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Abstract

We construct a bilinear form associated to a sub-conformal structure on a manifold
M. In the case the sub-conformal structure corresponds to a partially-integrable CR
structure we obtain a conformal Lorentz structure which coincides with Fefferman’s
construction on a circle bundle over M. The main contribution is the use of invariant
forms with values in a vector space instead of the full information contained in the
Cartan connection in order to simplify the construction.

1. Introduction

Associated to an integrable CR manifold M, that is a contact manifold with
a complex structure defined in the contact distribution satisfying an integrability
condition (see section 2 for definitions), one can define a Lorentz conformal
structure on a circle bundle over M. That structure was first constructed for real
hypersurfaces in C" in [F] and later for an abstract CR manifold in [BDS].

The construction in [BDS] (see also [Ca] for a generalization) uses a Cartan
connection obtained on a principal bundle canonically associated to a CR
manifold with structure group Hcg = CU(n) X N which is the automorphism
group of the Heisenberg group N (see [C, CM, T2] and section 2.4). The
construction of that connection is not easy and therefore it was natural to look
for other constructions.

In [Fa, L] more elementary constructions are given in the sense that one does
not need to use a connection associated to the CR structure. In particular, [L]
uses Webster’s connection associated to a pseudo-Hermitian structure (see [D] for
a recent survey).

A natural generalization of CR geometry on a contact manifold is sub-
conformal geometry which is a conformal structure defined on the contact
distribution. That structure contains a large class of non-integrable CR mani-
folds called partially-integrable (see section 2).
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The goal of this paper is to construct a canonical bilinear form associated to
a sub-conformal structure without any integrability conditions. In the case of
integrable CR structures the bilinear form coincides with the one defined in [BDS]
(cf. [FV] to compare Chern’s construction and the parallelism defined for a sub-
conformal structure).

The main observation is that only part of the Cartan connection for CR
manifolds is needed to construct the bilinear form giving rise to the Lorentz
structure. All relevant information is contained in an invariant form with values
in a vector space vcg which is a quotient of the Lie algebra su(n + 1, 1) associated
to CR manifolds. Instead of constructing the Cartan connection, we construct
an invariant form with values in vcg (see section 2 for definitions). That
construction is carried through in general for sub-conformal structures and
the exposition is self-contained without any use of the CR connection, except
for comparison purposes. From the construction of that invariant form we are
able to characterize a Lorentzian conformal structure on a circle bundle over
a partially-integrable CR manifold. The main result is Theorem 4.1. We use
moving frames following [CM] which is appropriate for explicit calculations.

The authors thank the University of Paris VI and the University Federal of
Para (UFPA) for generous support while preparing this work.

The authors were partially supported by the Programa Nacional de Cooper-
agdo Académica da Coordenacdo de Aperfeigoamento de Pessoal de Nivel
Superior—CAPES/Brasil and by the ‘Réseau Franco-Brésilien en Mathématiques’.

2. CR-manifolds, sub-conformal manifolds and fiber bundles

In this section we define the geometric structures we will deal with, namely
CR structures and sub-conformal structures. Let D be a contact distribution on
a manifold M.

DErINITION 2.1.

1. (M,D,J) is an almost CR structure if J: D — D satisfies J> = —1I.

2. (M,D,g) is a sub-Riemannian structure if g is a metric on D.

3. (M,D,g) is a sub-conformal structure if g is a conformal class of sub-
Riemannian metrics.

Let n: TM — TM/D be the quotient map.

DeriNiTION 2.2, The Levi form o : D x D — TM /D is the skew-symmetric
form defined as a(X,Y) = —=n([X, Y]).

Fixing a base v of TM /D defines the Levi form o, as a real valued form.
Let 0, be the contact form of this distribution such that 6,(z~'v) = 1, then the
Levi form is given by

d0,(X,Y) = 0,(X, Y)
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If we have a metric on D, define a skew-symmetric operator H, on the distri-
bution by

(X, Y) =g(H,X,Y)

As «, is non-degenerate, we can always choose v such that det H, =1 and this
determines a unique v ignoring orientation effects. Observe that if we let 7g be a
new metric and choose v as above, then

d(l/,)L,(X, Y) = Zg(HvX, Y)

so the definition of H, does not depend on a metric inside a conformal class of
metrics. Fixing a metric on D, denote by H this operator and obtain its normal
forms in the following lemma.

