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CONVERGENCE OF LOOP ERASED RANDOM WALKS

ON A PLANAR GRAPH TO A CHORDAL SLE(2) CURVE

Hiroyuki Suzuki

Abstract

In this paper we consider the ‘natural’ random walk on a planar graph and scale

it by a small positive number d. Given a simply connected domain D and its two

boundary points a and b, we start the scaled walk at a vertex of the graph nearby a and

condition it on its exiting D through a vertex nearby b, and prove that the loop erasure

of the conditioned walk converges, as d # 0, to the chordal SLE2 that connects a and b

in D, provided that an invariance principle is valid for both the random walk and the

dual walk of it. Our result is an extension of one due to Dapeng Zhan [12] where the

problem is considered on the square lattice. A convergence to the radial SLE2 has been

obtained by Lawler, Schramm and Werner [3] for the square and triangular lattices and

by Yadin and Yehudayo¤ [10] for a wide class of planar graphs. Our proof, though

an adaptation of that of [3] and [10], involves some new ingredients that arise from two

sources: one for dealing with a martingale observable that is di¤erent from that used

in [3] and [10] and the other for estimating the harmonic measures of the random walk

started at a boundary point of a domain.

1. Introduction

The Schramm-Loewner evolutions driven by Brownian motion
ffiffiffi
k

p
BðtÞ of

variance k, abbreviated as SLEk, introduced by Oded Schramm [6], have been
studied from various points of view and are now recognized to well describe the
scaling limits of certain lattice models of both physical and mathematical interest.
Lawler, Schramm and Werner [3] have proved that the scaling limit of a loop
erased random walk (or loop erasure (for the definition, see p. 9) of random walk,
abbreviated as LERW) on either of the square and triangular lattices is the radial
SLE2. Dapeng Zhan [12] have studied LERW’s on the square lattice but in a
multiply connected domain and derived the convergence of them. In the case
of a simply connected domain in particular, he has proved the convergence to
the chordal SLE2. Yadin and Yehudayo¤ [10] extend the result of [3], the
convergence of LERW to a radial SLE to that for the natural random walks on
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planar graphs under a natural setting of the problem. In this paper we consider
the LERW in a similar setting to [10] and show that LERW conditioned to
connecting two boundary points in a simply connected domain converges to a
chordal SLE2 curve.

Here we state our result in an informal way by using the terminology
familiar in the theory of SLE of which we shall give a brief exposition in the next
section. Let V be the set of vertices of a planar graph on which a random walk
(of discrete time) is defined and supposed to satisfy invariance principle in the
sense that the linear interpolation of its space-scaled trajectory converges to that
of Brownian motion (in a topology where two curves are identified if they agree
by some change of time parameter). For each d > 0 we make the scale change
of the space by d : Vd ¼ fdv : v A Vg, the set of scaled lattice points and accord-
ingly we make the d-scaling of our random walk so that it moves on Vd. Given
a simply connected bounded domain D and two distinct boundary points a and b
of it, let gd denote the loop erasure of the random walk scaled by d that starts a
vertex ad of Vd nearby a and is conditioned to exit DVVd through a vertex bd
nearby b so that gd is a random self-avoiding path on DVVd connecting ad and
bd, which may be regarded as a ‘path’ in the planar graph. We prove that the
polygonal curve given by linearly interpolating gd converges to the chordal SLE2

curve connecting a and b in D under a certain natural assumption on D, the pair
a, b, the planar graph and the random walk (Theorem 5.6).

For obtaining the result as stated above we first prove the convergence of the
driving function of the loop erasure (Theorem 5.1). The proof is made in a way
similar to [3], [10] and [7]. In [7] the harmonic explorer, an evolution of a self
avoiding random curve, is introduced and proved to converge to a chordal SLE4

curve. For the proof a suitably chosen martingale associated with the evolving
random curve, called martingale observable, plays a dominant role. Not as in
[7] we take the martingale observable given by the ratio of harmonic measures
of a (random) point relative to two points, the starting site of the walk and a
suitably chosen site in a random domain defined by the loop erasure. This
martingale is suggested in [3] as a suitable candidate of a martingale observable
but we need to normalize it in an appropriate way; moreover we must change
the normalization as the loop erasure grows. We apply the approximation result
on the harmonic measure (Poisson kernel) proved in [10]. To this end we need a
delicate probability estimate, since our random walk starts at a boundary point
and we must deal with the conditional law given that it exits DVVd through
another boundary point.

We deduce the convergence of the loop erasure in a uniform topology from
that of the driving function under the hypothesis that not only the random walk
but also the dual walk of it satisfy the invariance principle (Theorem 5.6). For
the deduction we prove Proposition 4.1 asserting that the law of the time reversal
of loop erasure of a walk agrees with the law of loop erasure of the time reversal
of the same walk.

By the way, Proposition 4.1 provides an improvement of the convergence to
a radial SLE2. In [10] the loop erasure is unti-chronological (loops are discarded
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in the reverse order). The reason is that one wants to consider the loop erasure
determined from the boundary. Because the radial SLE2 starts at a boundary
point and stops at an inner point, and one wants to use a domain Markov
property of the loop erasure. In [3], they used the reversibility property of the
loop erasure of a simple random walk proved by Lawler [2]. Proposition 4.1
implies that the convergence to SLE2 in the result of Yadin and Yehudayo¤ is
valid also for LERW with the loops discarded in the chronological order instead
of unti-chronological order.

The rest of the paper is organized as follows. In Sections 2 and 3 we give
brief expositions of the Loewner evolution and SLE, respectively, and the funda-
mental results relevant to the present issue or used in the proof of our results. In
Section 4, consisting of three subsections, we first give the framework of our
problem, the planar graph as well as the random walk on it, and bring in the
LERW together with results associated with it (Subsection 4.1); we then present a
martingale associated with the LERW (Subsection 4.2); we also present the result
of [10] which asserts an approximation of the harmonic measure of our random
walk by the classical Poisson kernel and a trivial lemma of the planar graph
(Subsection 4.3). The statement and proof of the main result of the present
paper are given in Section 5. The convergence of the loop erasure to SLE2 curve
with respect to the driving function is given in Subsection 5.1, where a certain
probability estimate proved in Section 6 is taken for granted. The convergence
of the loop erasure to SLE2 curve in a uniform topology is given in Subsection
5.2, where we prove the invariance of law of LERW in (a double) time reversion.
In Section 6 we verify the aforementioned probability estimate which plays an
crucial role in the proof of our result, a probability estimate of the scaled random
walk on DVVd starting at a boundary vertex under the conditional law given
that it exists the domain through another boundary vertex that is specified in
advance.

2. Loewner chain

In this section, consisting of four subsections, we give a brief exposition
of the Loewner evolution and some results relevant to the present issue. The
standard results in the theory as given in Lawler’s book [1] are stated under the
heading as P 2.k (k ¼ 1; 2; . . .).

2.1. Conformal map and half-plane capacity
Let H :¼ fz A C : Im z > 0g be the upper half plane. A bounded subset

AHH is called a compact H-hull if A ¼ AVH and HnA is a simply connected
domain. Let Q denote the set of compact H-hulls. For any A A Q, there exists
a unique conformal map gA : HnA ! H satisfying jgAðzÞ � zj ! 0 as z ! y.
The half-plane capacity hcapðAÞ is defined by

hcapðAÞ :¼ lim
z!y

zðgAðzÞ � zÞ:
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Then, gA has the expansion

gAðzÞ ¼ zþ hcapðAÞ
z

þO
1

jzj2

 !
; z ! y:

The half-plane capacity has some nice properties, of which we need the
following.

P 2.1 (p69–71). If r > 0, x A R, A A Q, then

hcapðrAÞ ¼ r2 hcapðAÞ; hcapðAþ xÞ ¼ hcapðAÞ:

If A;B A Q;AHB, then

hcapðBÞ ¼ hcapðAÞ þ hcapðgAðBnAÞÞ:

2.2. Chordal Loewner chain in H
A chordal Loewner chain is the solution of a type of Loewner equation that

describes the evolution of a curve growing from the boundary to the boundary
of a domain in C. In this section we consider the special case when the domain
is H :¼ fz A C : Im z > 0g, the upper half plane and the curve grows from the
origin to the infinity in H. Suppose that g : ½0;yÞ ! H is a simple curve with
gð0Þ ¼ 0, gð0;yÞHH. Then, for each tb 0, there exists a unique conformal
map gt : Hngð0; t� ! H satisfying jgtðzÞ � zj ! 0 as z ! y. It is noted that gt
can be continuously extended to the (two sided) boundary of Hngð0; t� along
gð0; t�. If g is parametrized by half plane capacity (i.e., if limz!y zðgtðzÞ � zÞ ¼
2t), gt satisfies the following di¤erential equation

q

qt
gtðzÞ ¼

2

gtðzÞ �UðtÞ ; g0ðzÞ ¼ z;ð1Þ

where UðtÞ ¼ gtðgðtÞÞ and Uð�Þ is a R-valued continuous function (see [1]).
We call the equation (1) the chordal Loewner equation and Uð�Þ the driving
function.

