM 2.2. Let o€ (0,1/2) and vy, #0. Then the following (i) and (ii)
hold.
(i) Suppose that 1 < p <3/2—«a and

(23) E(to) — &(s) = (10 — ) "va + 0o((t0 — 5) C<Jrp*l)
as s to. Then, as z=x—E&(ty) — 0,
F(x,t0) = F(&(to), 1) + o(1).

(i) Suppose that p >3/2 — o and

(2.4) E(to) = () = (to — )"0, + (10 — 8) b+ 0((t0 — )'/?)
for some e RY as s1ty. Then, for any ¢ >0 and M > 0,
(2:5) F(x,10) = F(&(10), o) + o(1)

as z=x—C((ty) € Se, z— 0, and

F(&(t0), o) + (4m) =g 1, ! if p=3-u
% 67(1/4)07*(1/4)1(:) +0(1)

(47[)—(N—1)/2Wﬁa—1p§2p73>/2ae_(1/4)07_@/4)1(:) if p> % _u
% ’,7(2p73)/20c71 =+ 0(’,7(21173)/20(71)

(2.6) F(x,t0) =

as z=x—C(t) € Ty, z— 0. Here J(z):= Zp;/ar’(l/“’2>(l —cos 0) +

20/ (- 0)r= (12D sin @ and ¢, := |8|> — (v4 - 9)°. Furthermore,
(2.7) lim inf F(x, l()) = F(f(l‘o)7 l()),
x—¢(to)
(2.8) lim sup (@321 F(x, 1))
x—¢(t)

F(&(t0), 10) + (4m) ™ Pwpatptif p=3—a
(47[)—(N—1>/2Wﬁa71p5{2p73)/21 if p> % .
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Remark 2.2. We can also discuss a solution which has a singularity for
all teR. Let We Ll (R) satisty (—t) " *W(r)e L'(=o0,—1) and let E be a
continuous curve in R. We set

G(x, 1) = JI W (s)®(x — Z(s), ¢ — ) ds.

Then it can be shown that G satisfies G, — AG = W(t)dz(, in RV x (—o0, o0) and
the same assertions as in Theorems 2.1 and 2.2 hold by replacing F with G. We
note that in the special case N >3, W =1 and E =0, G coincides Y.

3. Proofs of theorems

First of all, we show that the function F defined by (2.1) is a solution of
(1.1).  Although this fact is essentially proved in [11, Section 4], we give a proof
for the completion.

ProposITION 3.1.  F satisfies (1.1) in the distributional sense.

Proof. We fix pe C(RY x (0,T)) and take 0 <t < 7< T such that the
support of ¢ is contained in RY x (£,7). It is enough to verify (2.2) under
the assumption that w is smooth. Indeed, choosing {w,},~; = C;°(R) such that
w, — w in L'(0,7) as n — co and putting F,(x, 1) := jg wy(s)D(x — &(s),t — ) ds,
we have

t
sup [[F(-,1) = Fa( Ol pirvy < sup J wis) = wa ()| |O(- = (), 2 = 5)l[ L1 vy ds

te(t, 1) te(t,£)JO
<|w=wallpiz =0 (n— o).

Therefore once we show that F, satisfies (2.2), the proof is finished by letting
n— .
From now on we assume we C;°(R). Let 7 >0 and define
t—h

Fy(x, 1) := L w(s)D(x — &(s), t —s) ds.

Then we easily see that Fj, satisfies (Fj,), — AF, = w(t — h)®(x — &(¢ — h), h) in the
classical sense in R"Y x (h,T). Hence integration by parts yields

Lr JRN Fi(—p, — Ap) dxdt = JOT w(t — h) (LN p(x, )D(x — E(t — h), h) dx) dt

provided & < t. Let us take the limit as 4 | 0. Then the left-hand side con-
vergences to [ [pn F(—¢, — Ap) dxdt, because

t
sup [|F(,8) = Fu(-, )| iy < sup J W) |D(- = &(s), 1 = 8)l| L1 ds

1e(,1) te(t, i) Ji—h

Wil yh — 0 (1 0).