LemMA 2.1. Let V be a 2n dimensional real vector space with a scalar
product. If H is a nondegenerated skew-symmetric operator, then there exists an
orthonormal basis of V' such that the matrix of H is

A1 0 0
0 0 . 0
0 0 A,
A= -1 0 0
0 .0 0
0o 0 -4
with ; >0, i=1,...,n
LemmA 2.2. Suppose that A is such that Jg44..1q 41 = = Adj4td, = Vi

for 1 <k<r, with di+---+d,=n, and vi <vy <---<v,, where the v; are
real numbers, and that A € SO(2n) satisfies ANAT = A. Then Ae U(d)) x - x
U(d,).

Proof. We write 4 = (a/), and 1 <a,f<n. We have
ﬂ+n/“ﬂ = o/())+nj'
alily = 'l
althiy =ala,

%+n
dlfs iy = —alf " hs
then
gl = il = 2,
dodpal = 22l = /l/%afi,':
II;H@ # 2, we deduce af = alll = a’”" = altn =0. If 4, =iy then af = al7,
ay ™" =

—af+,,. Therefore A € U(d)) x -+ x U(d) O
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A special case is when A =J. This clearly relates to CR manifolds and to
be more explicit we introduce the next definitions.

DEFINITION 2.3.

1. An almost CR structure is partially-integrable if the Levi form satisfies the
condition o(X,Y) = a(JX,JY).

2. A partially-integrable CR structure is integrable if J([JX,JY] — [X,Y]) =
JX, Y]+ [X,JY].

Essentially, the Levi form of a partially-integrable CR structure is compatible
with the complex structure. Observe that a conformal sub-Riemannian manifold
(M,D,§) such that H?> = —Id is a partially-integrable CR manifold. In fact,

a(HX,HY) = g(H>X HY) = —g(X,HY) = —g(HY, X) = —a(Y,X) = a(X, Y).

Remark. The partially-integrable CR manifolds obtained above are strictly
pseudoconvex. If we had started with conformal classes of pseudo-metrics g, we
would have arrived at pseudoconvex CR manifolds. To see that, recall that the
Levi form is extended as a Hermitian form on D'?, the eigenvectors of H acting
on D ® C corresponding to the eigenvalue i. Using an orthonormal basis X,
HX, for g which puts H in normal form we have

a(X, — iHX,, X, + iHX,) = —2ia(HX,, X,) = —2ig(H*X,, X,) = 2ig(X,, X,),

we see that the signature of g corresponds to the signature of the Levi form. We
will restrict our work to sub-Riemannian metrics for simplicity although the same
results hold for different signatures.

21. SU(n+1,1)
We will use Chern’s conventions [CM] (see also [BDS]) where

SUm+1,1)={geSL(n+2,C) |3 0y = 0}

and the Hermitian form Q is given by

0 0 —i/2
o=|0 1 o0
i/2 0 0

The group SU(n+ 1,1) acts on C""? on the left preserving the cone
{zeC"? 270z =0}.

The projectivization of this cone is ! =« CP"!. SU(n+1,1) acting on the
sphere S?**! has a finite center K which is a cyclic group of order n + 2 acting
trivially. We define PU(n+1,1) =SU(n+1,1)/K.
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The elements of the Lie algebra su(n + 1, 1) are represented by the matrices

u X z
(—2in A 2i)‘cT>
w y —u

where A4 is skew-Hermitian, z,weR, x,yeC" ueC and u—ia+ Tr4 =0.
Observe that the Lie algebra gcg = su(n+ 1,1) is graded:

Jer=9"®g ' ®g"Dg' ®g*

where
0 0 z 0 x 0
g2={[0 0 0 gt={l0 0 2ix7
0 00 00 0
u 0 0 0 00
g° = 0 4 0 g = fZZyTOO 0 0 0
0 0 —u w 0 0

Observe that
" =R® u(n) =R @ u(l) ® su(n)

where
—ig/2 0 0
u(l) = 0 iql /n 0
0 0 —ig/2
with ¢ € R and
r 0 0
csu(n) =R @ su(n) = 0 4 0
0 0 -—r

with 7r4 =0 and reR.