Conversely, suppose that Uð�Þ : ½0;yÞ ! R, a continuous function, is given
in advance, for z A H, solve the ordinary di¤erential equation (1) to obtain the
solution gtðzÞ up to the time Tz :¼ supft > 0 : jgtðzÞ �UðtÞj > 0g and put Kt :¼
fz A H : Tz a tg. Then for t > 0, gtðzÞ is a conformal map from HnKt to H.
The family ðgtÞtb0 describes the evolution of hulls ðKtÞtb0 corresponding to Uð�Þ
and growing from the boundary to y. Therefore, we have a one-to-one corre-
spondence between Uð�Þ and ðKtÞtb0. If Uð�Þ is the driving function of a simple
curve g, we can recover g from Uð�Þ by the formula gðtÞ ¼ g�1

t ðUðtÞÞ and we can
write Kt ¼ gð0; t�. If Uð�Þ is su‰ciently nice, then ðKtÞtb0 is generated by a curve
g with gð0Þ A R, limt!y gðtÞ ¼ y (i.e., for any tb 0, HnKt is the unbounded
component of Hngð0; t�). However, there exists a continuous function Uð�Þ such
that ðKtÞtb0 can not be generated by a curve. There is known a su‰cient con-
dition for Uð�Þ to drive a curve as given by
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P 2.2 (p108). Suppose for some r <
ffiffiffi
2

p
and all s < t,

jUðtÞ �UðsÞja r
ffiffiffiffiffiffiffiffiffiffi
t� s

p
:

Then ðKtÞtb0 is generated by a simple curve.

The family gt, tb 0 is called the (chordal) Loewner chain generated by a
curve g or driven by a function UðtÞ. In summary, a simple curve g brings out
a Loewner chain, whereby it determines the driving function UðtÞ, and conversely
a continuous function UðtÞ with appropriate regularity generates a curve through
the Loewner chain driven by UðtÞ.

Proposition 2.3 (Lemma 2.1. in [3]). There exists a constant C > 0 such
that the following holds. Let Kt be the corresponding hull for a Loewner chain
driven by a continuous function UðtÞ. Set

kðtÞ :¼
ffiffi
t

p
þ supfjUðsÞ �Uð0Þj : 0a sa tg:

Then, for any t > 0,

C�1kðtÞa diamðKtÞaCkðtÞ:

2.3. Chordal Loewner chains in simply connected domains
Let DWC be a simply connected domain and qD a set of prime ends. If D

is a Jordan domain, then qD may be identified with the topological boundary
of D. Let a, b be distinct points on qD. For p A D, we define the inner radius
of D with respect to p,

radpðDÞ :¼ inffjz� pj : z B Dg:

Let f : D ! H be a conformal map with fðaÞ ¼ 0, fðbÞ ¼ y. Although f is not
unique, any other such map can be written as rf for some r > 0. For a simple
curve g : ð0;TÞ ! D connecting a and b so that gð0þÞ ¼ a and gðT�Þ ¼ b, let gt
be the Loewner chain generated by the curve f � g : ð0;TÞ ! H and put

ft ¼ gt � f; t A ½0;yÞ:

We reparametrize the curve g so that the curve f � g in H is parametrized by
half plane capacity. Denote by ðgðtÞÞ the function representing the curve in this
parametrization, so that 2t ¼ hcapðf � g½0; t�Þ. The driving function UðtÞ of the
chain gt is then given by

UðtÞ ¼ ftðgðtÞÞ:

The family of conformal maps ft, tb 0 may also be called a chordal Loewner
chain (in D) with driving function UðtÞ. For each s > 0, fs conformally maps
DðsÞ :¼ Dngð0; s� onto H with fsðasÞ ¼ UðsÞ, fsðbÞ ¼ y, where as ¼ gðsÞ and the
curve gðsÞðtÞ :¼ gðsþ tÞ connects as and b in DðsÞ. On putting

g
ðsÞ
t ¼ gsþt � g�1

s and f
ðsÞ
t ¼ fsþt;ð2Þ
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substitution into Uðsþ tÞ ¼ fsþtðgðsþ tÞÞ yields

Uðtþ sÞ ¼ f
ðsÞ
t ðgðsÞðtÞÞ:ð3Þ

It follows from (2) that f
ðsÞ
t ¼ g

ðsÞ
t � fs and g

ðsÞ
t (and f

ðsÞ
t ) is the Loewner chain

generated by the curve gðsÞ; and also, from (3) that U ðsÞðtÞ :¼ Uðsþ tÞ is the
driving function of the chain f

ðsÞ
t in DðsÞ.

Define pðtÞ A D by

ftðpðtÞÞ ¼ UðtÞ þ i:

pðtÞ serves as a reference point for the study of the conformal map ft. (See
Proposition 4.5 and the remark advanced before Lemma 5.3.)

Lemma 2.4. Let T > 1 and � > 0, and, given a pair ðD; gÞ, put ~TT :¼
supft A ½0;T � : jUðtÞj < 1=�g. Then there exists a constant cðT ; �Þ > 0, which
may also depend on ðD; gð0ÞÞ but does not on ðgðtÞ; t > 0Þ, such that

radpðtÞðDðtÞÞb cðT ; �Þ radpð0ÞðDÞ for t < ~TT :

Proof. We claim that

jfðpðtÞÞ � fðgðt 0ÞÞjb 2�1e�4 ~TT if t 0 a t < ~TT :ð4Þ

Let t 0 a t < ~TT and z ¼ fðgðt 0ÞÞ, and put

yðsÞ ¼ gsðfðpðtÞÞÞ � gsðzÞ; 0a sa t:

We prove jyð0Þj ¼ jfðpðtÞÞ � zjb 2�1e�4 ~TT . Recalling that Im gsðwÞ is decreasing
in s for any w A H, we see that

Im gs � fðpðtÞÞb Im gt � fðpðtÞÞ ¼ 1 if sa t:ð5Þ

Applying this with s ¼ 0 we have jyð0Þjb 1=2 if Im za 1=2. Let Im z > 1=2
and define t :¼ infftb 0 : Im gtðzÞ ¼ 1=2g. Then t < t 0 a t (since Im gt 0 ðzÞ ¼ 0)
and the Loewner equation together with the inequality (5) shows

d

ds
yðsÞ

����
����¼ 2jyðsÞj

jgs � fðpðtÞÞ �UðsÞj � jgsðzÞ �UðsÞj a 4jyðsÞj for 0a sa t:

Hence jyðsÞj is absolutely continuous and satisfies
d

ds
jyðsÞja 4jyðsÞj, so that

jyðtÞja jyð0Þje4t:

Using (5) again we have 1=2a Im yðtÞ so that 1=2a jyð0Þje4 ~TT , which is the same
as what we need to prove. Thus the claim (4) is verified.

It is proved in [8] (the proof of Corollary 4.3) that the set ffðpðtÞÞ : t < ~TTg is
included in a compact set of H depending only on T and e, whence according to
the Koebe distortion theorem radpðtÞðDÞb c0ðT ; �Þ radpð0ÞðDÞ for some constant
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c0ðT ; �Þ > 0. For the proof of the lemma it therefore su‰ces to show that

jpðtÞ � gðt 0Þjb c1ðT ; �Þ distðpðtÞ; qDÞ for t 0 a t < ~TT :

To this end we may suppose jpðtÞ � gðt 0Þj < 2�1 distðpðtÞ; qDÞ. Applying (4) and
the distortion theorem in turn yields

2�1e�4 ~TT
a jfðpðtÞÞ � fðgðt 0ÞÞja 16jpðtÞ � gðt 0Þj � distðfðpðtÞÞ;RÞ

distðpðtÞ; qDÞ :

We know that distðfðpðtÞÞ;RÞaM for some constant M ¼ MðT ; �Þ > 0 from the
result of [8] mentioned above. Hence jpðtÞ � gðt 0Þjb ½e�4T=32M� distðpðtÞ; qDÞ
as desired. r

2.4. Metrics on curves
Let g; g j ð j ¼ 1; 2; . . .Þ be curves which generate the Loewner chains. Let

UðtÞ and UjðtÞ be driving functions corresponding to g and g j, respectively. If
UjðtÞ converges uniformly to UðtÞ on any bounded interval, then we will say that
g j converges to g with respect to the driving function.

Next, we consider the metric on the space of unparametrized curves in C.
Let f1; f2 : ½0; 1� ! C be a continuous, non-locally constant functions. If there
exists a continuously increasing bijection a : ½0; 1� ! ½0; 1� such that f2 ¼ f1 � a,
then we will say f1 and f2 are the same up to reparametrization, denoted by
f1 @ f2. A unparametrized curve g is defined to be an equivalence class modulo
@. Let d� be the spherical metric on ĈC. We define the metric on the space of
unparametrized curves by

dUðg1; g2Þ :¼ inf
a

sup
0ata1

d�ð f1ðtÞ; f2 � aðtÞÞ
� �

;ð6Þ

where fi any function in the equivalence class gi, and the infimum is taken over
all reparametrizations a which are continuously increasing bijections of ½0; 1�.
We often denote by the same notation g a parametrized curve as well as an
unparametrized curve. Let us denote by g� the time reversal of g.

