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SOBOLEV INEQUALITIES ON THE COMPLETE GRAPH
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Abstract

We introduce a discrete Laplacian 4 on the complete graph with N vertices,
that is, Ky. We obtain the best constants of three kinds of discrete Sobolev in-
equalities on Ky. The background of the first inequality is the discrete heat oper-
ator (d/dt+A+apl)---(d/dt + A+ ay_I) with positive distinct characteristic roots
ap,...,ap—1. The second one is the difference operator (A4 + aol)--- (A + ay—1I) and
the third one is the discrete polyharmonic operator 4™. Here 4 is an N x N real
symmetric positive-semidefinite matrix whose eigenvector corresponding to zero eigen-
value is 1="7(1,1,...,1). A discrete heat kernel, a Green’s matrix and a pseudo
Green’s matrix are obtained by means of A.

1. Introduction

For any fixed M =1,2,3,..., we put a= (a,...,ay—1) and assume
0<ay<a <---<apy_1. We introduce the characteristic polynomial

M—1
P(z) = H (z+a)
7=0
and the function
& 1 1
(1.1) e(t) = Z bje™"", by = P'(—Clj) Y ’
= (- +a)
k=0,k#j

The coefficients b; appear in the partial fraction expansion

1.2 —
(12) P ]Zb,zﬂj
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We assume N =2,3.4,.... We set the indices of vertices as Figure 1 and
introduce the discrete Laplacian 4 as

1(0) u(5)

u(1) u(4)

u(2) u(3)

FiGure 1. Complete graph K.

A=ANN) = (a(N;i,j)) (0<ij<N-1),

N-1 (i=j
awiiy = { M7 020
-1 (i # J).
Here A is an N x N real symmetric positive-semidefinite matrix which has an
eigenvalue 0 and whose eigenvector is 1 =/(1,1,...,1). We introduce the con-

stants Cp, Cop(a) and Ci(a) as

N-—1 = gl
Jj=

Cy =
0 aj(aj+ N)’

NI bf

Zb Cl,+(lj+2
a4 + a)(a; + a; + 2N)

For any u="'(u(0),u(1),...,u(N—1))eC" and u(t)="(u(0,1),u(l,?),..
u(N —1,1)) e CY on the complete graph Ky, we define three kinds of the
Sobolev energy:

M—1
E(uw)=w'AMu, E(a;u)=u* H (A+ al)u,
=0

2
dt,

M-1

11 (% +A4+ aj1> u(?)

J=0

Flau) = [

where |ju(7)||* = (u(r))*u(r). We introduce the following three matrices
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(1.3) Discrete heat kernel: H(z) = exp(—tA4),
M—1 1w

(1.4) Green’s matrix: G(a) = <H (4+ aj1)> = J e(t)H (1) dt,
j=0 0

M—1
> o _ -1
(1.5)  Pseudo Green’s matrix: G, = algilo (G(a) - jl;! a; E0>7
where Eg = N~'171 is a projection matrix to the eigenspace associated with the
eigenvalue 0 of 4. In this paper, we obtain the best constants of three kinds of
discrete Sobolev inequalities on Ky as the following theorems.

THEOREM 1.1.  For any ue CY with "lu = 0, there exists a positive constant
C which is independent of u, such that the discrete Sobolev inequality

2
(1.6) ( max |u(j)> < CE(u)

0<j<N-1

holds.  Among such C, the best constant is Cy. If we replace C by Cy in (1.6),
the equality holds iff u is parallel to any column of G..

THEOREM 1.2. For any ue CY, there exists a positive constant C which is
independent of wu, such that the discrete Sobolev inequality

2
(1.7) < max |u(])|) < CE(a;u)

0<j<N-1

holds.  Among such C, the best constant is Co(a). If we replace C by Cy(a) in
(1.7), the equality holds iff u is parallel to any column of G(a).

TurOREM 1.3.  For any u(t) € CV, there exists a positive constant C which is
independent of u(t), such that the discrete Sobolev-type inequality

2
(1.8) ( sup |u<j,s>|> < CF(a;u(t))
0<j<N-1,—0<s<wo

holds.  Among such C, the best constant is Cy(a). If we replace C by Ci(a) in
(1.8), the equality holds iff u(t) is parallel to any column of

(1.9) J:;(“;")e(’_z“)ma) do (—o0 <1< m).