DEerFINITION 2.4, We define the subalgebras
her=9"®g' ®g> ho=uln) ®g' ®¢°
hy = csu(n) @g' ®g* hy=suln) ®qg' ®g*
and the vector space
ver = ger/h ~g P @ g @R
The isotropy of the action of SU(n+1,1)/K on S2*! at the point [0,...,1]"

is the group Hcgr = CU(n) X N (whose Lie algebra is hcg), where N is the
Heisenberg group, represented (up to K) by matrices of the form
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a 0 o0
—2iaAbT A4 0
a(s—ibbT) b a!
where seR, A€ U(n), be C" and aa~' det A = 1.
We follow the notations in [BDS] to define the following subgroups of Hcg;
H, = CSU(n) X N (whose Lie algebra is /), Hy = U(n) X N (whose Lie algebra
is hy) and H, = SU(n) X N (whose Lie algebra is /). The inclusions between
these groups can be visualized in the following diagrams

HCR S2n+1 X C*
H] HO S2n+l X Sl S2n+1 x R+
H2 / SZn-H

A geometrical interpretation of SU(n+ 1,1)/H, is obtained considering the
canonical bundle of the sphere, that is the restriction of A""1C"*! to the sphere,
and deleting from it the zero section. This is a trivial C* bundle over the sphere
(it has a non-zero section given by the restriction of dz' A --- Adz"*! to the sphere).
We obtain SU(n+ 1,1)/H, ~ S+ x C* and also SU(n+ 1,1)/H; ~ $>*! x S,
SU(n+1,1)/Hy ~ S x R".

We will usually use the same notation for a lift of a subgroup of
PU(n+1,1) to SU(m+1,1). In particular we will use the same notation for
Hegr as a subgroup of the matrix group SU(rn+ 1,1). The adjoint action of
Hcg on gcg is given by

a’! 0 0 u x oz a 0 0
2ibT A1 0 —2iy" B 2ixT —2iaAbT 4 0
—a(s+ibb") —abA™' a woy  —i a(s—ibb") b a’!
u—2ixAbT + z(s — ibb ™) a'xA+a'zb (ad) 'z
= x 2ib" xA+ A '\BA+2ib" zb+2iA7'xTh x|,
* * *

where we didn’t explicit the action in the lower diagonal because this will not be
used in the sequel. The following lemma follows from a simple computation
using the formula above.

Lemma 2.3, Ad(h=')(h1) = hy for he Her.

We have by the previous lemma the following

Lemma 2.4. The adjoint action of Hcr on gcr passes to the quotient veg.
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2.2. A bilinear form

Using left invariant forms we construct the Maurer-Cartan form on
SU(n+ 1,1) with values in the Lie algebra su(n+ 1,1). That is a gcg-valued
form (we use Chern’s coordinates).

__¢_ﬁ T 2m
IT= — Tryl 2irT
* n ) n ITT

* * —¢—? i

where 7 = (0”), n = (n¥) and ¢, w are real forms (the terms under the diagonal
will not be used so we don’t need to name them) and satisfying the following
transformation law

R = Ad(h—"IT
for he PU(n+1,1). The Maurer Cartan equation is
dlI+TIATI = 0.

Observe that one of these equations is 2dw = 2in A7 — 2¢ A @ which will appear
as equation 4 in the general sub-conformal case. Chern’s convention is made in
order that the structure equation 7 be valid.

DeFINITION 2.5. On SU(n+1,1) define the form

T

2
bzin Tm-wo+n-7

+2
PrOPOSITION 2.1. R;b = la|™*b for he Heg.
Proof. We use the adjoint action on IT to compute the action on b. []

That bilinear form is well defined, up to a conformal factor, in a quotient of
the group PU(n+ 1,1) diffeomorphic to the trivial circle bundle over the sphere

S2n+1.
PROPOSITION 2.2. b defines a conformal Lorentz structure on
PU(n+1,1)/H, = PU(n+1,1)/CSU(n) x N ~ §"*1 x '

Proof. We have to show that i(X*)b=0 for X €csu(n) X N, where

dge™ . . . .
X*(g) = g;t (0). That is equivalent to showing that b vanishes along vectors

tangent to the orbits of CSU(n) X N. The vector fields X* are left invariant
and dual to the left invariant forms. In particular they are in the kernel of the
forms Try, = and w. Ul
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The bilinear form b is defined on gcr ® gcg but, in fact, it uses only part of
the left invariant forms in the group. It is most naturally defined on vcg ® veg.
That is the key observation which allows a more general construction.

2.3. Real representation

In this section we relate complex coordinates used by Chern to the real
coordinates used in sub-conformal geometry. It assures that we are dealing with
the same forms when the sub-conformal geometry gives rise to an integrable CR
structure. A real representation of Hc¢g is given by the following matrices

1 0 0
2hya*vk tal 0
s w1

Here a/ € U(n) and (h;;) = J where i is the row index and r is the column index of
the matrix. This group is isomorphic to CU(n) X N, the group of similarities of
the Heisenberg group and an explicit isomorphism is given writing @ = ¢~ '’ and

Re P4 Te 04
(—%ei(}A ?ReioA>
v=(Re b, e "b)
by (observe that the kernel of the map is precisely the center of PU(n+ 1,1))

a 0 0 1 0 0
w: | —2iaab” A4 0 | — | 4JaT m 0
a(s—ibb") b a! —4s 2t

This map is obtained by comparing the right multiplication with the adjoint
action on the algebra.