The convergence with respect to the driving function is weaker than the
convergence with respect to the metric dU. We will consider a su‰cient con-
dition for the convergence with respect to the metric dU when we have the
convergence with respect to the driving function. Let DWC be a simply
connected domain and qD be the set of prime ends of D. Let a; b A qD be
distinct points. Let f : D ! H be a conformal map with fðaÞ ¼ 0, fðbÞ ¼ y.
Let f� : D ! H be a conformal map with f�ðbÞ ¼ 0, f�ðaÞ ¼ y.

Theorem 2.5 (Theorem 1.2 in [8]). Let fg jg be a sequence of simple curves
travelling from a to b in D. Suppose that there exists simple curves g and h such
that f � g j converges to f � g with respect to the driving function and f� � g j�

converges to f� � h with respect to the driving function. Then g� ¼ h and g j

converges to g with respect to the metric dU.
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3. Schramm-Loewner evolutions

3.1. SLE in the upper half plane
Let Bt be a one-dimensional standard Brownian motion with B0 ¼ 0.

A chordal Schramm-Loewner evolution with parameter k > 0 (abbreviated as
chordal SLEk) is the random family of conformal map gt obtained from the
chordal Loewner equation

q

qt
gtðzÞ ¼

2

gtðzÞ �
ffiffiffi
k

p
Bt

; g0ðzÞ ¼ z ðz A HÞ:ð7Þ

Let Kt be an evolving (random) hull corresponding to SLEk. Because Bt is not
(1/2)-Hölder continuous, we can not use P2.2 and it is not easy to see whether
Kt is generated by a curve. However, according to the following results Kt is
actually generated by a curve with full probability.

P 3.1 (p148). With probability 1, the limit gðtÞ :¼ limz!0 g
�1
t ðzþ

ffiffiffi
k

p
BtÞ

exists for any tb 0 and Kt is generated by the curve g.

This curve g is called a chordal SLEk curve in H from 0 to y. The
following properties of SLEk curves are easily verified.

P 3.2 (p148). Suppose that g is a chordal SLEk curve in H and r > 0. Let
ĝgðtÞ :¼ r�1gðr2tÞ. Then, ĝg has the same distribution as g.

P 3.3 (p147). Suppose that g is a chordal SLEk curve in H. Let t be a
stopping time. Let ĝgðtÞ :¼ gtðgðtþ tÞÞ �

ffiffiffi
k

p
Bt. Then, ĝg has the same distribution

as g.

The behaviour of a chordal SLEk curve depends on the value of the
parameter k. There is three phases in the behaviour of a chordal SLEk curve.
The two phases transitions take place at the values k ¼ 4 and k ¼ 8.

P 3.4 (p150–151). Suppose that g be a chordal SLEk curve in H.
� If 0 < ka 4, then w.p.1, g is a simple curve with gð0;yÞHH.
� If 4 < k < 8, then w.p.1, gð0;yÞVH0H and 6

t>0
Kt ¼ H.

� If kb 8, then w.p.1, g is a space-filling curve, i.e., g½0;yÞ ¼ H.

3.2. SLE in simply connected domains
Let g be a chordal SLEk curve in H from 0 to y. As in the subsection 2.3

let DWC be a simply connected domain, qD a set of prime ends, a, b two
distinct points on qD and f : D ! H a conformal map with fðaÞ ¼ 0, fðbÞ ¼ y.
Although f is not unique, any other such map ~ff can be written as rf for some
r > 0. By P 3.2, f�1ðgÞ is independent of the choice of the map up to a time
change and we consider SLEk curves in D as unparametrized curves. A chordal
SLEk curve in D from a to b is defined by f�1ðgÞ.
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The two properties stated in the next proposition, called the domain Markov
property and conformal invariance, respectively, immediately follow from the
definition of SLE.

P 3.5. Let g be a chordal SLEk curve in D from a to b and ma;b;D be a law
of g. Let f : D ! D 0 be a conformal map. Then,

ma;b;Dð�jgð0; t�Þ ¼ mgðtÞ;b;Dngð0; t�ð�Þ;
and

f � ma;b;Dð�Þ ¼ mf ðaÞ; f ðbÞ;D 0 ð�Þ:

In the theory of SLE, it is easier to prove the convergence with respect to
the driving function than in the metric dU. Theorem 2.5 implies the following
result, which we shall apply the following result to derive the convergence with
respect to dU of LERW from that of the driving function. Let f� : D ! H be a
conformal map with f�ðbÞ ¼ 0, f�ðaÞ ¼ y.

Theorem 3.6 ([8]). Let fg jg be a sequence of simple random curves travelling
from a to b in D. Let ka 4, and gða; bÞ be the chordal SLEk curve in D from a
to b. f � g j and f� � g j� converge weakly to a chordal SLEk curve in H with
respect to the driving function. Then gj converges weakly to gða; bÞ with respect
to dU.

The reversibility of SLE holds at least for ka 4.

Theorem 3.7 (Theorem 2.1 in [11]). Let ka 4. The time-reversal of a
chordal SLEk curve in D from a to b has the same distribution as chordal SLEk

curve in D from b to a.

If k > 8, then SLE curve is not reversible.

4. Loop erased random walks

4.1. Some property of LERW
For any u; v A C, we write ½u; v� ¼ fð1� tÞuþ tv : 0a ta 1g for the line

segment whose end points are u and v. Let V HC be a countable subset
with 0 A V . Let E : V � V ! ½0;yÞ and E ¼ fðu; vÞ : Eðu; vÞ > 0g. We call
G ¼ ðV ;EÞ a directed weighted graph. We assume that

P
v AV Eðu; vÞ < y

for every u A V , and put

pðu; vÞ :¼ Eðu; vÞP
w AV Eðu;wÞ :

We call G that satisfies the following conditions a planar irreducible graph.
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1. G is a planar graph.
(i.e. for every distinct edges ðu; vÞ; ðu 0; v 0Þ A E, ½u; v�V ½u 0; v 0� A fj; fug;
fvgg.)

2. For any compact set KHC, the number of vertices v A K is finite.
3. The Markov chain Sð�Þ on V with transition probability pðu; vÞ is

irreducible.
(i.e. for every u; v A V , there exists n A N such that PðSðnÞ ¼ v jSð0Þ ¼ uÞ
> 0.)

We call Sð�Þ the natural random walk on G. For the reminder of this paper we
think that G is a planar irreducible graph.

For any simply connected domain DWC, let VðDÞ :¼ V VD. Define

qoutVðDÞ :¼ fðu; vÞ A E : ½u; v�V qD0j; u A VðDÞg
and

qinVðDÞ :¼ fðu; vÞ A E : ½u; v�V qD0j; v A VðDÞg:
The first exit time from D is defined by

tD :¼
inffnb 1 : ðSðn� 1Þ;SðnÞÞ A qVoutðDÞg if Sð0Þ A VðDÞ
inffnb 2 : ðSðn� 1Þ;SðnÞÞ A qVoutðDÞg if ðSð0Þ;Sð1ÞÞ A qinVðDÞ
0 otherwise

8<
: :

We sometimes consider the edge ðu; vÞ A qoutVðDÞ as the vertex v, and the
edge ðu; vÞ A qinVðDÞ as the vertex u; e.g., we write SðtDÞ A qoutVðDÞ and
Sð0Þ A qinVðDÞ and for a set JH qD, we write SðtDÞ A J instead of writing
½SðtD � 1Þ;SðtDÞ�V J0j.

Loop erasure. Let o ¼ ðo0;o1; . . . ;onÞ be a finite sequence of points. Let
s0 ¼ maxfkb 0 : o0 ¼ okg. Inductively, we define sm ¼ maxfkb 0 : osm�1þ1 ¼
okg. If l ¼ minfmb 0 : osm ¼ ong, then the loop erasure of o is defined by

L½o� ¼ ðos0 ;os1 ; . . . ;osl Þ:
The time-reversal of o is defined by

o� ¼ ðon;on�1; . . . ;o0Þ:
It is readily recognized that the operations L and � are not commutable, namely,
L½o��0L½o�� in general. If the transition probability pðu; vÞ is symmetric,
then the following result has been proved by Lawler in [2]. For our purpose, we
prove the following result without assuming that pðu; vÞ is symmetric.

Proposition 4.1. Let Sð�Þ be a natural random walk on G.

PðL½ðSð0Þ;Sð1Þ; . . . ;SðtDÞÞ�� ¼ oÞ ¼ PðL½ðSð0Þ;Sð1Þ; . . . ;SðtDÞÞ�� ¼ oÞ:

Remark. Theorem 4.1 implies that the convergence to the radial SLE2 in
the result of Yadin and Yehudayo¤ (Theorem 1.1 in [10]) is valid also for LERW
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with the loops discarded in the chronological order instead of unti-chronological
order.

