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A GENERALIZATION OF A COMPLETENESS LEMMA

IN MINIMAL SURFACE THEORY

Yûsuke Okuyama and Katsutoshi Yamanoi

Abstract

We settle a question posed by Umehara and Yamada, which generalizes a com-

pleteness lemma useful in di¤erential geometry.

The following answers a‰rmatively a question posed by Umehara and
Yamada [7, Question C].

Theorem. Let f be a holomorphic function on fjzj > 1gHC such that
f ðfjzj > 1gÞHCnf0g and let n be a non-negative integer. If every real-analytic
curve g : ½0; 1Þ ! fjzj > 1g tending to y satisfiesð

g

jlog zjnj f ðzÞj jdzj ¼ y;ð1Þ

then f is meromorphic at y.

In the special case of n ¼ 0, this Theorem reduces to the completeness lemma
due to MacLane and Voss (cf. Osserman [5, p. 89]), which plays an important
role in minimal surface theory. A new insight by Umehara and Yamada is the
possibility to take into account the variation of the argument of the curve g,
namely the imaginary part of log g, motivated by their investigation of parabolic
ends of constant mean curvature one surfaces in de Sitter 3-space. A notable
consequence of Theorem is an a‰rmative answer to [8, Question 2]. This
implication is due to Umehara and Yamada [8]. For more details and back-
grounds, we refer [7] and [8]. Our proof is based on the theory of entire func-
tions, i.e., holomorphic functions on C, and of harmonic measures, while the
problem has its origin in di¤erential geometry.

After having written this article, we learned that the Theorem, except for
the real-analyticity of the path g, could be shown using Huber’s result [3]. Our
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proof of the Theorem is an improvement of the argument in Osserman’s book
[5].

Proof. Since the integral in (1) is non-decreasing as nb 0 increases, the
Theorem for n ¼ 0 is a consequence of that for n > 0. We assume that n is a
positive integer.

We reduce the problem to the case where f is defined over all of C and
satisfies f ðCnf0gÞHCnf0g (cf. Osserman [5, p. 89]). Let us consider possibly
multivalued holomorphic functions log f ðzÞ and log z on fjzj > 1g, and choose
k A Z such that log f ðzÞ � k log z is single-valued and holomorphic on fjzj > 1g.
Then its Laurent expansion is written as

log f ðzÞ � k log z ¼
Xy
j¼�y

cjz
j ¼ HðzÞ þ hðzÞ;

where HðzÞ ¼
Py

j¼0 cjz
j is an entire function and hðzÞ ¼

P�1
j¼�y cjz

j is a
holomorphic function on fjzj > 1gU fygH ĈC such that hðyÞ ¼ 0. Hence

f ðzÞ ¼ ehðzÞzkeHðzÞ:

Set gðzÞ ¼ zkeHðzÞ if kb 0, and gðzÞ ¼ eHðzÞ if k < 0. Then g is entire and
f ðzÞ=gðzÞ is holomorphic near y. The condition (1) impliesð

g

jlog zjnjgðzÞj jdzj ¼ y;

and if g is meromorphic at y, then so is f . Hence replacing f with g if
necessary, we may assume that f is an entire function on C and that f ðCnf0gÞH
Cnf0g.

Consider an indefinite integral

GðzÞ ¼
ð z
0

f ðzÞ dz

of f . Since the zeros of G are isolated, there is a > 0 such that

min
t AR

jGðeaþitÞj > 0:

We fix a > 0 with this property throughout. Set

FðzÞ :¼
ð aþz

a

znf ðezÞez dz:

Then we note from our earlier discussion that �a is the only critical point of F ,
that is,

fz A C;F 0ðzÞ ¼ 0g ¼ f�ag:
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Let z ¼ pðzÞ :¼ ezþa be a covering map from C to Cnf0g. For any real-analytic
curve G in z-plane, we haveð

p�G
jlog zjnj f ðzÞj jdzj ¼ ðthe Euclidean length of F � GÞ:ð2Þ

Lemma 1. limt AR; jtj!yjF ðitÞj ¼ y.