ProrosITION 2.3.  The map

9

®g'®9g?—>ROR"®R
u(n)

given by

—~

¢, 7, ) — (¢, R, S7, )

R
(where ¢:—7u and w == in the coordinates of lohe Lie algebra) is Hcg-

NSNS

equivariant with respect to the adjoint action on 9 @9 '@®g? and right
multiplication on R ® R” ® R. u(n)
Proof. By the adjoint action on the left hand side we obtain
¢ = ¢+ 2inAbT = 2i7AbT — dsw
' =a'nA+2a ' wb

o' = (ad) '
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We write
na'A +2wa”'b = (R(2)R(a'4) — S(n)S(a"'4) + 20R(a"'b))
+i(R)S(a ' A) + S()R(a'4) + 203 (a"'b))
Also,
¢+ 2inAbT — 2inAbT — 4sw
_ ACkp—i0 —if —i0p T
= ¢ + (Rr,I7) < _4;6—1‘0; _4482;—[;9414> (ii—iﬁzT) —4so O

The Lie algebra of Hcg in the real representation is given by matrices of the
form

0 0 0
x 0] +w! 0],
* * 2t

where (/) € o(2n).
In the next sections we need the equivalent to i7rn using the real repre-
sentation:
Ty K <k
Lemma 2.5, iTrp = —3;h'w] where hyh™ = 6;

Proof. We compute the differential of the homomorphism u:

2 ¢ T+ 2 Ty d 2o O 0 0
* n— j_szI 2irT — | * gl—&-w 0
* * ! ! - * ¢
2 n+2
where
wi— (B S
! Sy Ry
therefore
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Putting together the various transformations we obtain the following real rep-
resentation corresponding to the adjoint action p of Hcg in vcg.

LEmMMA 2.6. Let ver ={(w,Rr,Sn,0)}.  The representation p of Hcr on
vcR Is given by

1 0 0
ol | 27avT a0 (0, Rr, 7, 7)
s w1’

= (o, (Rr, Sn)ta + 2tvw, 0 — 2(Rr, Sn)av” — vv’ w)

2.4. Principal fiber bundles, connections and invariant forms

In this section we give an overview of the relevant bundles to be defined in
detail in the next section. We will consider principal bundles 7z : P — M with a
right action P x H — P. We usually denote the right action as R,p = ph. Let
 be a form defined on P with values in V, a vector space. Let p: H — GL(V)
be a representation of H.

DEFINITION 2.6. o is a p-invariant form with values in V if Rjow = p(h™"w
for he H.

Special cases of that definition include connection forms and Cartan con-
nection forms defined on principal bundles. In the first case V = h, the Lie
algebra of H and in the second case V' is the Lie algebra of a group containing
H. In both cases p(h)v = Ad(h)v.

Given a sub-conformal structure on a manifold M we construct a bundle Y
which factors through a R*-bundle denoted by E (see next section). The bundle
Y is not a principal bundle but a reduction of Y which we denote by Ycg will
be principal with some extra hypothesis. In particular we will work with a
bundle Ycr — M which has Heg = CU(n) X N as structure group. Here N is
the Heisenberg group of dimension 2rn+ 1 and CU(n) is the conformal unitary
group, that is, R* x U(n). Observe that U(1) = CU(n) x N/CSU(n) X N so
we obtain the circle bundle T = Ycr/CSU(n) X N over M. The relevant
bundles can be viewed in the following diagram.

Yer

7N

T E

N

M

In the case that the sub-conformal structure gives rise to an integrable
CR structure, the principal bundle Ycg is equipped with a Cartan connection.
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Although we are not going to use the following theorem, we state it for com-
pleteness and for comparison purposes. We won’t state either the conditions
defining uniquely that connection (referring to [CM])

THEOREM 2.1 (Cartan-Tanaka-Chern). Over an integrable CR manifold M
there exists a bundle Ycr with a canonical gcr-valued Cartan connection. That is
a gcr-valued form T1 satisfying the following transformation law

RiTI = Ad(h~"IT
for he Heg.

From the theorem above and Lemma 2.4 we easily get the following

COROLLARY 2.1. OQver an integrable CR manifold M there exists a bundle
Ycr with a canonical veg-valued invariant form.