Research on discrete Sobolev inequalities was performed in [1] on graphs, in
our previous papers [3, 5] on periodic one-dimensional lattices and in [2, 4] on
regular polyhedra.
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2. Difference equations

First, we explain three difference equations concerning the discrete heat
kernel (1.3), the Green’s matrix (1.4) and the pseudo Green’s matrix (1.5).

PROPOSITION 2.1.  For any f(t)e CY, the discrete heat equation

M=l /g
2.1 —+A+al |u= —
2.1) ,—11<dl+ + ) f(t) (oo <t< )
has the unique solution given by
(2.2) u(t) = r H.(t—5)f(s) ds (—o0 <1< o0),
(2.3) H.(t)=Y()e()H(t) (—o0 <t < o),

where Y(t) =1 (0 <t < ), 0 (—oo <t<0) is the Heaviside step function and
e(t) is defined in (1.1).

Proof of Proposition 2.1. By the Fourier transform
u(t) > iw) = J e V1) dr,

(2.1) is transformed into
M—1 R
[ V=10 + 4+ gDi(w) = f(o) (—o <o < x).
Jj=0

Solving this and remarking the formula (1.2), we have #(w)= H.(o)f(w),
where

R M-1 -1
H,(0) = ( [[ V-1l +4+ aj1)>

=0
M-1 0

=N b(V-lol+A+al) = J V1Y (De(1)H(1) d.
j=0 -

From the inverse Fourier transform, we have (2.2) and (2.3). It should be noted
that H.,(¢) satisfies the relations:

dt
H*<t_s)|s:t70_H*(Z_s)|szt+0:I (_OO <it< OO))

<i—|—A—|—a1>H* =0,

where O is zero matrix. This completes the proof of Proposition 2.1. |
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Let us put o as w =exp(v—12z/N) and a(k)=0 (k=0), N (1<k<
N — 1) be the eigenvalues of A. Then, the Jordan canonical form of A4 is given
by

A = diag{a(0),a(1),...,a(N —1)} = diag{O,N,...,N}.

Further, ¢, (0 <k <N —1) denote the eigenvectors of A4 as follows:

1
o :ﬁ‘(l,wk,wzk,...,w(lv_l)k) eC’ (0<k<N-1).

These eigenvectors are chosen to satisfy the relation ¢/, =J(k — /), where
ok)y=1 (k=0), 0 (k+#0). We introduce a unitary N x N matrix W =
(@, -..,9y_1) and orthogonal projection matrices Er = g9 (0 <k <N —1).
It is easy to see that the relations,

Ww=ww* :I, EkE]=5(k—l)Ek, E; =Ek,

hold. Using E;, we have the spectral decomposition of I and A4 as

N-1 N-1
(2.4) I=WW"=) g0 = Z Ey,
k=0 k=0
. N—l N— 1 N—1
A=WAW* = Koo = N> E
k=0 k=0 k=1
= N(I - Ey).

Using E E; =0d(k — I)Ej, we have

(2.5) = NM Z E, = NY(I - Ey),
M—1 M—-1 N—-1 —1

(2.6) [[Aa+an=1] > @ +a,EkuPd )Ex.
j=0 j=0 k=0

PROPOSITION 2.2.  For any f e CY, the difference equation

<

-1
(A+alu=f

~
Il
=}

has the unique solution given by u= Gf, where G = G(a) is the Green’s matrix
expressed as

2.7) G=Snl Lot L\
’ = 7R R VR
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Proof of Proposition 2.2. From (2.4) and (2.6), we have

N-1

N—-1 M—1
S Ef=If=f=[]A+ahu=">_ Pla(k))Eu.
k=0 j=0

k=0

Multiplying E; from the left to both sides of the above relation and using
the relation E E; = d(k — I)Ey, we obtain Eu = (P(a(l))) 'E,f. Then, we sce
that

N—-1 N-1 1
u=1Iu— Eu= ——FE f = Gf,
=0 = Pla(l)
N—1 1 1 N—1
=2 pam) = o B pw) 2 B

!+ (70 7o) 2
Using (1.2), we have (2.7). This completes the proof of Proposition 2.2. N

PROPOSITION 2.3. For any f e CY with the solvability condition "1f =0,
the difference equation AMu= f with the orthogonality condition lu=0 has
the unique solution given by u= G.f, where G, is the pseudo Green’s matrix
expressed as

G. satisfies AMG, = G.AM =1 —E,, G.E) = EyG, = 0.
Proof of Proposition 2.3.  From (2.4), (2.5) and Eof = N~ '1'1f = 0, where
0 is zero vector, we have