Proof. Let us define nþ 2 auxiliary entire functions G0;G1; . . . ;Gnþ1 induc-
tively; put

G0ðzÞ :¼ f ðzÞ � z
and for each j A f0; 1; . . . ; ng,

Gjþ1ðzÞ :¼
ð z
0

GjðzÞ
z

dz:

Then G1ðzÞ ¼ GðzÞ, and for every j A f0; 1; . . . ; ng,

dGjþ1ðeaþitÞ
dt

¼ iGjðeaþitÞ:

Hence for j A f0; 1; . . . ; n� 1g,

i

ð t
0

ðaþ itÞn�j
GjðeaþitÞ dt

¼
ð t
0

ðaþ itÞn�j � dGjþ1ðeaþitÞ
dt

dt

¼ ½ðaþ itÞn�j
Gjþ1ðeaþitÞ� t0 � ðn� jÞi

ð t
0

ðaþ itÞn�j�1
Gjþ1ðeaþitÞ dt

¼ ðaþ itÞn�j
Gjþ1ðeaþitÞ� an�jGjþ1ðeaÞ � ðn� jÞi

ð t
0

ðaþ itÞn�ð jþ1Þ
Gjþ1ðeaþitÞ dt:

Similarly,

i

ð t
0

GnðeaþitÞ dt ¼ Gnþ1ðeaþitÞ � Gnþ1ðeaÞ:

Hence there are constants Cj A C ð j ¼ 2; . . . ; nþ 1Þ and C A C such that for every
t A R,

FðitÞ ¼
ð aþit

a

znG0ðezÞ dz ¼
ð t
0

ðaþ itÞnG0ðeaþitÞi dt

¼ G1ðeaþitÞðaþ itÞn þ
Xn
j¼1

Cjþ1Gjþ1ðeaþitÞðaþ itÞn�j þ C:
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Now the assumption mint ARjG1ðeaþitÞj > 0 together with maxt ARjGjðeaþitÞj < y
ð j ¼ 2; . . . ; nþ 1Þ completes the proof. r

Next we consider asymptotic curves of F . A curve G : ½0; 1Þ ! C is called
an asymptotic curve of an entire function g with a finite asymptotic value b A C
if G tends to y and limt!1 g � GðtÞ ¼ b. We recall the following well-known

Iversen’s Theorem (cf. [4]). Let g be a non-constant entire function. Sup-
pose that z0 A C is not a critical point of g, and put w0 :¼ gðz0Þ. Let f be a single-
valued analytic branch of g�1 at w0 such that fðw0Þ ¼ z0, and g : ½0; 1� ! C be a
curve with gð0Þ ¼ w0. If the analytic continuation of f along g j ½0; t� is possible for
any t A ½0; 1Þ, but impossible for t ¼ 1, then either

� limt!1 f � gðtÞ A C exists and is a critical point of g, or
� f � g tends to y. In this case, f � g is an asymptotic curve of g with the
finite asymptotic value gð1Þ.

For completeness, we include a proof.

Proof. We claim that the cluster set C :¼ 7
t A ½0;1Þ f � gð½t; 1ÞÞ, where the

closure is taken in ĈC, is non-empty and connected: indeed, from the compact-
ness of ĈC, C0j. If C is not connected, then there are distinct open subsets
U1 and U2 in ĈC intersecting C such that ðC VU1ÞU ðC VU2Þ ¼ C. There are
ðt1j Þ and ðt2j Þ in ½0; 1Þ tending to 1 such that limj!1 fðgðtij ÞÞ exists in C VUi for
each i A f1; 2g and that for every j A N, t1j < t2j < t1jþ1. For every j A N, since
f � g is continuous, f � gð½t1j ; t2j �Þ is connected. Hence there is tj A ½t1j ; t2j � such

that fðgðtjÞÞ A ĈCnðU1 UU2Þ. From the compactness of ĈC, there is a subsequence
ðsjÞ of ðtjÞ tending to 1 such that limj!1 fðgðsjÞÞ exists in CnðU1 UU2Þ. This is a
contradiction. Thus C is connected.