The importance of that corollary is that the Lorentz form defined over T is
constructed only using the vcg-valued invariant form. Concretely one uses only
part of the canonical connection to define the bilinear form. That means that
even without a Cartan connection, one might be able to find an appropriate
invariant form which would be enough to construct invariant bilinear forms.
Moreover its construction is simplified, even in the integrable case, because we
don’t need to construct the whole Cartan connection.

In the next sections our goal will be to introduce the bundle Y¢cz and obtain
an invariant bilinear form defined on Y for a general partially-integrable CR
manifold. The main goal is theorem 4.1.

3. Sub-conformal geometry

This section is based on [FV] where a parallelism is obtained for sub-
conformal geometry. Here we only need part of the forms constructed so we
give a self-contained and simpler version of the forms we need.

Let (M,D,§) be a contact sub-conformal structure. Let E to be the
oriented line bundle of all sub-Riemannian metrics in the conformal class g.
Given a sub-Riemannian metric, there exists a unique, up to sign, contact form 6
such that

d0 = h;0' A0+ h,0' A O

where 0’ is a dual basis of an orthonormal basis of D, hij = —hj;. and det(h;) =1
(observe that the determinant of a non-degenerate skew-symmetric matrix is
positive so this condition does not depend on the choice of orientation on D).
The matrix (f;) is the matrix of the operator H introduced in section 2 and we
will denote it by the same letter H. We suppose from now on that TM /D is
oriented. We can therefore define the oriented line bundle E of contact forms
over M. E is isomorphic to E.
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We obtain in this way a set of basis of l-forms adapted to the sub-
Riemannian structure which can be described by all forms

0'=0
0" =alt’ +v'0

where a} are orthonormal matrices and v’ are arbitrary. Also, the change of

matrix (h;) is given by
(1) hi; = athua.
A natural coordinate on the line bundle is given by positive real numbers

1 . . .
A so that g = Zgo where gy is a reference metric. The forms corresponding to

. 1 .
the metric g =—go are given by
A

(2) 0 =20
3) 0" = Vi(al0) +v'0)
In order to work with the whole class of conformal metrics we consider the

tautological forms defined by the forms above over the line bundle £. We write
again

o =w
o' = a;a)j +o'w
where we understand that the forms are defined over E. Those forms vanish on

vertical vectors, that is, vectors in the kernel of the map TE — TM. In order to
define non-horizontal 1-forms we differentiate equation 2 to obtain

(4) do = oA ¢+ hjo' Ao’
A ; di . C
where ¢ = - h;0'. Observe that i is a form intrinsically defined on E up

to horizontal forms (the minus sign is just a matter of conventions and makes the
equations compatible with the CR case treated in [CM]). In fact, choosing a
different reference metric g; with gy = ¢ /1 where u is a function over M, we can

. 1 1 .
write g = Igo = Egl and obtain

dp) dip+2idy di du
= e p— _|_ —
Al Al A ou

du . .
where o is a horizontal form.
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DeriNiTION 3.1.  We denote by Y the coframe bundle Y — E given by the
set of 1-forms ¢, w’/, w. Two coframes are related by

1 0 0
(¢ 0" 0') = (p,0,0)| —20%ah,; al 0
S vl 1

where a/ is an orthogonal matrix and s,v’ € R.

Considered as a bundle over M the change of coframes in a fiber is given by
the following matrix, where t € R,

1 0 0
(5) —2v*afh, tal 0
s w1

The fact that the bundle Y is not principal prevents us to obtain a simple
description of the bundle.

In section 4 we use a reduction of the bundle Y in a special case. We
suppose that the canonical form A of H = (h;) as in lemma 2.1 is

0 Id
a=1=(5, 0)

That case gives rise to partially-integrable CR structures.

DEerINITION 3.2.  Ycg is the sub-bundle of Y defined by the coframes such
that (h;) =J, where A is the normal form of lemma 2.1.

Ycr is a principal bundle over M with structure group Hcg = CU(n) X N,
the group of similarities of the Heisenberg group.

3.1. A distinguished form on subconformal structures

In this section we construct the form we need, in the more general situation
without hypothesis on H. We leave the study of its transformation to section
3.3. Given a sub-conformal manifold M we construct the bundle Y as in the
previous section. We use the same notation w’, w and ¢ for the tautologous
forms in Y corresponding to the coframes defining the bundle.