Proof. Let o ¼ ðo0; . . . ;onÞ and o1; . . . ;on�1 A VðDÞ be distinct and
ðon�1;onÞ A qoutVðDÞ. Our task is to show the identity

PðL½ðSð0Þ; . . . ;SðtDÞÞ� ¼ oÞ ¼ PðL½ðSð0Þ; . . . ;SðtDÞÞ�� ¼ o�Þ:ð8Þ

Let q : V � V ! ½0; 1�. Set

Gqðx;DÞ ¼ 1þ
Xy
k¼0

X
o 0HD:o 0

0
¼x;o 0

k
¼x

qðo 0
0;o

0
1Þ � � � qðo 0

k�1;o
0
kÞ;

where the inner summation is taken over all paths o 0 ¼ ðo 0
0; . . . ;o

0
kÞ in D such

that o 0
0 ¼ x, o 0

k ¼ x.
The probability of LERW is described by the following (See [2]).

PðL½ðSð0Þ; . . . ;SðtDÞ� ¼ oÞ ¼
Yn�1

j¼0

pðoj;ojþ1ÞGpðoj;Dnfo0; . . . ;oj�1gÞ

By the exchange lemma (the equation (12.2.3) in [2]), we get

PðL½ðSð0Þ; . . . ;SðtDÞ� ¼ oÞ ¼
Yn�1

j¼0

pðoj;ojþ1ÞGpðoj;Dnfojþ1; . . . ;on�1gÞð9Þ

On the other hand,

PðL½ðSð0Þ; . . . ;SðtDÞÞ�� ¼ o�Þ ¼
X

o 0HD:L½ðo 0Þ��¼o�

Yjo 0j�1

i¼0

pðo 0
i ;o

0
iþ1Þ

¼
X

o 0HD:L½o 0�¼o�

Yjo 0 j�1

i¼0

p�ðo 0
i ;o

0
iþ1Þ;

where jo 0j is the length of o 0 and p�ðx; yÞ :¼ pðy; xÞ. This equation and
decomposing o 0 between its last visit to on�1; . . . ;o0 imply that

PðL½ðSð0Þ; . . . ;SðtDÞÞ�� ¼ o�Þð10Þ

¼
Yn�1

j¼0

p�ðojþ1;ojÞGp � ðoj;Dnfon�1; . . . ;ojþ1gÞ

¼
Yn�1

j¼0

pðoj;ojþ1ÞGp � ðoj;Dnfojþ1; . . . ;on�1gÞ:

Finally observe that Gpðx;D 0Þ ¼ Gp � ðx;D 0Þ. Thus, (9) and (10) imply (8). r

313loop erased random walks on a planar graph



Let g ¼ ðg0; g1; . . . ; glÞ be the loop erasure of the time-reversal of the natural
random walk stopped on exiting D. By Proposition 4.1, we may think that g
is the time-reversal of the loop erasure. (In Section 5, we treat g as the time-
reversal of the loop erasure. But in this section, we treat g as the loop erasure of
the time-reversal because it is more suitable to consider the following properties
of g.)

Let Dj :¼ Dn6 j�1

i¼0
½gi; giþ1�. For any j A N,

nj :¼ minfnb 0 : SðnÞ ¼ gjg:

Because the loop erasure g is determined from the boundary, g has the following
Markov property.

Proposition 4.2 (Lemma 3.2. in [3]). Conditioned on g½0; j�, the following
holds.

1. S½0; nj� and S½nj; tD� are independent.
2. g½ j; l� has the same distribution as the loop erasure of time-reversal of the

natural random walk S½0; tDj
� conditioned to exit at gj .

4.2. Martingale observable for LERW
Let DWC be a simply connected domain. Let Sxð�Þ be a natural

random walk on G started at x A V . Let v0 A VðDÞU qinVðDÞ and g be the
loop erasure of time-reversal of the natural random walk Sv0 ½0; tD�. Let Dj :¼
Dn6 j�1

i¼0
½gi; giþ1�. The hitting probability Hjðu; vÞ is defined by

Hjðu; vÞ :¼ PðSuðtDj
Þ ¼ vÞ:

Let Fj be a filtration generated by g½0; j�.

Proposition 4.3. For any w A VðDÞ, let

Mj :¼
Hjðw; gjÞ
Hjðv0; gjÞ

:

Then, Mj is a martingale with respect to Fj .

Lawler, Schramm and Werner [3] point out that the martingale Mj given
above should be a possible martingale observable, although they don’t adopt
it but a martingale formed by the Green functions of evolving domains. They
provide a curtailed proof that Mj is a martingale. Since Mj plays the central
role in this paper we give a detailed proof of this fact.

Proof. First, we consider another representation of Mj. Let ŜSxð�Þ be a
independent copy of Sxð�Þ and Lx be the loop erasure of the time-reversal

of ŜSx½0; tD�. We will denote by Q the law of ŜS. Fix g½0; j�. By Proposition
4.2,
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QðLw½0; j� ¼ g½0; j�Þ
QðLv0 ½0; j� ¼ g½0; j�Þ ¼

QðŜSwðtDj
Þ ¼ gjÞQðLgj ½0; j� ¼ g½0; j�Þ

QðŜS v0ðtDj
Þ ¼ gjÞQðLgj ½0; j� ¼ g½0; j�Þ

¼
Hjðw; gjÞ
Hjðv0; gjÞ

:

Therefore, we can write

Mj ¼
QðLw½0; j� ¼ g½0; j�Þ
QðLv0 ½0; j� ¼ g½0; j�Þ :

Hence,

E½Mjþ1jg½0; j�� ¼
X

v AVðDjÞ
Pðgjþ1 ¼ vjg½0; j�Þ � QðLw½0; j� ¼ g½0; j�;Lwð j þ 1Þ ¼ vÞ

QðLv0 ½0; j� ¼ g½0; j�;Lv0ð j þ 1Þ ¼ vÞ ;

and, since Pðgjþ1 ¼ vjg½0; j�Þ ¼ QðLv0ð j þ 1Þ ¼ vjLv0 ½0; j� ¼ g½0; j�Þ, the right-hand
side reduces to

X
v AVðDjÞ

QðLw½0; j� ¼ g½0; j�;Lwð j þ 1Þ ¼ vÞ
QðLv0 ½0; j� ¼ g½0; j�Þ ¼ QðLw½0; j� ¼ g½0; j�Þ

QðLv0 ½0; j� ¼ g½0; j�Þ ¼ Mj:

Thus, Mj is a martingale. r

4.3. Estimates of discrete harmonic measures
For d > 0, the graph Gd ¼ ðVd;EdÞ defined by

Vd ¼ fdu : u A Vg; Ed ¼ fðdu; dvÞ : Eðu; vÞ > 0g:

Let the Markov chain Sdð�Þ on Vd be the scaling of Sð�Þ by a factor of d. We
call Sdð�Þ the natural random walk on Gd. Let Sx

d ð�Þ be a natural random walk
on Gd started at x A Vd. Similarly, we can define H

ðdÞ
j ðu; vÞ, VdðDÞ, qoutVdðDÞ,

qinVdðDÞ.
Let D ¼ fz A C : jzj < 1g be the unit disc.

Definition 4.4. If the family of the random walks Sx
d satisfies the following

condition, then we say that Sx
d satisfies invariance principle:

For any compact set KHD and � > 0, there is some d0 > 0 such that the
following holds. Let Zx be a two-dimensional Brownian motion started at x
stopped on exiting D. For any 0 < d < d0 and x A K VVd, there exists a coupling
of Sx

d and Zx satisfying

PðdUðSx
d ½0; tD�;ZxÞ > �Þ < �:

In view of the Skorokhod representation theorem the above condition is
equivalent to holding that Sx

d weakly converges to Zx uniformly for all x A K .
In [10] (Lemma 1.2) the following result is proved.
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Proposition 4.5. Suppose that Sx
d satisfies invariance principle. For any

positive constants r, e and h < 1, there exists some d0 > 0 such that for all 0 <
d < d0 the following holds. Let DHD, let p A VdðDÞ be such that radpðDÞb r,
and let c : D ! D be a conformal map with cðpÞ ¼ 0. Let y A VdðDÞ be such
that jcðyÞj < 1� h and let a A qoutVdðDÞ. Then,

H
ðdÞ
0 ðy; aÞ

H
ðdÞ
0 ðp; aÞ

� KDðcðyÞ;cðaÞÞ
KDðcðpÞ;cðaÞÞ

�����
�����< �;

where KD stands for the Poisson kernel of D.