IA

IA
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It is straightforward to show that w(r—/h) — w(r) and [pv o(x,1)®(x—
E(t—h),h) dx — ¢(&(1),1) locally uniformly for re (0,7T) as £ | 0. Hence we
see that the right-hand side tends to jOT w(t)p(&(1),t) dt. Thus the proof is
complete. |

3.1. The case o =1/2. Let us consider the case o« =1/2 and prove
Theorem 2.1.

Proof of Theorem 2.1. We fix 6€(0,1) and take 79 >0 such that
(wg —0)th < w(ty — 1) < (wp+0)7 and p2 — 0 < |y, (1)]> < p2 +0 for 7€ (0, 7).
Then

(3.1) (wp —)I(2) < (4n)V2F(x,10) < C + (wp +0)I(2),

where C > 0 is a constant and

o]

First, we assume p =1 and prove (i). Since

P-4 OF gy,

P =200} + Dre'? + (p} =)t < |z + 79, (0)° <7 +2(p; + Vre'? + (p] +0)r
for 7€ (0,79, we have

(3.2) e~ i)/t JTO 1o A= (02 2R g
0
<I(z) < e il JTO Lo /AT (P D/2VE g
0
By the change of variables ¢ = 7%/t and integration by parts, we deduce that

(33) JTO T*1€7r2/4ri(/)§+1)r/2\/? dz
0

2 2
_ o o (p+Dr
= (e ) (-7 = 5757

o 2
_ J“’O (_l + Pa<_+1)e—<l/4>oi<l/2><p3+1>ﬁ log o do
2/ 4 4\/5

=2log ;+ o(1) (z—0).

_ JOO oo~ (Me£12)HVE g
/79

Thus, combining (3.1)—(3.3), we obtain (i).
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Next, we show (ii). In the case p > 1, the change of variables o =r?/t
yields

o0

(3.4) |r2(P—1>I(z)| < J 0.17—26—(1/4)‘\/Ew+y1(r2/ﬁ)|2 do < C

2/t

for all » > 0 with some constant C > 0, and

D (z) - Jm oP-2o— (/a0 g
0

_ J N (0) — e~ WANG Y 4o
0

220,00

where y, denotes the indicator function of a set 4. The integrand of the
right-hand side convergences to 0 for each o€ (0,00) and is bounded by
Ca?~2e~ /87 Lebesgue’s dominated convergence theorem, (3.1) and (3.4) show

lim sup
z—0

NJ2 ‘
@) TExt0) " r2g-t/aEernl g6l < co
201 ), T

This gives (ii). [ ]

3.2. The case o < 1/2. Under the assumption that o € (0,1/2) and v, # 0
(p, > 0), we separate F(x,#) into two parts as follows.

()" F (x, 19) = J +J Cw(ty — 7)r N2~ AT gy
(0,74)U(z-, 10)

Tt

=:11(z) + (z2),

where 74 := {r(1 + 5)_1/)“’1}1/“ and J € (0,1).
To prove Theorem 2.2, we prepare some lemmas. The first one gives the
behavior of I;.

LemMa 3.1.  For any fixed 6 € (0,1),

(3.5) lim 1,(2) = (4m) " *F(£(10), 1o).

Proof. Note that 7, <7 < 7_ is equivalent to p,(1 —d)t* <r < p,(1 +9)t*
Hence, taking 79 > 0 so that p, (1 —9/2) < |y, (v)| < p,(1 +6/2) for 7€ (0,70], we
have
p§52 2

4

o

|2+ 79,07 = (r = TP, =
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provided that 7 € (0,7,]U[t_,79]. This implies that for all ze R" and 7 € (0, %),

- - AL 2 _ _(p252 ~(1-24)
lw(to — 1)|7 N/2 o= (1/40)]z+777,(7)] X(O,nr)U(r,Ato)(T) < Clw(ty — 1)t N/2 o=(p;07/16)t
< Cw(ty — 7)|.

Here C > 0 is a constant independent of z and 7. Since w(ty —-) € L'(0, 1)), we
obtain (3.5) by Lebesgue’s dominated convergence theorem. |

Next we consider I, for 1 < p <3/2—a.
LemMA 3.2, Assume 1 < p <3/2—o and (2.3). Then lim._ L(z) =0.