We will use the following

LemMmA 3.1.  Let Q% bet a set of 2-forms and o* be a set of 1-forms with the
same number of elements satisfying Q% = h/’ijﬁ Aw? with hf, = —h}‘,*/j then we can
write Q% = cuﬁ/\a)z)C with wj = —wP. If the set w* is linearly independent, the
Jorms wf are unique.
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The lemma follows from a skew-symmetrization:
wj = (hj, — hlj, — i’

Observe that in the case w” is a linearly independent set the uniqueness follws from
Cartan’s trick as in the proof of the uniqueness of a Riemannian connection.

3.1.1. The form o
Differentiating equation 3 we obtain

(6) do'= 27 o'+ alda;, Ao’ + ﬁ(dv’ - a}‘vkdaj) INOES \//_l(a;dﬁj +v/d0),

Recall that, as {¢/,0} is a basis of the cotangent space, one can write {d0’,d0}
using those forms. Therefore one can write the last term using the tautological
forms, modulo w, as

Vi(aldt’ + v/d0) = hi;o* Ao’

with hj; = —hj. Therefore, modulo », we can write formula 6 as
do' = —§¢ Ao’ + aldaj N’ + ho" Aol

As alda] is skew-symmetric and using Lemma 3.1 we can further write

. 1 . . . .
(7) dcu’:—i(/ﬁ/\w’—w_;/\cuf—qﬁ’/\a)

with w! = —w,’ o
Let o/, @/ and ¢', ¢’ be forms satisfying the equation 7. Taking the
difference between the equations we obtain
(0] — @) A +(§' = ¢') Aw =0

and using Cartan’s lemma we obtain
T
(8) ;] — 0 = ¢jo
P i j
¢'—¢' =o' + o
with
i

_ J
¢ = —¢j

Our objective is to define intrinsically and uniquely the form

h¥ao!

T T2

(where h¥hy =J}) by some normalization. Calling Q = (/) and H~! = (h¥)

1
h =———Tr(H'Q).
we have o o r( )
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3.1.2. Fixing the form o
Differentiating equation 4 we obtain

9 dhij — ho + ho®)o' Ao’ — (dg — 2hi¢" Aw)) Ao =0
i hag] J I

We need now the following simple lemma

LemMa 3.2. Let A be a 2-form and By be 1-forms with By = —By and
Aro+ Bjw' Ao/ =0 then A= —bjw'Anw/ +nAaw and By = bjyo* + bjw
where bl] = _bji, b,]k + bkij =+ bjki =0 and bijk = _bjik~

Applying the lemma to equation 9 we obtain
(10) dp —2hi¢' A’ + A = byo' A’
(1 1) d/’llj — hkjco,k + hkl’(/)jk = bijka)k + bUCI)
If we use 8 in 11 above we obtain

(hief + hicf ) = (b — by )" + (by — by)w
Then
(12) bijk = by
hjk(,’;yC — h,‘kcjk = bl] — Eij

If we differentiate the equation 7 and using 10, 7 and 4, we obtain
;1 ; : 1 A
(d¢’ —Eqﬁ/\(/ﬁ’ — ¢ rnoj +§;7/\cu’) AW
A A A 1 . A A
+ (dcuj’ + wy; /\wj’ + hjw' AP —Ebljwl A" — hjg! /\a)l> Aw! =0

It follows that
(13) O/ Aw’ =0 modw

where

i i i ! ik ! i k !
®;j = doj + oy Aj + Wigo" A §" + Bjgo™ Ao

with
Wi = Othig + Ophyy — 61k — Slhei + Oy hy
and

B}k/ = 1 (blj5;( — bkj5ll — bliélj( + bk,élj)

Observe that W, = —Wj, = W,

(14) O + &/ =0.

i J i
By, = =By, = =B}, and
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From 13 and 14 follows easily the following lemma
LemMma 3.3.

(I)/’ = j’)dwk Ao’ mod @
where S/’l)c/ = —S;;;[ = —S}lk and S/Ikl + S,jk + S/ig/ =0.

The form @' is not well determined. If we consider two sets of forms a) @'
and @;, ¢' as in 8, with the corresponding (I>’ and (I>’ then

O/ -] = ,k,a) Ap! =) + (¢/hus + Bjyy — Bjk,)a)k Ao’ modo.

We are not going to determine the form (D; but only a certain trace of it. In

order to do so let
S =) _h'Sj

S = Z Sklhlk.

In [FV] we used a different definition for S and we show in the following
section that the two definitions give the same normalization in the case of an
integrable CR structure.

and

ProrosITION 3.1.  The forms a)]’ can be chosen so that S =0 and then the
form ‘

1
-
ag n+2 Cl)

is independent on the remaining choices.