The Poisson kernel of H is given by

KHðu; vÞ :¼ � 1

p
Im

1

u� v

� �
¼ 1

p

Im u

ju� vj2
:

The result above may be translated in terms of KH. For our purpose we apply it
in a rather trivial fashion. Let

Corollary 4.6. Suppose that Sx
d satisfies invariance principle. For any

constants r > 0, � > 0, h > 0 and l > 1, there exists some d0 > 0 such that for all
0 < d < d0 the following holds. Let DHD, let p A D be such that radpðDÞb r,
and let f : D ! H be a conformal map with fðpÞ ¼ i. Let y;w A VdðDÞ be
such that Im fðyÞ > h, Im fðwÞ > h and jfðyÞj < l, jfðwÞj < l. Then, for all
a A qoutVdðDÞ

H
ðdÞ
0 ðw; aÞ

H
ðdÞ
0 ðy; aÞ

� KHðfðwÞ; fðaÞÞ
KHðfðyÞ; fðaÞÞ

�����
�����< �:

Proof. Let pd A VdðDÞ be a nearest point of p. Applying Proposition 4.5
with p ¼ pd,

H
ðdÞ
0 ðw; aÞ

H
ðdÞ
0 ðy; aÞ

¼ H
ðdÞ
0 ðw; aÞ=H ðdÞ

0 ðpd; aÞ
H

ðdÞ
0 ðy; aÞ=H ðdÞ

0 ðpd; aÞ

¼ KDðcðwÞ;cðaÞÞ
KDðcðyÞ;cðaÞÞ

þOð�Þ:

Because the ratio of the Poisson kernel is conformal invariance, we find

KDðcðwÞ;cðaÞÞ
KDðcðyÞ;cðaÞÞ

¼ KHðfðwÞ; fðaÞÞ
KHðfðyÞ; fðaÞÞ

:

This completes the proof. r

Here we present the following trivial lemma for convenience of a later
citation.
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Lemma 4.7. Suppose that Sx
d satisfy invariance principle. For any � > 0,

there exists d0 such that for all 0 < d < d0, the length of edges of Gd in D is
bounded above by �.

Proof. Suppose that this Lemma is not true. Then, there exists � > 0 such
that for some su‰ciently small d, there exists an edge e of Gd such that the length
of e is bounded below by �. Since Gd is planar graph, S

x
d can not cross the edge

e, so that it cannot behave as a Brownian path and the invariance principle fails
to hold. r

5. Scaling limit

5.1. Convergence with respect to the driving function
Let DWC be a simply connected domain and a, b two distinct points on

qD. We say that qD is locally analytic at z A qD if there exists a one-to-one
analytic function f : D ! C with f ð0Þ ¼ z and f ðDÞVD ¼ f ðfw A D : Im w >
0gÞ. Let G ¼ ðV ;EÞ be a planar irreducible graph and Sx

d a natural random
walk on Gd started at x (see Section 4 for detailed description). Let Ga;b

d be a
natural random walk on Gd started at ad and stopped on exiting D and condi-
tioned to hit qD at bd, where ad is a point of qinVdðDÞ close to a and bd is a point
of qoutVdðDÞ close to b such that there exists a path on Gd connecting ad and bd
in D. If qD is locally analytic at a and b, we can choose such ad and bd. Let
ga;bd be the loop erasure of Ga;b

d .

Theorem 5.1. Suppose that Sx
d satisfy invariance principle. Let D be a

bounded simply connected domain and a, b be distinct points on qD. Suppose
that qD is locally analytic at a and b. Let f : D ! H be a conformal map with
fðaÞ ¼ 0, fðbÞ ¼ y. Then, f � ðgb;ad Þ� converges weakly to the chordal SLE2

curve in H as d ! 0 with respect to the driving function.

Remark. In order to assure the uniformity of invariance principle so im-
posed in Definition 4.4 it su‰ces to suppose it only for the walk starting at a
point, e.g., the origin as is shown in [9].

We abbreviate ðgb;ad Þ� ¼ g ¼ ðg0; g1; . . . ; glÞ. By Proposition 4.1, g has the
same distribution as the loop erasure of the time-reversal of Gb;a

d . Hence, it is
possible for g to use results in Section 4. Let Fj be a filtration generated by
g½0; j�. We may also think that g½0; j� is the simple curve that is a linear
interpolation.

Let UðtÞ be a driving function of fðgÞ and gt be a Loewner chain driven by
UðtÞ. Let tj :¼ 1

2 hcap fðg½0; j�Þ and

Uj :¼ UðtjÞ; fj :¼ gtj � f and Dj :¼ Dng½0; j�:
Let pj :¼ f�1

j ði þUjÞ. pj plays the role of a reference point, an ‘origin’, of
Dj . In radial case, such a point is fixed at the origin. But in chordal case, pj
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must be moved with j, so that there remains su‰cient space around pj in Dj, a
sequence of reducing domains formed by encroachment of g into D. (Cf. [7]).

We use the martingale introduced in Proposition 4.3, as in [3] and [10]. But
we need to normalize it appropriately. We denote by Sb

d a natural random walk
on Gd started at bd. Let A :¼ f�1ð½�1; 1�Þ and the normalization is made by
multiplying PðSb

d ðtDÞ A AÞ, which we name Mj :

Mj :¼
H

ðdÞ
j ðw; gjÞ

H
ðdÞ
j ðb; gjÞ

H
ðdÞ
0 ðb;AÞ;ð11Þ

(for any d > 0 and w A VdðDÞ), where we write H
ðdÞ
0 ðb;AÞ :¼ PðSb

d ðtDÞ A AÞ.
Let DWC be a simply connected domain, a, b two distinct points on qD and

f : D ! H a conformal map with fðaÞ ¼ 0, fðbÞ ¼ y as before. Let p ¼ f�1ðiÞ.
Put CðzÞ ¼ ðz� iÞ=ðzþ iÞ. Define c :¼ C � f : D ! D, which is a conformal
map with cðbÞ ¼ 1, cðpÞ ¼ 0, cðaÞ ¼ �1. Let D ¼ Dðr;R; hÞ be the collection
of all quadruplets ðD; a; b; pÞ such that radpðDÞb r and DHRD and c�1 has
analytic extension in fz A C : jz� 1j < hg.

In the rest of this section let r, R and h be arbitrarily fixed positive constants
and suppose the same hypothesis of Theorem 5.1 to be valid. We write D for
Dðr;R; hÞ and consider ðD; a; b; pÞ A D. For dealing with the martingale ob-
servable Mj defined above the following lemma plays a significant role and
Dðr;R; hÞ is introduced as a class for which the estimates given there is valid
uniformly.

Lemma 5.2. There exists a number l0 ¼ l0ðhÞ > 1=2 such that for any e > 0
and l > l0, there exists numbers d0 > 0 and a A ð0; 1=2Þ such that if ðD; a; b; pÞ A
Dðr;R; hÞ, 0 < d < d0 and D 0 ¼ Dnf�1ðfz : jzj < 2lgÞ, then

PðIm fðSb
d ðtD 0 ÞÞ < al jSb

d ðtDÞ A AÞ < �;ð12Þ

and, if diamðfðg½0; j�ÞÞ < 1, then

PðIm fðSb
d ðtD 0 ÞÞ < al jSb

d ðtDj
Þ ¼ gjÞ < �:ð13Þ

The proof of Lemma 5.2 is involved and postponed to the end of Section 6.
For any � > 0, let

m :¼ minf jb 1 : tj b �2 or jUj �U0jb �g:

Lemma 5.3. There exists a constant C > 0 and a number �0 > 0 such that
for each positive � < �0, there exists d0 > 0 such that if ðD; a; b; pÞ A Dðr;R; hÞ and
0 < d < d0, then

jE½Um �U0�jaC�3;

and

jE½ðUm �U0Þ2 � 2tm�jaC�3:
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(Although U0 ¼ 0, we write U0 in the formulae above to indicate how they show be
when the starting position U0 ¼ g0 is not mapped to the origin by f.)

Proof. This proof is broken into four steps. It consists of certain estima-
tions of the harmonic functions that constitutes the martingale observable defined
by (11).

Step 1. In this step we derive an expression, given in (16) below, of the
ratio

H
ðdÞ
j ðb; gjÞ=H

ðdÞ
0 ðb;AÞ:

We take su‰ciently small �0 > 0, which we need in this proof. Given 0 < � < �0
we take a number l ¼ 1=e3 that will be specified shortly. Let D 0 :¼
Dnf�1ðBðU0; 2lÞVHÞ (note that BðU0; 2lÞ ¼ fz : jzj < 2lÞ). In the following
we consider for j ¼ 0; 1; 2; . . . , although we apply the resulting relation only
for j ¼ 0;m,

H
ðdÞ
j ðb; gjÞ ¼

X
y AVdðDÞ

PðSb
d ðtD 0 Þ ¼ y;Sb

d ðtDj
Þ ¼ gjÞ

We split the sum on the right-hand side into two parts according as y is close to
the boundary of D or not. The part of those y which are close to the boundary
must be negligible.