Proof. For te[r.,7_] and ¢ > 0,

pd*(1 _5)q/arfq/a <179 < pd*(1 +5)q/a,rq/a,
and so

T

- 1
R R C t LD
T+
T_
< C,,*P/“J exp(—Cfll’f(l/%z)hiaZ + Voz(f)|2> dr,

T+
where C > 0 denotes a generic constant independent of z and z. Putting
mw:mu{mm|mn—mfml}
te(ty, -]
we have
724 7,0 = (17772 + val = [9,(7) = vl ey = 90y (F)
= (‘Tﬁar - pxl - n(r)))f{\r*“r—pA > n(r)}(T)
forall r e [r,7_]. Therefore, by the change of variables t = {r(p, + 5(r)a) '} /%,

T

|L(z)| < CV—WJ exp(—C A ([ — p, | - n(r))zl{\r*’rprZﬂ(r)}(T)) dt

Tt

o P20/n(r) Ry
< Cr= 7" Dn(r) (P, +1(r)o)
J=p,0/n(r)
x exp(—=C 212 (o] = 1)1 (0) do
o0
< Cr= =Dy () exp(—C ' (Jo] — I)ZX{\a\zl}(U)) do.
-
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Conditions 1<p<3/2—a and (2.3) yield (2p—3)/(2u)+1<0 and
lim, o (z=(""V|y,(t) — v4|) = 0, and hence

(D) < r‘“’"”“{rﬁ‘l sup (7l (e) = ) + /}
Te(T4, T

< C{ sup (v~ V], (1) — i) +V_<2”_3)/2“_]}
relry,7 ]
-0 (r—0).
Thus the lemma follows. |
We prepare another estimate of I.
Lemma 3.3.  Assume that
(3.6) (1) — E(s) = (to — 5) vy + O((t0 — 9)'/*) as s 1 1.
Then, for any 6 € (0,1), there exists a constant C > 0 such that
(3.7)  L(z) < Cr &332 exp (—%p;/“(l — &)= (1 — cos 0))
for all ze RM\{0}.

Proof. One can easily show that the inequality |a+ b|* > (1 —¢)(|a|* —
|b|*/¢) holds for a,beR" and ¢>0. From this and (3.6), we have

1 1-9 1-90 ,
;|Z+f(lo) — &ty —1)> > T\z+r“v%|2 —7|5(10) —&(to —7) — v

1-6
> T{(r — 1)+ 2t"p,r(1 —cos )} — C

for some constant C > 0 independent of z and z. Moreover, if 1 <7_,
_L.71+9<r > _L_:lJrotr _ p;/a71(1 _5)1/171},7(1/172).

Thus

|L(z)] < Cexp (—%pi/“(l — o)1= (1/2)(1 — cos 0))

T_ 1—
X J 7P exp (— 7 0 (r— T"‘pa)2> dr.
T

T+

Making the substitution 7 = {p;'r(1 + rta) TV (= 1/(20) — 1) yields
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J R exp (— 14_15 (r— r“p,‘)2> dt

T+

d/rk

_ O(—lp;p—l)/xr—(Zp—fﬁ)/h(—l J (1+ rua)(p—l)/oc—l
—d/rt

1-0
X exp <—Tp;/“(l + r"a)l/“_202> do

o0
< Cr~ =321 J exp(—C~'o?) do.

Therefore we obtain (3.7). [ |
Let e (u,2u) (u:=1/(2a) —1) and define a set T by
T :={zeR"\{0};1 —cos 0 <r"}.

When ¢ satisfies (2.4), we write &(fy) — E(ty — 1) = %0, + 7'/26 4+ 1/2¢(1) and
define d(z) := min{sup, [, . ;[{(7)|,1/2}. Then (2.4) yields d(z) — 0 as z — 0.
In the next lemma, we examine the behavior of I, on T.