Proof. The form hiw! is determined up to ¢/h™. Taking into account that
h¥ W/ﬁa = —(2n+4)o,, h’fB’,d =0 and using the expressmn of S Sj?k, obtained
by skew-symmetrizing the formula for (D’ , that is,

(Wiel = ﬁréﬁ) +¢jhi + By — B

J J

N —

i Qi
Sjkl - Sjkl -

we get
S— 8= (4n+4d)cfn*

and this determines uniquely cfh’* such that S = 0. O

Using the 1-form ¢ we may now define the bilinear form which will give
rise to a conformal Lorentz structure in the case of a partially integrable CR
structure.
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DEerFINITION 3.3. Define on Y the bilinear form
b=ow'w +ow

3.2. Relation to integrable CR structures

In [FV] we used a different definition for S (cf. Lemma 4.4 pg. 462). In this
section we show that the two definitions give the same normalization in the case
of an integrable CR structure. This implies that the form ¢ defined in section 3
coincides with the one defined in [BDS] in that case.

It is shown in [FV] (Proposition 5.1 pg. 472) that the sub-conformal paral-
lelism coincides with the parallelism obtained from the Cartan connection defined
in [CM] in the CR integrable case.

Following formula 41 and Lemma 5.4 in [FV] we may suppose for each fixed
pair k, I, Sy, € u(n), that is, S, = S5, and Sgi" = —Sg, ), for 0 <o, f <n.

Lemma 3.4. If (hy) =J then
hi Sy h* =28,

Ji

 Proof. We write hiSh ' = —h¥(S], + Sj;)h*.  After a permutation of the
indices we obtain

= —h"S{;h" — WM ShhT = 2h7 SN

Using Sk, € u(n) we obtain

2(h“%+ns/?a+nﬂ+nhﬁﬁ+n + hm+nS/?+n a+nﬁhﬁ+nﬁ
p
+ ha+n1S[§<I§+nhﬁ/+n + hoc+no<So<+’;la hﬁ+nﬁ)

= 2(S5a+nﬂ+n - S§+nx+n/)’ S[ia[f+n S/ﬁ,’fqﬁ)
- 2<S/i’(i:a+n/3+n + Sg;’:nﬁ + S/?+nac[3+n + Sﬁaﬂ)
=28 0l

jij

Observe that this shows that the normalization /4% S i hk’ = 0 is equivalent to
the normalization S’ = 0 and therefore that our form o coincides with the one
defined by [BDS] usmg the Cartan connection.

3.3. Change of Coframe
Our goal is to obtain the transformation of o= —
compute it in a new basis of forms

1
n-+

Zh’/a)]f when we

o' =ro
o i i
" = t(aw’ +v'w)

¢' = ¢ —20%a* 0’ + sw
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on Y as given by the right action of the group Hcg represented by matrices of
the form 5.
We have the analogous equations

(15) do' =o' A g’ + hjo" Ao
. 1 . . . .
(16) dw”:——qﬁ’/\w”—w}’/\w’f— "ANo'
(17) dhj; — hk,w'k + bl = bl 0™ + bl
Differentiating equation " = #(q; a)/ + v'w) we obtain
1

—Egb’/\w’i —o no’ —¢" Ao
= t(a}da)j +v'dw)
= t'(wAd+ hyo* Ao’) + ta}(—%qﬁ/\wj —w] Ao - ;/)-/Aw)
Using the inverse transformations
o=t
o =a (o - ')
d=¢" + ZUkt_lh,’cjco” — st %0’
in the equation above and reorganizing we obtain

AN

1
0= — a,a)kak + - v i

/i 1 itj 11’/ i J 1 i I
+{¢ —;(Q;¢]+§U¢ —Ul“jwljca/[()+72(v v*hyy — *515) ne'

where W} is the corresponding function to W), with h; replaced by hj. It
follows from Cartan’s lemma that
. . | . 1 .
/ k
(18) ol = ajoa; — v @+ t—zdj’w’

and
, 1/ . 1. .
(19) ¢"= ( )+~ v’¢ vat ww;ﬁ) 3 (v’vkh;'c/ — 5018 = d,’)w” + ¢l

with dj" = —di] . Substituting 18 in 17 and taking into account equatons 11 and 1
we obtain

1 . .
1k ror i J Kk rg! Is 1 Is 1k
bjo™ +bjw' = P (aybsealay + 0" (hg Wi — hg Wig))o

1 . ) . .
+ 3 (@bna] — albralafv’ + hidf — hyd! o'
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It follows that