N-1 N-1 N-1
Ecf =Y Ef=If=f=4"u=N"> Eu.
k=0 k=1

k=1

Multiplying E; from the left to both sides of the above relation and using the
relation EE; = 5(k — |)E;, we obtain Eu=N"ME; f (1<I<N —1). Then,
using Eou = N~'1'1u = 0, we see that

N-1 N-1 N-1
1
u=1Iu= E Elu: E E/u:WE E]f:G*f
1=0 =1 =1

So we have (2.8). Moreover, using (2.8) and E E; =J(k — I)Ey, we have
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N—-1 N-1
1
AMG, = Z NMEkWE, = ZEk =1-E,,
k,i=1 k=1
N-1
G.E ExEy=0
0 ;N kL0

From the above relations, we see that G, is a Penrose-Moore generalized inverse
matrix of 4™, This completes the proof of Proposition 2.3. ]

Next, we compute H, G and G, which represent the best constants of
Sobolev inequalities. We introduce the N-dimension vector

0 ="( 0i=J) Jozizn-1-

LemmA 2.1. For any fixed j (0 < j< N —1), we have the following rela-
tions:

1

29) SH(08, = (14 (N~ De ™),
(2.10) Jf (08, di = C(a).
(211) téjGéj = C()(a).

(2.12) '5,G,5; = Co.

Proof of Lemma 2.1. Applying A = N/(I — Ey) (j=1,2,3,...) in (2.5) to
(1.3), we have

H(t) = exp(— il' - ’AJ—I+Z 0’4’

Jj=0 J:
— 1+ (i%(_w)«f) (I = Eo) =1+ (=1 +e ") — Ep).

From the relation above, we have
H()=e M +(1-eME,

and (2.9). Noting ‘H(t) = H(f), (H(¢))* = H(2t) and (2.3), we have
| vawaia= [ wa) s a

J )%6; dt = J | e*(1)'0;H (2t)0; dt
0
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oo M—1 1
—_ J bibje_(ai+a’)tﬁ(1 + (N _ 1)6—2Nt) di

i,j=0
1 M—1 0

_ biij [e—(a,-+aj)l + (N _ l)e—(a;+a,+2N)t] dt
Ni,j:() 0
1= 1

= Ni‘j:()bibj |:ai n 4 + (N — l)m = C](a).

So we have (2.10). Since the proofs of (2.11) and (2.12) are standard and easy,
we omit it. This completes the proof of Lemma 2.1. ]

3. Reproducing relation

For u,ve C", we introduce the inner products

(u,v) = v"u,
2
u|” = (u,u),
M-1 M-1
() = (H (A+ e, ) =v [ d+aghu,
J=0 Jj=0

lull7; = () sy = Easm).
For u,ve C) := {x|xe C" and '1x =0}, we introduce the inner product
(w,v), = (AMu,v) = v*AMu,
lal| % = () = Ew).
First, we show the positive definiteness of (-,-), and (-,-),.

Lemma 3.1.

(1) For u,ve C", (u,v), is defined as an inner product.
(2) For u,veC), (u,v), is defined as an inner product.

Proof of Lemma 3.1. (1) is obvious since (A +apl)---(A+ay_I) is
positive definite. We show only (2). For ue C}, we have

N—1 N—1
u=1Iu= ZEku: ZEku,
k=0 k=1

N-1

) N-1 ,
lul> =Y wEEau=">" |Eul|’.

k,1=0 =1
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From the relation Ey = E E; = E;E;, we have

N—1 N-1
Jul)f = d™u=N">"wEEqu=N">"||Egul|> = N |Ju|>.
k=1 k=1

Since N > 0, we have |ju]|% >0, and ||u||> = 0 holds iff =0. This completes
the proof of Lemma 3.1. |

Next, we show that G and G, are a reproducing matrix for the inner
products (-,-), and (-,-),, respectively.

LemMA 3.2. For any ue CY and fixed j (0<j<N —1), we have the
following reproducing relations:

() u(j) = (0,.G.d),
() Co ='6G.6, = |G|} = E(G.9).

Proof of Lemma 3.2. Noting G = G,, we have (1) as follows:
1
(#,G.0,) , = '0;G.AMu = "'6;(I — Eg)u="0;u — 5 Ve =u(y).
Putting # = G.d; in (1) and using (2.12), we obtain (2). [ |

Lemma 3.3. For any ue C" and fixed j (0<j<N—1), we have the
following reproducing relations:

(1) u)) = (1, G8)y
() Cola) = '6Go; = |Goy|1}; = E(a; Go)).