LemMmA 3.4. Under the condition (2.4), the following hold.

liminf [r(2p73)/29<+1e(l/4)(l+d(z))](z)12(z)} > (47‘5) 1/21V/,'0671p§(2p73>/2“€7<1/4)61,
zeT,z—0

lim sup [r2~ 3/ /A0-dV O L ()] < (dr) g p@r-3/22e =140
zeT,z—0

Here J and c, are defined in Theorem 2.2.

|b|2/P)ro(of.b FlrzoAr]n theoi)nequallilty (1—c)(|a|* = |b]*/c) < la+b]* < (14 ¢)(|a]* +
¢) (a,beRY ¢ >0), we have

e+ () — &t P

1
== lro + t%p, vy + 720 + 1% (2)|?
1 —d(z)

1-d
> . lro + t%p, v, + /20> — ) ()

d(z)
> (1= dE) (P — e, — v, )
+ 27 %% r(1 — cos 0) + 272 (n - §)r sin 0}
+ (1= dE)o* = (v, )%}
+2(1 —d(z))r V2 (vy - 0)r(1 — cos 0) — (1 — d(z))d(z)




TIME-DEPENDENT SINGULARITIES FOR THE HEAT EQUATION

and, in a similar way,

1
—lz 4 &) — &t — )
< (L+d){EPr—2p, — v, )
+2t7 %, r(1 = cos 0) + 2t~ '(n - b)r sin 0}

+(L+d@){8* — (v 9)*}
F2(1+d(2) 7 2 (vy - 9)r(1 — cos 0) + (1 + d(2))d(2).

Since the inequality
T_1/2V(1 — cos 0) < T;l/er_K _ pol(/Zac(l +5)1/21r;<_ﬂ

holds for any ze T and 7 > 7., we deduce that

(3.8)  liminf (I(2)/15(2)) = wge V% limsup (L(2)/I; (z)) < wype™ /D,

zeT,z—0 zeT,z—0

where

1
exp(—zﬂ A 2= T 2, vy, 5

+ 2t "p,r(1 — cos 0) + 22 (n - b)r sin 0}) dr.

By the change of variables 7 = {p;'r(1 +rtg) "1 we have

Isi(z) - aflpépfl)/ar*(b%)/h*l37(1/4)(1id(Z))J(Z)

d/rk

y J (1 4 rhg) (P2 V/a=(A L@ +2) g
—d/rt

Ji = Ji(z,0) := {p}/*(1 + r'c) "o — vy - 1}7,

Jr = Ja(z,0) == 21 {(1 4+ r*e)"* " — 1} 2#(1 = cos 6)
+2p)(n - 9){(1 + r"a)'** — 1}r*sin 0.

We easily see that lim,_o Ji(z,0) = (p;/zaa— Vo * 13)2 for each 6 € R and

Ti(z,0) 2 3 M1+ r0)¥a? — (v, 1) 2 Spl*(1 = 0)¥a” (v, 8)°

o

579

provided that ¢ > —3/r*. For ze T and o e [-/r*,0/r"], J, is estimated as
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\Ja(z,0)| < Cr*|a| - r=(1 — cos 0) + Cr¥|a| - r#|sin 0|
< C{r*(1 —cos 0) + (1 — cos 6)'/*}|]
< C(r " 4 1o,

where C > 0 is a constant. This particularly implies that lim__z o J2(z,0) =0
for fixed o € R, and furthermore, there is a constant C > 0 such that

(1 + ritg) P D/t (AL R Gy () < Com €0 -0)

for all ze T with r <1 and o € R. The right-hand side is integrable on R, and
so Lebesgue’s dominated convergence theorem gives

lim {r(2p=3)/2241 o(1/4)01 id(:))](z)13i(z)}

zeT
z—0
s} 1 . 2
= oc_lpi”_l)/“ J_w exp <_Z (p;/zaa — V- v) ) do
= (4n) 1/2a71pgzp73)/2x.
From this and (3.8), the lemma follows. [ |

We are now in a position to prove Theorem 2.2.

Proof of Theorem 2.2. (i) is a direct consequence of Lemmas 3.1 and 3.2,
and therefore it suffices to consider (ii).