1
(20) b= (a ibrsa] — albgalafv* + hyd! — hidf)
and

|
(21) i = 7 (@bt} ay + 0" (hg Wiy = hi W)

Let’s now see how S!

i, changes. Inserting equations 18 and 19 in

D = do! + o] Aol + Wihe™ A" + Bl no”

where B/’}d are the corresponding functions B , with primes, we get after some
manipulation

1 1 1
Sjkl = axa,{ r iSers 2[ [Eék(b;/l + b;l/) +5 5 (blk + bk)]) +Eéj(bz/rl + blll)

+= 5f(b;,k+b,k,)+5b +6/bp; 4 0K +5’b’]

klj r ijl Y jik
1 y 1i j 1i 1i Ix 1y 1x 1o
+ FU v rxk I/Vryl - Xl Wr}k + Jhr Pyl T Tl T ek T P Gk tyl
WIS W — W e+ 1( ", — W]
Jix"yk 2 Ixy"trj Jxy'rl )Yk ixy'‘rl ‘cy ri
1 / 1 gt J
- 5 ( kx}h ]xyhzk)(sl ( ixy'rk kvcy rz)é
ip! 1 1 /i X 1 ism Jsm I
+ |dhy + jk}»dl -5 Wind; +Z(5k5j — 000" (h)ydy, — Ny, d))

1 ‘ 4
S A ]
We analyze now how the form 47w/ changes with the new referential.

ProPOSITION 3.2.
2
g :a—n—<;(n+2)vr "+ h"/dw)

where

Rl =
2 4+

_ UXUy((4n2 + 14n + 8)5 h/klh/klh/ /’l’ )]

xr'tyr

[Zvr(Zh,kjh/klb;ﬂ +2h”j/’l/klb;(ﬂ +h/1]hnlbl/]1)
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Proof. 1Tt follows from equation 18 and AW = —(2n+4)d; that
hWo! =h'o; + " (n+2)"0" + t—zh’”dj’w’.

The second equation follows from h”'f'S]f,i,/1’k’ = h"jS/?)dhk’ =0. O

4. The bilinear form on Y r

At this point we need to introduce the reduction Ycr of the bundle Y
assuming that H =J on Y¢g throughout this section. The main goal is
Theorem 4.1 which describes a conformal Lorentz structure on a circle bundle
over a partially-integrable CR structure.

ProPOSITION 4.1. On Ycr we have

o' =0 aor —vvo.

Proof.  We first obtain the following formula on Ycg:
1j qi X,,X
hd; = —(n+2)v*v*.
In fact, from equation 11 we obtain that
H'dH +dHH ' + H'QH — HQH ™!
=(H'Bj+BH Yo'+ (H'B+ BH "o,

where Q:(co]?), B; = (bj), and B= (b;). It follows from the above for-

mula that H 'Bj+ BH ' =0, or Wb}, +h"b;; =0 and h'bj; =0. Also
WHRR P B! = —2noY.
Xroyr y

From the formula above we obtain the transformation properties of ¢ =

_ /PN
. 2h w; and complete the proof. O

Consider the vcg-valued form given by (w,w’,0), 1 <i <2n. We consider
the action of CU(n) X N on vcg as defined in section 2. Comparing the previous
transformation laws and Lemma 2.6 we proved

ProposITION  4.2. On a partially-integrable Ycr the vcg-valued form
(w,w',0) is p invariant.

We consider the bilinear form b = w'w’ +ow on Ycg. It follows easily
from proposition 4.2 that the form b is invariant up to scalar multiple:

ProproOSITION 4.3. On Ycg,
b = 1%b.
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Recall that T = Ycg/CSU(n) X N is a circle bundle. We are ready to
prove that the bilinear form defined above descends to that circle bundle.

THEOREM 4.1. If M is a partially-integrable CR manifold, the bilinear form
on YCR

b=ow'ow'+ow

descends to a Lorentz conformal structure on T = Ycr/CSU(n) X N.

Proof. A tensor w on Ycr projects to T up to a conformal factor if and
only if

l. Rjw = fw for every ge CSU(n) X N,

2. i(X*)(w) =0 for every X € h; = Lie(CSU(n) < N)

We have already shown that R*h = ?h. As X* is vertical and ' and
are tautological we have w'(X*) =w(X*)=0. Then i(X*)(h) =c(X*)w. It
remains to show that

hyw;(X*) =0,
for X € h;. From equation 6 and § we obtain

S SO B I SN
w; = —apday + 0" + ¢jo.

If X €h; then

w]’(X*) = —a,ida,i(X*) € csu(n),

therefore h’w/(X™*) = 0. O
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