Unless C is a singleton, C is a continuum. From gðf � gðtÞÞ ¼ gðtÞ for every
t A ½0; 1Þ and the continuity of g, gðCÞ ¼ fgð1Þg. Then by the identity theorem,
g must be constant. This is a contradiction. Hence C is a singleton, so z1 :¼
limt!1 fðgðtÞÞ A ĈC exists. If z1 A C, then z1 is a critical point of g since f cannot
be continued analytically along all over the g. If z1 ¼ y, then f � g tends to y.

r

For each w0 A C and each r > 0, put Drðw0Þ :¼ fw A C; jw� w0j < rg. Put
Hþ :¼ fz A C;<z > 0g, I :¼ fz A C;<z ¼ 0g and H� :¼ fz A C;<z < 0g.

Lemma 2. Let G : ½0; 1Þ ! C be an asymptotic curve of F with a finite
asymptotic value. Then for every t A ½0; 1Þ close enough to 1, we have GðtÞ A H�.

Proof. We begin with

Claim 1. For any real-analytic curve C : ½0; 1Þ ! Hþ tending to y, the
length of F � C is infinite.
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Proof. If the real part <C of C tends to y, then the curve p � C also tends
to y. Thus by (2), assumption (1) implies that the length of F � C is infinite.
If M :¼ sup <C < y, then p � CH fea < jzj < eMþag and limt!1jargðp � CðtÞÞj
¼ y. Hence ð

p�C
j f ðzÞj jdzj ¼ y:ð3Þ

Since jlog zjb a on the curve p � C, (3) with equality (2) implies that the length
of F � C is infinite.

In the remaining case, C should transverse some vertical strip fb1 a<za
b2g infinitely often. Then p � C transverses a round annulus feb1þa a jzja
eb2þag infinitely many times. Hence again we get (3), and the same argument
as the above implies that the length of F � C is infinite. r

Let w1 A C be the finite asymptotic value of F along G : ½0; 1Þ ! C, that is,
limt!1 F � GðtÞ ¼ w1.

Claim 2. There exists r > 0 such that any component of F �1ðDrðw1ÞÞ which
intersects I is bounded.

Proof. By Lemma 1, there is R > 0 such that mins AR; jsjbRjFðisÞjb jw1j þ 1.
Increasing R > 0 if necessary, we assume that w1 B F ðfjzj ¼ RgÞ, so there is
r A ð0; 1Þ such that Drðw1ÞVFðfjzj ¼ RgÞ ¼ j. Then F �1ðDrðw1ÞÞ intersects nei-
ther I V fjzjbRg nor fjzj ¼ Rg, so any component of F �1ðDrðw1ÞÞ intersecting
with I is contained in fjzj < Rg. r

Fix r > 0 with the property claimed above. Fix t0 A ½0; 1Þ such that

F � Gð½t0; 1ÞÞHDr=4ðw1Þ:ð4Þ
Let W be a component of F �1ðDrðw1ÞÞ which contains Gðt0Þ. Then W contains
the whole Gð½t0; 1ÞÞ, so W is unbounded. Hence by Claim 2, W does not intersect
with I , so is contained in either H� or Hþ.

Assume contrary that the conclusion of the lemma does not hold. Then
WHHþ. Let f be a germ of a single-valued analytic branch of F �1 at
FðGðt0ÞÞ such that fðF ðGðt0ÞÞÞ ¼ Gðt0Þ. Then f is holomorphic on the disc
Dr=2ðF ðGðt0ÞÞÞ, or else there exists a largest disk DrðF ðGðt0ÞÞÞ with r A ð0; r=2Þ to
which f can be extended analytically.

But the latter cannot occur: for there would then be a point x A
qDrðFðGðt0ÞÞÞ over which f cannot extend analytically. Let a be the radial
segment ½0; 1� C s 7! FðGðt0ÞÞ þ sðx� FðGðt0ÞÞÞ A Dr=2ðFðGðt0ÞÞÞ joining FðGðt0ÞÞ
and x. Since Dr=2ðFðGðt0ÞÞÞHD3r=4ðw1Þ, the curve f � a j ½0; 1Þ is contained in W,
so in Hþ. Since the unique critical point �a of F is in H�, Iversen’s theorem
yields that the curve f � a j ½0; 1Þ tends to y. On the other hand, f � a j ½0; 1Þ is
real-analytic and the length of F � ðf � a j ½0; 1ÞÞ ¼ a j ½0; 1Þ is finite, so by Claim 1,
f � a j ½0; 1Þ cannot tend to y. This is a contradiction.
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Thus f is holomorphic on Dr=2ðFðGðt0ÞÞÞ, which contains F � Gð½t0; 1ÞÞ by
(4). Hence limt!1 GðtÞ ¼ fðlimt!1 F � GðtÞÞ ¼ fðw1Þ, which contradicts that G
tends to y.