In what follows, we suppose p >3/2—o and (2.4). First we derive

(2.5). For given &> 0, we take & so that (1 —8)"/*((2p —3)/(20) +1+¢) >
(2p —3)/(20) + 1 4+ ¢/2. Then, by Lemma 3.3,

1
|L(z)| < Crm@=3/271 exp (_2 pY(1 = 8) =02 (1 — cos 9)>

corn el (5200

= Cré?

for all ze S,. From this and Lemma 3.1, we conclude (2.5).

Next we show (2.6). Since sin 6 < {2(1 — cos 9)}1/2, we have sup, .7, [J(2)]
< +o0. Note that Ty N{|z| <y} = T provided that > 0 is small. Hence we
see from Lemma 3.4 that

(39) 12(Z> _ (1 +0<1))(47Z) I/ZWI;'O(_lp§(2p_3>/2“€_<1/4)C°‘_(1/4)J(Z)V_(Zp_3>/21_l

as z€ Ty, z— 0. This and Lemma 3.1 give (2.6).
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(2.7) immediately follows from Fatou’s lemma and (2.5), and so we only
have to show (2.8). Tt is easily seen that for any ¢ > 0, (RM\T)N{|z| <y} = S,
provided that # is small. Therefore (2.5) and (3.5) yield

(3.10)  limsup (r®=3/2 1 F(x, 1))

x—&(1)
= limsup (r®3/2F1F(x, 1))
X7é(f())€f'
x—¢&(t)
F(E(t), to) + (4m) ™ limsup h(z) if p=3—«,

zeT,z—0

(4n) ™M limsup (r&-I/2H L (z)) i p>3—a

zeT,z—0

Let us first consider the estimate of the above quantity from below. Set
Ny i = —{0 — (vy - D)vy} /|0 — (vy - D)vy|. This is defined unless ¢, =0 and satisfies
|ny| =1, ny,-v, =0 and n, -0 = —ci/z. We define

.o )ize RY\{0};n = n,,2p3"*(1 — cos 0) = c,rV/*2} if ¢, #0,
C | {zeRN\{0};0 =0} = {ze R"\{O};0 = —v,}  if ¢, =0.

Then it is easy to see that T, T}, for large M and T, N{|z| <y} = T for small
5. Furthermore, since lim,_o {2(1 — cos ¢)/sin’¢} = 1, we have

lin% J(2) = ¢y + 2(ny - )c}? = —¢,.
zeT,
z—0

From this and (3.9), we deduce that

(3.11) lim sup (=321 1 (z))
zeT,z—0
> lrim O(r(2P73)/2a+112(Z)) _ (47[)1/21%“71@2;;73)/2@
Z€ Ly, Z—

Next we derive an upper bound. It is elementary to show that n-o >
—cs*(=n, - 9) and that a cos ¢ + b sin ¢ < (a® + b?)"/> for a,b,¢ € R. Hence we
have

J(z) = 2p = 2=D(1 — cos 0) — 2¢)/2p)/2%=(1/271) 5in ¢
> Zp;/1r7(1/172){1 _ (1 + cap;I/ocrl/aHZ)l/Z}

— —c, (r—0).

This and Lemma 3.4 give
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(3.12)  limsup (F®=3/2H1 [ (2)) < e/ Jimsup (#2324 1/9U=dEVIG) L, ()
zeT,z—0 zeT,z—0

< (4n)'2 wgo 1 p2p=3/2,

Combining (3.10)—(3.12), we obtain (2.8). Thus the proof is complete.
[ ]

4. The profile of F for o > 1/2

In this section we discuss the effect of v, for o > 1/2. As mentioned in
Section 1, it is known that if w(¢f) =1 and o > 1/2, the leading term of the
expansion of F(x,#) as x — &(#) is W(x — &(%)). The aim in this section is to
obtain the second-order term. More precisely, we prove the following theorem.

THEOREM 4.1.  Assume w(t) =1 and a € (1/2,1]. Then the following (i), (ii)
and (itl) hold as z = x — &(ty) — 0.
) 1rN=2

F(x,10) = ¥(2) + (4n) ™"
« {log(4to) L T(1) - J; e (1 = e AP o) )df} o1).
(i) If N=3 and a =1,
F(x,10) = ¥(z) + (4m) >
2 (L " 20y Py g1 1
x{ \/%+F<2)pacos0 Jo (1-— )d}+ (1).