Proposition 2.3 and the definition of m imply that diamðfðg½0;m� 1�ÞÞ ¼
Oð�Þ. By Lemma 4.7, the harmonic measure from p of g½m� 1;m� in Dm is Oð�Þ
for su‰ciently small d > 0. By conformal invariance of harmonic measure, the
harmonic measure from fm�1ðpÞ of fm�1ðg½m� 1;m�Þ in Hnfm�1ðg½m� 1;m�Þ is
Oð�Þ. This implies that diamðfm�1ðg½m� 1;m�ÞÞ ¼ Oð�Þ, and we have

diamðfðg½0;m�ÞÞ ¼ Oð�Þ:ð14Þ
By (14) and Lemma 5.2, we can choose a ¼ aðeÞ < 1=2 so that for all su‰ciently
small d > 0, for j ¼ 0;m,

PðIm fðSb
d ðtD 0 ÞÞ < al jSb

d ðtDj
Þ ¼ gjÞ ¼ Oð�3Þ:

This implies

PðIm fðSb
d ðtD 0 ÞÞ < al;Sb

d ðtDj
Þ ¼ gjÞ

PðIm fðSb
d ðtD 0 ÞÞb al;Sb

d ðtDj
Þ ¼ gjÞ

¼
PðIm fðSb

d ðtD 0 ÞÞ < al jSb
d ðtDj

Þ ¼ gjÞ
PðIm fðSb

d ðtD 0 ÞÞb al jSb
d ðtDj

Þ ¼ gjÞ

¼ Oð�3Þ:

Therefore,

H
ðdÞ
j ðb; gjÞ ¼ ð1þOð�3ÞÞ

X
y AVdðDÞ

Im fðyÞbal

PðSb
d ðtD 0 Þ ¼ y;Sb

d ðtDj
Þ ¼ gjÞ:ð15Þ
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By strong Markov property,

PðSb
d ðtD 0 Þ ¼ y;Sb

d ðtDj
Þ ¼ gjÞ

H
ðdÞ
0 ðb;AÞ

¼
PðSb

d ðtD 0 Þ ¼ yÞPðSy
d ðtDj

Þ ¼ gjÞ
PðSb

d ðtDÞ A AÞ

¼ PðSb
d ðtD 0 Þ ¼ yÞPðSy

d ðtDÞ A AÞ
PðSb

d ðtDÞ A AÞ
�
PðSy

d ðtDj
Þ ¼ gjÞ

PðSy
d ðtDÞ A AÞ :

Therefore, (15) implies

H
ðdÞ
j ðb; gjÞ

H
ðdÞ
0 ðb;AÞ

¼ ð1þOð�3ÞÞ
X

y AVdðDÞ
Im fðyÞbal

PðSb
d ðtD 0 Þ ¼ y jSb

d ðtDÞ A AÞð16Þ

�
H

ðdÞ
j ðy; gjÞ

H
ðdÞ
0 ðy;AÞ

:

Step 2. Let w A Vd and y A VdðDÞ satisfy

Im fðwÞb 1

2
; jfðwÞ �U0ja 3; Im fðyÞb al; la jfðyÞ �U0ja 2l:ð17Þ

Applying Corollary 4.6 to the domain D with a reference point p,

H
ðdÞ
0 ðw; g0Þ

H
ðdÞ
0 ðy; g0Þ

¼ Im fðwÞ=jfðwÞ �U0j2

Im fðyÞ=jfðyÞ �U0j2
þOð�3Þ;ð18Þ

and the assumed invariance principle implies

H
ðdÞ
0 ðy;AÞ ¼ 1

p

ð1
�1

Im fðyÞ
jfðyÞ � xj2

dxþOðe3a=lÞð19Þ

since jfðyÞ �U0j2=Im fðyÞa 2l=a (recall a=l must get small together with e).
The relations (17), (18) and (19) together imply

H
ðdÞ
0 ðw; g0Þ

H
ðdÞ
0 ðy; g0Þ

H
ðdÞ
0 ðy;AÞ ¼ Im fðwÞ

pjfðwÞ �U0j2
ð1
�1

jfðyÞ �U0j2

jfðyÞ � xj2
dxþOð�3Þð20Þ

¼ 2

p

Im fðwÞ
jfðwÞ �U0j2

þOð�3Þ:

From (16) and (20) we infer that

1

M0
¼ H

ðdÞ
0 ðb; g0Þ

H
ðdÞ
0 ðb;AÞH ðdÞ

0 ðw; g0Þ

¼ ð1þOðe3ÞÞ
X

y AVdðDÞ
Im fðyÞbal

pðyÞ
,

2

p

Im fðwÞ
jfðwÞ �U0j2

þOð�3Þ
" #

;
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where pðyÞ ¼ PðSb
d ðtD 0 Þ ¼ y jSb

d ðtDÞ A AÞ. In view of Lemma 5.2, we can
suppose X

y AVdðDÞ
Im fðyÞbal

pðyÞ ¼ 1þOð�3Þ;ð21Þ

by replacing a by smaller one if necessary. Since Im fðwÞ=jfðwÞ �U0j2 is
bounded by a universal constant, we now conclude

M0 ¼
2

p

Im fðwÞ
jfðwÞ �U0j2

þOð�3Þð22Þ

¼ 2

p
Im

�1

fðwÞ �U0

� �
þOð�3Þ:

Step 3. We derive an analogous formula for Mm. Lemma 2.3 and (14)
imply

tm ¼ Oð�2Þ; jUðsÞ �Uð0Þj ¼ Oð�Þ for Es A ½0; tm�:ð23Þ

The Loewner equation (1) shows that

jgtðzÞ � zja t � sup
0asat

2

jgsðzÞ �UðsÞj ;ð24Þ

and, observing the imaginary part of the Loewner equation,

1b
Im gtðzÞ
Im z

b exp �t � sup
0asat

2

jgsðzÞ �UðsÞj2

 !
:ð25Þ

We also find
d

dt
Im gtðzÞb�2=Im gtðzÞ, and this implies

d

dt
ðIm gtðzÞÞ2 b�4.

By integrating this relation over ½0; t�, we get ðIm gtðzÞÞ2 b ðIm zÞ2 � 4t. Since
tm ¼ Oð�2Þ, we have Im gs � fðwÞb 1=4 for 0a sa tm. Therefore, (24) gives

jgs � fðwÞ � fðwÞj ¼ Oð�2Þ for Es A ½0; tm�:ð26Þ

Let s :¼ infftb 0 : jgtðzÞ �UðtÞja l=2g. Using (24), we get jgsðzÞ � zja
4s=l and

jz�Uð0Þja 4s

l
þ l

2
þ jUðsÞ �Uð0Þj:

Thus, if jz�Uð0Þj > l, then s > tm. This implies jgs � fðyÞ �UðsÞjb l=2 for
0a sa tm. Therefore, (24) and (25) lead to

jfmðyÞ � fðyÞj ¼ Oð�3Þ and
Im fmðyÞ
Im fðyÞ ¼ 1þOðe3Þ:ð27Þ
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(26) and (27) imply

Im fmðwÞb
1

3
; jfmðwÞ �Umja 4; Im fmðyÞb

al

2
;

l

2
a jfmðyÞ �Umja 3l:

and it follows from Lemma 2.4 that radpmðDmÞb r 0 for some r 0 > 0. Therefore,
we can apply Corollary 4.6 to the domain Dm with the reference point pm, and
hence the relation (19) implies

H
ðdÞ
m ðw; gmÞ

H
ðdÞ
m ðy; gmÞ

H
ðdÞ
0 ðy;AÞ ¼ Im fmðwÞ

pjfmðwÞ �Umj2
ð1
�1

Im fðyÞ
Im fmðyÞ

� jfmðyÞ �Umj2

jfðyÞ � xj2
dx

þOð�3Þ:

Thus, from (16), (21) and (27) we get

Mm ¼ 2

p
Im

�1

fmðwÞ �Um

� �
þOð�3Þ:ð28Þ

Step 4. Proposition 4.3 implies that Mj is a martingale. Because m is a
bounded stopping time,

E½Mm �M0� ¼ 0:

Thus, (22) and (28) lead to

E Im
1

fmðwÞ �Um

� �
� Im

1

fðwÞ �U0

� �� �
¼ Oð�3Þ:ð29Þ

(23) and (26) imply

1

gs � fðwÞ �UðsÞ ¼
1

fðwÞ �U0
þOð�Þ for Es A ½0; tm�:

By integrating this relation over ½0; tm�, Loewner equation and (23) show that

fmðwÞ ¼ fðwÞ þ 2

fðwÞ �U0
� tm þOð�3Þ:ð30Þ

Let f ðu; vÞ ¼ 1=ðu� vÞ. Using (23) and (30), we Taylor-expand f ðfmðwÞ;UmÞ �
f ðfðwÞ;U0Þ with respect to fmðwÞ � fðwÞ and Um �U0, up to Oð�3Þ. Observing
imaginary part of this Taylor expansion, from (29) and (30) we get

Im
1

ðfðwÞ �U0Þ2

 !
E½Um �U0� þ Im

1

ðfðwÞ �U0Þ3

 !
E½ðUm �U0Þ2 � 2tm�ð31Þ

¼ Oð�3Þ:

Now, we consider two di¤erent choices of w under the constraint w A Vd such
that Im fðwÞb 1

2 , jfðwÞja 3. By the Koebe distortion theorem we can find w
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satisfying fðwÞ �U0 ¼ i þOð�3Þ. Then, (31) implies

E½ðUm �U0Þ2 � 2tm� ¼ Oð�3Þ:ð32Þ

Similarly, we can find w satisfying fðwÞ �U0 ¼ eiðp=3Þ þOð�3Þ and we get

E½Um �U0� ¼ Oð�3Þ:ð33Þ r

As in Subsection 2.3, let DðtÞ ¼ Dng½0; t�, ft ¼ gt � f and pðtÞ ¼ f�1
t ðiþUðtÞÞ.