Now the proof is complete. r

For a domain D in C, a subset c in D is called a crosscut (or a transverse
arc) of D if c is homeomorphic to ð0; 1Þ, the closure c in C is homeomorphic to
½0; 1� and cV qD consists of two points.

For each r > 0, put Dr :¼ Drð0Þ ¼ fw A C; jwj < rg.

Lemma 3. For every R > 0, F �1ðDRÞVHþ has no unbounded components.

Proof. Let W be a component of F �1ðDRÞVHþ. From Lemma 1, ðqWÞV I
has at most finitely many components, which are closed intervals. The image
of each component of ðqWÞV I under F is a real-analytic curve in DR, and
DRnFððqWÞV IÞ has at most finitely many components. Fix a triangulation of
DR such that the interior of any triangle is contained in DRnFððqWÞV IÞ.

As convention, we call the interior of each triangle an open triangle.

Claim 1. For every open triangle V and every component U of F �1ðVÞVW,
U is bounded and the restriction FU of F on U is a homeomorphism from U
onto V.

Proof. Fix z0 A U . By F 0ðz0Þ0 0, there is a germ f of a single-valued
branch of F �1 with fðF ðz0ÞÞ ¼ z0. Assume that there is a curve g : ½0; 1� ! V
with gð0Þ ¼ Fðz0Þ such that the analytic continuation of f along g j ½0; t� is
possible for any t A ½0; 1Þ, but impossible for t ¼ 1.

Since the unique critical point �a of F is in H�, by Iversen’s theorem, the
curve f � g is an asymptotic curve of F with the finite asymptotic value gð1Þ A C.
Then by Lemma 2, there is t0 A ½0; 1Þ such that f � gðt0Þ A H�. On the other
hand, from F ðIÞVV ¼ j, U is a component of F �1ðVÞ. Moreover, U is a
component of F �1ðVÞ since there is no critical point of F on I . Thus the curve
f � g is in U , so in Hþ U I . This contradicts that f � gðt0Þ A H�.

We have shown that f extends analytically along all curves in V . Now by
the monodromy theorem, a single-valued continuous branch F �1 : V ! U exists.
Hence U is bounded and FU : U ! V is homeomorphic. r

Let N be the number of triangles in DR.

Claim 2. There is an increasing sequence of closed sets

D1 HD2 H � � �HDN ¼ DR

such that for each j A f1; . . . ;Ng, Dj consists of j triangles and int Dj is connected
and simply connected.

511a generalization of a completeness lemma in minimal surface theory



Proof. This is clear if N ¼ 1, so we assume that Nb 2. The construction
is decreasingly inductive. For j ¼ N, DN ¼ DR consists of N triangles and
int DN ¼ DR is connected and simply connected. Fix j A f1; . . . ;N � 1g, and
suppose that we obtain a closed set Djþ1 consisting of j þ 1 triangles such that
int Djþ1 is connected and simply connected.

Let Sj be the set of all triangles D in Djþ1 having an edge in qDjþ1 such that
intðDjþ1nDÞ is not connected. Let us find a triangle Dj in Djþ1 which has an
edge in qDjþ1 and does not belong to Sj . We can certainly do this when Sj ¼ j.
Suppose that Sj 0j. For each D A Sj , there are two components P and P 0 of
intðDjþ1nDÞ and put NðDÞ be the minimum of the number of triangles in P and
that of P 0. Fix a triangle D A Sj satisfying

NðDÞ ¼ min
D0 ASj

NðD0Þ;ð5Þ

and a component P of intðDjþ1nDÞ such that P consists of NðDÞ triangles. Then
any triangle Dj in P having an edge in ðqDjþ1ÞVP will not belong to Sj : for, if
Dj A Sj , then there is a component of intðDjþ1nDjÞ, which is a subset of intðPnDjÞ,
so NðDjÞ < NðDÞ. This contradicts (5).