The proof of Lemma 3.3. Noting G* = G, we have (1) as follows:
M-1
(,Goy)y = '0,G [ [ (A + ajl)u = '6;u = u(j).
=0

Putting # = GJ; in (1) and using (2.11), we obtain (2). [ |

4. Proof of theorems

This section is devoted to the proof of main theorems.

Proof of Theorem 1.1. Applying the Schwarz inequality to Lemma 3.2 (1)
and using Lemma 3.2 (2), we have

lu(j)I” < |ul311G.05 = CoE(u).
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Taking the maximum with respect to j on both sides, we obtain the discrete
Sobolev inequality

2
4.1) ( max |u(])|> < GoE(u).

0<j<N-1
For any fixed number j, (0 < jo < N — 1), if we take u = G..9;, in (4.1), then we

have

2
( max 1|’5_/G*(5j0|) < COE(G*é.io) = (CO)Z'

0<j<N—

Combining this with the trivial inequality
2
2 2
(CO) = |16]'0G*6j0| =< (0<I./1fl<21/)\,(_1 |15jG*6j0|> )
we have

2

This shows that C is the best constant of (4.1) and the equality holds for any
column of G.. This completes the proof of Theorem 1.1. |

Proof of Theorem 1.2. Applying the Schwarz inequality to Lemma 3.3 (1)
and using Lemma 3.3 (2), we have

u()I* < ull71G 1l = Cola)E(asu).

Taking the maximum with respect to j on both sides, we have the discrete
Sobolev inequality

2
(4.2) ( max u(])> < Co(a)E(a;u).

0<j<N-1

For any fixed number j, (0 < jo < N — 1), if we take u = Gdj, in (4.2), then we
have

(pmax | |’«5_;Géj0|)2 < Go(@)E(a: G;,) = (Co(a)™

0<j<N

Combining this with the trivial inequality
2
2 2
(oa)? = 0,60, < (| max | 1363,1).
we have

2
(0;}131 '0;Go;, > = Co(a)E(a; Goy,).
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This shows that Cy(a) is the best constant of (4.2) and the equality holds for any
column of G. This completes the proof of Theorem 1.2. |

Proof of Theorem 1.3. Replacing ¢ with s in (2.2), we have

) = [ mG-050

-0

or equivalently

(4.3) u(j,s) = ‘ou(s)

:r '0H. (s — 1) (1) dt:J (H.(s—1)0;) f (1) dl.

-0 )

Applying the Schwarz inequality to (4.3), we have

P < | imG—nalta] L) d

— 0

Aﬁl (% +A4+ ajl) u(t)

Jj=0

2
dt

SRR

= Ci(a)F (a; u(t)),

where we use (2.1) and (2.10). Taking the supremum with respect to j and s, we
obtain the discrete Sobolev-type inequality

2

(4.4) ( sup Iu(j,S)|> < Ci(a)F (a; u(t)).
0<j<N-1,—0<s<0

For any fixed number j, (0 < jo < N — 1), we introduce the vector U(¢) defined

by

(4.5) Ut) = Jw H.(i — $)H.(=5)3, ds,

UG 1) = '8,U() = J §,H.(t — 5)H.(—s5)3, ds.
Then we have

2
( sup U(j,s>|> < Ci(@)F(a; U(1))

0<j<N-1,—00<s<oo
2
dt

o0

= Cl(a)J

M—1 d
g (E +A+ aj1> U()

e (a)j |HL(~0)8, |12 df = (C1(a))>

— o0

— o0
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Combining this with the trivial inequality

(Ci(@)* = U (o, 0)* < sup U9l

0<j<N-1,—0<s<wo

we have

2
sup |U(j,s)| | = Ci(a)F(a;U(2)).

0<j<N-1,—0<s<wo

This shows that Cj(a) is the best constant of (4.4) and the equality holds for
u(t) = U(t). From (4.5), we have (1.9) as follows:

U(r) = B H.(t —s)H.(—s)0j, ds
= io Y(t—s)e(t—s)H(t — 5) Y (—s)e(—s)H(—s)d;, ds
[ et - el - 2908, as
“1 (t+o t—o
= ’ 5e( 3 )e(T>H(0')5j0 do.

This completes the proof of Theorem 1.3. |
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