Lemma 5.4. Let T > 1 and e > 0, and, given a quadruplet ðD; a; b; pÞ A D,
put ~TT ¼ supft A ½0;T � : jUðtÞj < 1=�g. Then, there exists h1 ¼ h1ðT ; �Þ > 0 and
r1 ¼ r1ðT ; eÞ > 0 such that ðDðtÞ; gðtÞ; b; pðtÞÞ A Dðr1;R; h1Þ for all t < ~TT.

Proof. Let g�
t ðzÞ :¼ gtðzÞ �UðtÞ. Put CðzÞ ¼ ðz� iÞ=ðzþ iÞ. Define the

conformal map ht : Dncðg½0; t�Þ ! D by

htðzÞ :¼ C � g�
t �C�1ðzÞ:

Put ctðzÞ :¼ ht � cðzÞ so that ct : DðtÞ ! D is a conformal map with ctðgðtÞÞ ¼
�1, ctðbÞ ¼ 1, ctðpðtÞÞ ¼ 0. Clearly qðDncðg½0; t�ÞÞ is locally analytic at 1 and
htð1Þ ¼ 1. On using the Loewner equation we infer that g 0

tðzÞ ¼ 1 as z ! y,
which implies h 0

tð1Þ ¼ 1. Now we can choose a positive h1 < h=4 such that if
t < ~TT , then cðg½0; t�Þ does not intersect with B :¼ fz A C : jz� 1j < 4h1g. Thus,
ht is analytically extended to B for t < ~TT , so that in view of Koebe’s 1/4 theorem
h�1
t has an analytic extension in fz A C : jz� 1j < h1g for t < ~TT . Since c�1

t ¼
c�1 � h�1

t and c�1 is analytic on B, c�1
t has an analytic extension in fz A C :

jz� 1j < h1g for t < ~TT . The existence of r1 is deduced from Lemma 2.4. Thus
the assertion of the lemma has been proved. r

Proof of Theorem 5.1. Having proved Lemma 5.3 it is easy to adapt the
arguments given in [7]. Let D be as in the theorem and take R so that DHRD.
Let r :¼ radpðDÞ. From our hypothesis of local analyticity of qD at b, the
function c has an analytic extension in a neighborhood of b. Thus, we can
choose h > 0 such that c�1 is analytic in fz A C : jz� 1j < hg, hence ðD; a; b; pÞ A
Dðr;R; hÞ.

Let T > 1 and �1 > 0 and put ~TT ¼ supft A ½0;T � : jUðtÞj < 1=�1g. Let � > 0
be small enough. Let m0 ¼ 0 and define mn inductively by

mn :¼ minf j > mn�1 : tj � tmn�1
b �2 or jUj �Umn�1

jb �g:

Let N :¼ maxfn A N : tmn
< ~TTg. By Lemma 5.4, we can take some positive

constants r1 and h1 such that ðDmn
; gmn

; b; pmn
Þ A Dðr1;R; h1Þ for any naN.

By the Markov property stated in Proposition 4.2, we find that gðtmn Þð�Þ ¼
gðtmn

þ �Þ is the same distribution as the time-reversal of the loop erasure of
a natural random walk on Gd started at bd and stopped on exiting Dmn

and
conditioned to hit qDmn

at gmn
. We apply Lemma 5.3 with ðDmn

; gmn
; b; pmn

Þ for
any naN. Then, we deduce from the fact stated at (3) that there exists d0 ¼
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d0ð�; �1;TÞ > 0 such that if d < d0, then for any naN

E½Umnþ1
�Umn

j g½0;mn�� ¼ Oð�3Þ;
and

E½ðUmnþ1
�Umn

Þ2 j g½0;mn�� ¼ E½2ðtmnþ1
� tmn

Þ j g½0;mn�� þOð�3Þ:

The rest of proof of Theorem 5.1 is the proof that UðtÞ weakly converges toffiffiffi
2

p
BðtÞ uniformly on ½0;T � as d ! 0, where BðtÞ is a one-dimensional standard

Brownian motion with Bð0Þ ¼ 0. This proof follows from the above estimate
and the Skorokhod embedding theorem as in [3] and [7]. (See Subsection 3.3 in
[3] and Corollary 4.3 in [7].) r

5.2. Convergence with respect to the metric dU
Now, we assume that there exists an invariant measure p for a natural

random walk Sð�Þ on G such that 0 < pðvÞ < y for any v A V . Let pðu; vÞ be
the transition probability for Sð�Þ. We consider the dual walk S �ð�Þ. The transi-
tion probability of S �ð�Þ, denoted by p�ðu; vÞ, is given by

p�ðu; vÞ :¼ pðvÞ
pðuÞ pðv; uÞ:

Then, the dual walk S �ð�Þ is a natural random walk on some other planar
irreducible graph. As in the case of Sð�Þ, we define ðS �Þxd , ðG�Þa;bd , ðg�Þa;bd

corresponding to S �ð�Þ. The following lemma is a relation between the time-
reversal and the dual walk.

Proposition 5.5. Suppose that there exists an invariant measure p for a
natural random walk Sð�Þ on G such that 0 < pðvÞ < y for any v A V. Then, the
time-reversal of Ga;b

d has the same distribution as ðG�Þb;ad . Similarly, the time-

reversal of ga;bd has the same distribution as ðg�Þb;ad .

Proof. The first assertion immediately follows from the definition of the
dual walk and the conditional probability. In addition to the first assertion,
applying Proposition 4.1,

ðga;bd Þ� ¼ L½Ga;b
d �� ¼d L½ðGa;b

d Þ�� ¼d L½ðG�Þb;ad � ¼ ðg�Þb;ad ;

where ¼d means the same distribution. Hence, we get the second assertion.
r

Let ha;b be a chordal SLE2 curve in D from a to b. Recall the metric dU
defined by (6) in Subsection 2.4.

Theorem 5.6. Suppose that there exists an invariant measure p for a natural
random walk Sð�Þ on G such that 0 < pðvÞ < y for any v A V and Sx

d and ðS �Þxd
satisfy invariance principle. Let D be a bounded simply connected domain and
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a; b A qD be distinct points. Suppose that qD is locally analytic at a and b.
Then, ga;bd converges weakly to ha;b as d ! 0 with respect to the metric dU.

Proof. Let f : D ! H be a conformal map with fðaÞ ¼ 0, fðbÞ ¼ y and
Let f� : D ! H be a conformal map with fðbÞ ¼ 0, fðaÞ ¼ y. Theorem 5.1
implies that f� � ðga;bd Þ� converges weakly to a chordal SLE2 with respect to the
driving function. Because we also assume that ðS �Þxd satisfy invariance principle,
Theorem 5.1 implies that f � ððg�Þb;ad Þ� converges weakly to a chordal SLE2 with

respect to the driving function. By Proposition 5.5, ga;bd is the same distribution
as ððg�Þb;ad Þ�. Hence, f � ga;bd converges weakly to a chordal SLE2 with respect
to the driving function. Therefore, Theorem 3.6 completes the proof. r

6. Estimates of hitting probabilities of the random walk started
at a boundary point

In this section we prove Lemma 5.2. To this end it is convenient to work
in the disc D instead of H. Let DWC be a simply connected domain and a, b
be distinct points on qD. Let f : D ! H be a conformal map with fðaÞ ¼ 0,
fðbÞ ¼ y. Let p :¼ f�1ðiÞ. Put CðzÞ ¼ ðz� 1Þ=ðzþ 1Þ and c ¼ C � f so that
c is a conformal map of D onto D with cðaÞ ¼ �1, cðbÞ ¼ 1, cðpÞ ¼ 0. Let Sb

d

be a natural random walk on Gd started at bd, where bd is a point of qinVdðDÞ
close to b.

Recall the class Dðr;R; h0Þ, which is the collection of all quadruplets
ðD; a; b; pÞ such that radpðDÞb r and DHRD and c�1 has analytic extension
in fz A C : jz� 1j < h0g. Throughout this section we consider the constants r, R
and h0 to be fixed and write D for Dðr;R; h0Þ; also suppose that Sx

d satisfies
invariance principle.

For ðD; a; b; pÞ A D and h < h05
1
2 put

U ¼ Uh ¼ fz A D : jcðzÞ � 1j < hg

and for any number a from the open interval ð0; 1=2Þ,

Ja ¼ fz A qU : distðcðzÞ; qDÞ < ah; z A Dg:

Proposition 6.1. Let U ¼ Uh and Ja be as described above. Then for any
e > 0 there exists d0 ¼ dðe; hÞ > 0 such that for all positive d < d0, a < d0 and for
all ðD; a; b; pÞ A D,

PðSb
d ðtUÞ A Ja jSb

d ðtUÞ A DÞ < �;

Here d0 may depend on the graph ðV ;EÞ.