With such Dj , set Dj :¼ Djþ1nDj. Then int Dj is connected, and moreover
ðqDjÞV ðint Djþ1Þ is a crosscut of int Djþ1, so int Dj is simply connected. r

Let ðDjÞ be the increasing sequence of closed sets obtained in Claim 2. We
show by induction that for each j A f1; . . . ;Ng, F �1ðint DjÞVHþ has no un-
bounded components.

For j ¼ 1, D1 is a single triangle. This case is covered by Claim 1.
Fix j A f1; . . . ;N � 1g, and suppose the assertion holds for Dj. Put C :¼

ðqDjÞV int Djþ1, which is a crosscut of int Djþ1. Assume that a component W0

of F �1ðint Djþ1ÞVHþ is unbounded. Let c1 be a component of F �1ðCÞVW0.
Since F has no critical point in W0, c1 is a crosscut of W0, and W0nc1, which is
possibly still connected, has an unbounded component W1.

Let U1 be a component of W1nF �1ðCÞ such that c1 H qU1. Then U1 is a
component of either F �1ðint DjÞVW or F �1ðint DjÞVW. In either case, by the
assumption for j and the assertion for j ¼ 1, U1 is bounded. Hence W1nU1 has
an unbounded component W2. Let c2 be a component of qW2 VW1. Then c2 is
a crosscut of W1 and c2 H qU1.

Let U2 be a component of W2nF �1ðCÞ such that c2 H qU2. Then U2 is
bounded by the same reason. Let c3 be a component of qU2 VW2, which is a
crosscut of W2.

Now c2 H qU1 V qU2. Hence at least one of U1 and U2, say U�, is a
component of F �1ðint DjÞVW. By Claim 1, F restricts to a homeomorphism
from qðU�Þ to qDj. But F �1ðCÞV qðU�Þ contains not only c2 but also either c1
or c3, which is a contradiction.

Hence F �1ðint Djþ1ÞVHþ also has no unbounded components. This com-
pletes the induction.

This applies in particular to int DN ¼ DR. Hence F �1ðDRÞVHþ has no
unbounded components, which completes the proof. r
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Lemma 4. For every

z A H� U I ; jF ðzÞjamaxfjzj; jajgnþ1 � 2n maxjzjaea jz f ðzÞj:

Proof. For each z A H� U I ,

jFðzÞj ¼
ð
½a;aþz�

znf ðezÞez dz
�����

�����a ðjzj þ jajÞnjzj max
jzjaea

jz f ðzÞj;

where ½a; aþ z� is the closed segment joining a and aþ z. r

Lemma 5. For each r > 0, put

mþðrÞ :¼ minfjFðzÞj; z A Hþ U I ; jzj ¼ rg:

If f is transcendental, then lim inf r!y mþðrÞa 1.

Proof. For every r > 0, put

Dr :¼ fr=4 < jzj < 2rgVHþ:

Then D1 GDr under the similarity z 7! rz. Let j : D1 ! D1 be a (inverse of )
Riemann mapping such that jð0Þ ¼ 1 A D1. For every r > 0, the conformal
map

jr :¼ r � j : D1 ! Dr

satisfies that jrð0Þ ¼ r A Dr and extends to a homeomorphism from D1 onto Dr.
The Poisson kernel on D1 is

Pðw; xÞ :¼ < xþ w

x� w

� �
¼ 1� jwj2

jx� wj2

for w A D1 and x A qD1. For each w A D1, Pðw; xÞjdxj=ð2pÞ is a probability
measure on qD1, and more specifically, the harmonic measure for D1 with pole at
w (for the details, see, e.g., [6, §1.2]).

Assume that

lim inf
r!y

mþðrÞ > 1:

Then there is r0 > 0 such that logjF j is positive and harmonic on fjzj > r0gV
ðHþ U IÞ.

Let us compare logjFðrÞj and logjF ðr=2Þj for each r > 4r0. Since logjF � jrj
is positive and harmonic on D1, Harnack’s inequality (cf. [6, Theorem 1.3.1])
yields

1� jj�1ð1=2Þj
1þ jj�1ð1=2Þj logjF ðrÞja logjF ðr=2Þj

513a generalization of a completeness lemma in minimal surface theory



(we note that logjFðrÞj ¼ logjF � jrð0Þj and that logjFðr=2Þj ¼ logjF � jrðj�1ð1=2ÞÞj).
Hence we have

logjFðrÞjaC0 logjF ðr=2Þj;

where we put C0 :¼
1þ jj�1ð1=2Þj
1� jj�1ð1=2Þj > 1.