() Jf N =3 and 2 %1, or N =4,
N
F(X7 IO) ( )+4 (a+1/2) —N/ZF(i_ OC>/)C<(COS 0)r2x+l—N +0(r2a+l—N).

Proof: We write

1

(4n) Y F (x, 1)) = J '

1
—N/Ze—l'2/4r dr — J 0 T—N/2e—r2/4r(1 _ e—(l/4)12"’1|77(r)\2) dt
0 0

I
+J° N2 (1) () (o= (12 @, 0) _ 1) gy
0

=1 (Z) — 12(2) + 13(2).

We first consider /;(z). The change of variables r = r?/o and integration by
parts show that as z — 0,
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o0 ¢ 1 o0
4.1) L(z)= J o e g = (log r—(;)e—rz/‘”o + —J e~V log 5 do
2/t

I‘z/l‘o

1 1
=2 log ;+10g to+T7'(1) +log 4+ 0<r2 log ;)

if N=2, and
0 R 0 ,
(4.2) Li(z) = J N2 /4 gr _J N2 4 g
0 f
r2_N Jw N/Z_Ze—(l/4)0' d 2 + 0(}"2)
0 (N —2)) >
if N>3.

Next we examine Ir(z). Since the integrand of 5 (z) is positive and
monotone decreasing with respect to r, we have,

to
(4.3) hl% hL(z) = JO T 67(1/4>T2u71‘y1(1)‘z) ir

by the monotone convergence theorem. The right-hand side of the above is
finite if N=2, or N=3 and «>3/4. If this is not the case, we have
N/2—-200—12=—1, and so

[
(44) |12(Z)‘ < CJ ! TfN/2+20c71€7r2/4r dr = C77N+4a JOC O_N/2729<7167(1/4)z7 do
0

2/t

< CrN“”(l + log i),

where C denotes a positive constant independent of z. In particular, L(z) =
o(r™Nt24ly a5 2 w0 if N>3 and a# 1, or N > 4.
Finally let us consider I3(z). We derive

(4.5) lim <rN21113(Z) - %p“ cos HJ N2l o= (/40 dO’) =0

z— 0
unless N =2 and o =1. By the change of variables, we rewrite

1 fo ") 20—11, 2 1
13(2) — __rj ,L_—N/2+o:—le—) J4r—(1/4)t |7,(0)] (J
2 Jo

0 o=/ o, (@) d,7>w y,(2) dt

— _ 1r7N+29<+1 Jw O_N/Zfzfl67(1/4)07(1/4)(;(0,2)
r2/to

2
1 ;,.2

y ( J o~/ 1.2 d,7>a, , (_> do,
0 2
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where f(0,z) = r** 16w - y,(r*/5) and ¢(,z) == |y,(r*/a)|*r*2¢'~2%. Then,

1 0
PV (2) — 5 p, cos OJ T
0

1 o0
_ 7J SN /2-a1,~(1/4)c
2 Jo

1 2
9 {_e<1/4>g<o,z> (L =1/ (6.2 d,7> o7, (2) Hi2 0.y (@) + 0 ,J“} do.

Since lim, g f(0,z) = lim,_ g(c,z) = 0 and lim, ¢ y,(r*/c) = v,, the integrand
of the right-hand side convergences to 0 for any o € (0, c0) as z — 0. Moreover,
one easily see that |f(c,z)| < Ca'™* and g(a,r) = 0 for r€ (0,1) and o € (0, ),
and therefore the integrand is bounded by Co™/2-~1e=(1/49(¢C"™ 1 1) which is
integrable on (0,c0) unless N =2 and o= 1. Thus, by applying Lebesgue’s
dominated convergence theorem, we obtain (4.5).

In the case N =2 and o =1, l3(z) is estimated as

o0

1
(4.6) \L(z2)| < CrJ ol (1HotCa™ gg < Cr<1 + log ;>

I‘Z/ZU

with some constant C > 0. In particular, we see from (4.5) and this computation
that lim,_ l3(z) =0 provided that N = 2.
(i), (i) and (iii) follow from (4.1)—(4.6). Thus the proof is complete. H
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