Remark. It is only for this proposition that we need the condition of the
analyticity about b. Without that condition the estimate of the proposition is
obtained by Uchiyama [9].

325loop erased random walks on a planar graph



Proof. This proof is an adaptation of a part of the arguments given in
[9]. Put

C ¼ fz A qD : Im cðzÞ > 0; jcðzÞ � 1j < h=3g;
and

B ¼ fz A C : jcðzÞ � 1j < h=3gnU ; W ¼ BUC UU :

Let

Cd ¼ fv A VdðDÞ : ½u; v�VC0j for some u A VdðBÞg;
and v� be a vertex in Cd such that Im cðv�Þ is closest to h=6 among vertexes
of Cd.

Let L denote the last time when the walk Sv �

d in W killed when it crosses the
boundary qW exits B:

L ¼ 1þmaxf0a n < tW : Sv �

d ðnÞ A Bg if Sv �

d ðtWÞ B qB

y if Sv �

d ðtWÞ A qB

�
:

We write T ¼ tU . Putting Jþ
a ¼ Ja VH we compute q ¼ PðSv �

d ðtWÞ A Jþ
a Þ, the

probability that the walk exits W through Jþ
a , which we rewrite as

q ¼ PðSv �

d ðTÞ � yL A Jþ
a ;L < tWÞ;

where the shift operator yL acts on T as well as on Sv �

d . By employing the
strong Markov property

q ¼
Xy
n¼0

X
y ACd

PðSv �

d ðTÞ � yn A Jþ
a ;L ¼ n;Sv �

d ðnÞ ¼ yÞ

¼
Xy
n¼0

X
y ACd

PðSv �

d ðTÞ � yn A Jþ
a ;Sv �

d ðnÞ ¼ yÞ

¼
Xy
n¼0

X
y ACd

PðSv �

d ðnÞ ¼ yÞPðSy
d ðTÞ A Jþ

a Þ

The occurrence of the event Sy
d ðTÞ A Jþ

a for y A Cd entails S
y
d ðTÞ A D, so that

PðSy
d ðTÞ A Jþ

a Þ ¼ PðSy
d ðTÞ A Jþ

a ;S
y
d ðTÞ A DÞ. Hence, bringing in the conditional

probability

pðyÞ ¼ PðSy
d ðTÞ A Jþ

a jSy
d ðTÞ A DÞ;

we infer that

q ¼
X
y ACd

GWðv�; yÞPðSy
d ðTÞ A DÞpðyÞ;

where GW stands for the Green function of the walk killed on exiting W. We
have

pðyÞb pðbÞ; y A Cd;
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for, if gb denote a path joining bd with Jþ
a in VdðUÞ, then the walk starting at

y A Cd and conditioned on the event S
y
d ðTÞ A D must hit gb U Jþ

a before existing
U . Observing the identityX

y ACd

GWðv�; yÞPðSy
d ðTÞ A DÞ ¼ PðSv �

d ðtWÞ A DÞ;

we finally obtain

qb pðbÞPðSv �

d ðtWÞ A DÞ:
This concludes pðbÞ < �=2 since PðSv �

d ðtWÞ A DÞ > 1=3 and q < �=6 for all su‰-
ciently small d and a. Let J�

a ¼ JanJþ
a . On defining C with Im cðzÞa 0 in

place of Im cðzÞ > 0 we repeat the same argument to show that PðSb
d ðTÞ A J�

a j
Sb
d ðTÞ A DÞ < �=2. r

Lemma 6.2. Let A :¼ f�1ð½�1; 1�Þ. For any � > 0, there exists d0 ¼ d0ð�; hÞ
> 0 such that the following holds. Let ðD; a; b; pÞ A D. Then, for all 0 < d < d0
and 0 < a < d0,

PðSb
d ðtUÞ A Ja jSb

d ðtDÞ A AÞ < �:

Proof. By the definition of the conditional probability and the strong
Markov property,

PðSb
d ðtUÞ A Ja jSb

d ðtDÞ A AÞ
PðSb

d ðtUÞ B Ja jSb
d ðtDÞ A AÞ

¼ PðSb
d ðtUÞ A Ja;S

b
d ðtDÞ A AÞ

PðSb
d ðtUÞ B Ja;S

b
d ðtDÞ A AÞ

¼
P

y A Ja
PðSb

d ðtU Þ ¼ yÞPðSy
d ðtDÞ A AÞP

y B Ja
PðSb

d ðtU Þ ¼ yÞPðSy
d ðtDÞ A AÞ

:

Because we assume invariance principle, the hitting probability PðSy
d ðtDÞ A AÞ

can be approximated by the same probability for a Brownian motion. Because
the hitting probability for a Brownian motion is conformal invariant, we can
calculate the hitting probability on the upper half plane instead of D. Therefore,
we find that there exists a universal constant C such that for su‰ciently small d,

supy A Ja PðS
y
d ðtDÞ A AÞ

infy B Ja PðS
y
d ðtDÞ A AÞ aC:

Thus, we obtain

PðSb
d ðtUÞ A Ja jSb

d ðtDÞ A AÞ
PðSb

d ðtUÞ B Ja jSb
d ðtDÞ A AÞ

aC

P
y A Ja

PðSbðtUÞ ¼ yÞP
y B Ja

PðSbðtUÞ ¼ yÞ :

Because P
y A Ja

PðSbðtUÞ ¼ yÞP
y B Ja

PðSbðtUÞ ¼ yÞ ¼
PðSb

d ðtUÞ A Ja jSb
d ðtUÞ A DÞ

PðSb
d ðtUÞ B Ja jSb

d ðtUÞ A DÞ
;

Proposition 6.1 completes the proof. r
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Lemma 6.3. For any � > 0, there exists d0 ¼ d0ð�; hÞ > 0 such that the
following holds. Let ðD; a; b; pÞ A D. Then, for all 0 < d < d0 and 0 < a < d0,

PðSb
d ðtUÞ A Ja jSb

d ðtDÞ ¼ adÞ < �;

where ad is a point of qoutVdðDÞ close to a.

Proof. By the definition of the conditional probability,

PðSb
d ðtUÞ A Ja jSb

d ðtDÞ ¼ adÞ
PðSb

d ðtUÞ B Ja jSb
d ðtDÞ ¼ adÞ

¼ PðSb
d ðtUÞ A Ja;S

b
d ðtDÞ ¼ adÞ

PðSb
d ðtUÞ B Ja;S

b
d ðtDÞ ¼ adÞ

¼ PðSb
d ðtUÞ A Ja;S

b
d ðtDÞ ¼ ad jSb

d ðtDÞ A AÞ
PðSb

d ðtUÞ B Ja;S
b
d ðtDÞ ¼ ad jSb

d ðtDÞ A AÞ
:

Since the random walk conditioned on exiting D through A is Markovian, the
right-hand side above may be written asP

y A Ja
PðSb

d ðtU Þ ¼ y jSb
d ðtDÞ A AÞPðSy

d ðtDÞ ¼ ad jSy
d ðtDÞ A AÞP

y B Ja
PðSb

d ðtU Þ ¼ y jSb
d ðtDÞ A AÞPðSy

d ðtDÞ ¼ ad jSy
d ðtDÞ A AÞ

:

By Lemma 5.8. in [10], there exists a universal constant C such that for
su‰ciently small d,

supy A Ja PðS
y
d ðtDÞ ¼ ad jSy

d ðtDÞ A AÞ
infy B Ja PðS

y
d ðtDÞ ¼ ad jSy

d ðtDÞ A AÞ aC:

Hence, we obtain

PðSb
d ðtUÞ A Ja jSb

d ðtDÞ ¼ adÞ
PðSb

d ðtUÞ B Ja jSb
d ðtDÞ ¼ adÞ

aC
PðSb

d ðtUÞ A Ja jSb
d ðtDÞ A AÞ

PðSb
d ðtUÞ B Ja jSb

d ðtDÞ A AÞ

Therefore, Lemma 6.2 completes the proof. r

Proof of Lemma 5.2. By the mapping CðzÞ ¼ ðz� iÞ=ðzþ iÞ, the half disc
Bþð2lÞ :¼ BðU0; 2lÞVH is mapped to a small disc of radius@ 1=2l and centered
at 1. For 1=2l < h0, (12) follows from applying Lemma 6.2 with this small
disc in place of Uh, the little discrepancy between them making no harm. If
diamðfðg½0; j�ÞÞ < 1, the di¤erence between Bþð2lÞ and gtj ðBþð2lÞÞ is insignificant
for su‰ciently large l. Hence, we also have (13) by applying Lemma 6.3 with
ðDj; gj ; b; pjÞ, which is legitimate because of Lemma 5.4. r
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