A repeated use of this estimate implies that

logjF ðrÞjaC
maxf j AN; r=2 j>2r0g
0 � max

s A ½2r0;4r0�
logjFðsÞjaC1r

a;ð6Þ

where we put a :¼ log2 C0 > 0 and C1 :¼ ð2r0Þ�a maxs A ½2r0;4r0� logjFðsÞj > 0.
Let us next compare logjF ðzÞj and logjF ðjzjÞj for each z A Hþ with jzj > 4r0.

Fix z A Hþ with jzj > 4r0 and put r ¼ jzj. Then z A Dr. Let us decompose
qDr into the disjoint subsets Ir :¼ ðqDrÞV I and Sr :¼ ðqDrÞnI . Then j�1

r ðIrÞ ¼
j�1ðI1Þ and j�1

r ðSrÞ ¼ j�1ðS1Þ, and

logjFðzÞj ¼
ð
j�1ðI1Þ

ðlogjFðjrðxÞÞjÞPðj�1
r ðzÞ; xÞ jdxj

2p
ð7Þ

þ
ð
j�1ðS1Þ

ðlogjFðjrðxÞÞjÞPðj�1
r ðzÞ; xÞ jdxj

2p
:

Increasing r0 > 0 if necessary, Lemma 4 implies that

logjF ðitÞja 2 logðjtjnþ1Þ ¼ 2ðnþ 1Þ logjtj

for every t A R with jtj > r0. Since Ir H fit A R; jtj < 2rg,ð
j�1ðI1Þ

ðlogjFðjrðxÞÞjÞPðj�1
r ðzÞ; xÞ jdxj

2p
a 2ðnþ 1Þ logð2rÞ:ð8Þ

Put c :¼ j�1
r ðfz A Dr; jzj ¼ rgÞ, which is a crosscut of D1. Note that

fhx�1 A D1; h A c; x A j�1ðS1Þg

is compact in D1 and does not contain 1. Put

C2 :¼ maxfPðhx�1; 1Þ; h A c; x A j�1ðS1Þg < y:

We note that Pðh; xÞ ¼ Pðhx�1; 1Þ for every x A qD1. Since j�1
r ðzÞ A c and

logjF jb 0 on qDr, we haveð
j�1ðS1Þ

ðlogjFðjrðxÞÞjÞPðj�1
r ðzÞ; xÞ jdxj

2p
aC2

ð
qD1

logjF ðjrðxÞÞj
jdxj
2p

¼ C2 logjF ðjzjÞj;

where the final equality follows from the mean value property of harmonic
functions (we note that logjF ðjrð0ÞÞj ¼ logjF ðrÞj and that r ¼ jzj). This with (7)
and (8) concludes

logjF ðzÞja 2ðnþ 1Þ logj2zj þ C2 logjF ðjzjÞj:
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From this estimate with (6), on Hþ,

logþjF ðzÞj ¼ OðlogjzjÞ þOðjzjaÞ

as jzj ! y. This with Lemma 4 implies that the order of F is finite. Thus by
the definition of F , the order of f ðezþaÞ is also finite.

On the other hand, we can show that the order of f ðezþaÞ is infinite, which
will prove our lemma by contradiction. Since f ðCnf0gÞHCnf0g, we can write
as f ðzÞ ¼ zkeHðzÞ with some k A NU f0g and some entire function HðzÞ. By the
assumption that f is transcendental, H is non-constant. Hence by Hadamard’s
theorem (cf. [1, p. 209]), the order of f is greater than or equal to one. Hence
the order of f ðezþaÞ is infinite. This is a contradiction.

Thus we have proved lim inf r!y mþðrÞ > 1. r

Let us complete the proof of Theorem.
Assume that f is transcendental. Fix R1 > maxf1; jFð�aÞjg. Then by

Lemma 5, F �1ðDR1
ÞVHþ is unbounded, and then by Lemma 3, there are

infinitely many (bounded) components of F �1ðDR1
ÞVHþ. By Lemma 1, the

boundaries of at most finitely many components of F �1ðDR1
ÞVHþ intersect I ,

so the other (infinitely many) components of F �1ðDR1
ÞVHþ are all relatively

compact in Hþ. Let V and W be distinct such components. Then V VW ¼ j
since F has no critical point in Hþ. Join V and W by a compact line segment
l, take R 0

1 > maxz A l jF ðzÞjðbR1Þ and let W1 be the component of F �1ðDR 0
1
Þ such

that lHW1. Then V UW HW1 VF �1ðDR1
Þ. Put A1 :¼ fR1 < jwj < R 0

1g and

W 0
1 :¼ W1nF �1ðDR1

Þ:

Then W 0
1 is a component of F �1ðA1Þ and is at least triply-connected. The

restriction

FW 0
1
: W 0

1 ! A1

is locally homeomorphic, i.e., has no critical point since F ð�aÞ B A1. If F has
also no asymptotic curve in W 0

1 with a finite asymptotic value in A1, then
Iversen’s theorem concludes that FW 0

1
have the curve lifting property, that is, any

closed curve may be lifted uniquely under FW 0 given any preimage of the initial
point (for the details, see, e.g., [2, Definition 4.13]), and then by [2, Theorem
4.19], the local homeomorphism FW 0

1
must be a covering. Since the universal

covering of A1 is topologically a disk and p1ðA1Þ is Z, p1ðW 0
1Þ must be either Z or

f1g, so W 0
1 must be topologically either an annulus or a disk. This contradicts

that W 0
1 is at least triply connected.

Hence F has an asymptotic curve G1 HW 0
1 with a finite asymptotic value a1

in A1 ¼ fR1 < jwj < R 0
1g. By Lemma 2, we may assume that G1 HW 0

1 VH�.
Fix R2 > R 0

1. By the same argument applied to R2, we obtain R 0
2 > R2, a

component W 0
2 of F �1ðfR2 < jwj < R 0

2gÞ and an asymptotic curve G2 HW 0
2 VH�

of F with a finite asymptotic value a2 A fR2 < jwj < R 0
2g. We note that G1 VG2

¼ j. Without loss of generality, we assume that both G1 and G2 are simple.
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Let U be an unbounded domain contained in H� such that

qU ¼ G1 UG2 U c;

where c is an arc joining the endpoint of G1 and that of G2 in H�. Since
a1 0 a2, by Lindelöf ’s theorem (cf. [4, p. 65]),

sup
U

jF j ¼ y:

On the other hand, we can show that jF j is bounded on U , which will prove
the Theorem by contradiction. First, we note that

M :¼ max
z A qU

logjFðzÞj < y:

For a bounded domain DHC, let ðz;EÞ 7! oDðz;EÞ be the harmonic
measure of D, where z A D and EH qD is a Borel subset. For the details,
see, e.g., [6, §4.3].

Fix z0 A U . For every r > jz0j, let Ur be the component of U VDr which
contains z0. Then by the two constant theorem (cf. [6, p. 101]),

logjFðz0ÞjaMoUr
ðz0; qUrnqDrÞ þ sup

z ADrVH�

logjFðzÞj
 !

oUr
ðz0; qUr V qDrÞ

aM � 1þ sup
z ADrVH�

logjFðzÞj
 !

oUr
ðz0; qUr V qDrÞ;

so we have

logjF ðz0ÞjaM þ lim sup
r!y

sup
z ADrVH�

logjF ðzÞj
 !

oUr
ðz0; qUr V qDrÞ

 !
:ð9Þ

By the monotonicity of harmonic measures (cf. [6, Corollary 4.3.9]),

oUr
ðz0; qUr V qDrÞaoDrVH�ðz0; qUr V qDrÞ

aoDrVH�ðz0; qDr VH�Þ ¼
2

p
arg

irþ z0

ir� z0

(for the final equality, cf. [6, p. 100]). Hence as r ! y,

oUr
ðz0; qUr V qDrÞ ¼ Oðr�1Þ:

This with Lemma 4 implies that

lim sup
r!y

sup
z ADrVH�

logjFðzÞj
 !

oUr
ðz0; qUr V qDrÞ

 !
a 0:

Hence by (9), we conclude supU logjF jaM since z0 A U is arbitrary. Now the
proof is complete. r
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