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CONVERGENCE OF LOOP ERASED RANDOM WALKS
ON A PLANAR GRAPH TO A CHORDAL SLE(2) CURVE

Hiroyukr Suzuxki

Abstract

In this paper we consider the ‘natural’ random walk on a planar graph and scale
it by a small positive number J. Given a simply connected domain D and its two
boundary points a and b, we start the scaled walk at a vertex of the graph nearby a and
condition it on its exiting D through a vertex nearby b, and prove that the loop erasure
of the conditioned walk converges, as ¢ | 0, to the chordal SLE, that connects a and b
in D, provided that an invariance principle is valid for both the random walk and the
dual walk of it. Our result is an extension of one due to Dapeng Zhan [12] where the
problem is considered on the square lattice. A convergence to the radial SLE, has been
obtained by Lawler, Schramm and Werner [3] for the square and triangular lattices and
by Yadin and Yehudayoff [10] for a wide class of planar graphs. Our proof, though
an adaptation of that of [3] and [10], involves some new ingredients that arise from two
sources: one for dealing with a martingale observable that is different from that used
in [3] and [10] and the other for estimating the harmonic measures of the random walk
started at a boundary point of a domain.

1. Introduction

The Schramm-Loewner evolutions driven by Brownian motion /kB(#) of
variance x, abbreviated as SLE,, introduced by Oded Schramm [6], have been
studied from various points of view and are now recognized to well describe the
scaling limits of certain lattice models of both physical and mathematical interest.
Lawler, Schramm and Werner [3] have proved that the scaling limit of a loop
erased random walk (or loop erasure (for the definition, see p. 9) of random walk,
abbreviated as LERW) on either of the square and triangular lattices is the radial
SLE,. Dapeng Zhan [12] have studied LERW’s on the square lattice but in a
multiply connected domain and derived the convergence of them. In the case
of a simply connected domain in particular, he has proved the convergence to
the chordal SLE,. Yadin and Yehudayoff [10] extend the result of [3], the
convergence of LERW to a radial SLE to that for the natural random walks on
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planar graphs under a natural setting of the problem. In this paper we consider
the LERW in a similar setting to [10] and show that LERW conditioned to
connecting two boundary points in a simply connected domain converges to a
chordal SLE, curve.

Here we state our result in an informal way by using the terminology
familiar in the theory of SLE of which we shall give a brief exposition in the next
section. Let V' be the set of vertices of a planar graph on which a random walk
(of discrete time) is defined and supposed to satisfy invariance principle in the
sense that the linear interpolation of its space-scaled trajectory converges to that
of Brownian motion (in a topology where two curves are identified if they agree
by some change of time parameter). For each ¢ > 0 we make the scale change
of the space by J: Vs ={dv:ve V}, the set of scaled lattice points and accord-
ingly we make the J-scaling of our random walk so that it moves on Vs. Given
a simply connected bounded domain D and two distinct boundary points ¢ and b
of it, let y5; denote the loop erasure of the random walk scaled by ¢ that starts a
vertex as of Vs nearby a and is conditioned to exit DNV through a vertex b;
nearby b so that y; is a random self-avoiding path on DN Vs connecting a; and
bs, which may be regarded as a ‘path’ in the planar graph. We prove that the
polygonal curve given by linearly interpolating y; converges to the chordal SLE,
curve connecting a and b in D under a certain natural assumption on D, the pair
a, b, the planar graph and the random walk (Theorem 5.6).

For obtaining the result as stated above we first prove the convergence of the
driving function of the loop erasure (Theorem 5.1). The proof is made in a way
similar to [3], [10] and [7]. In [7] the harmonic explorer, an evolution of a self
avoiding random curve, is introduced and proved to converge to a chordal SLE,
curve. For the proof a suitably chosen martingale associated with the evolving
random curve, called martingale observable, plays a dominant role. Not as in
[7] we take the martingale observable given by the ratio of harmonic measures
of a (random) point relative to two points, the starting site of the walk and a
suitably chosen site in a random domain defined by the loop erasure. This
martingale is suggested in [3] as a suitable candidate of a martingale observable
but we need to normalize it in an appropriate way; moreover we must change
the normalization as the loop erasure grows. We apply the approximation result
on the harmonic measure (Poisson kernel) proved in [10]. To this end we need a
delicate probability estimate, since our random walk starts at a boundary point
and we must deal with the conditional law given that it exits DN Vj through
another boundary point.

We deduce the convergence of the loop erasure in a uniform topology from
that of the driving function under the hypothesis that not only the random walk
but also the dual walk of it satisfy the invariance principle (Theorem 5.6). For
the deduction we prove Proposition 4.1 asserting that the law of the time reversal
of loop erasure of a walk agrees with the law of loop erasure of the time reversal
of the same walk.

By the way, Proposition 4.1 provides an improvement of the convergence to
a radial SLE,. In [10] the loop erasure is unti-chronological (loops are discarded
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in the reverse order). The reason is that one wants to consider the loop erasure
determined from the boundary. Because the radial SLE, starts at a boundary
point and stops at an inner point, and one wants to use a domain Markov
property of the loop erasure. In [3], they used the reversibility property of the
loop erasure of a simple random walk proved by Lawler [2]. Proposition 4.1
implies that the convergence to SLE, in the result of Yadin and Yehudayoff is
valid also for LERW with the loops discarded in the chronological order instead
of unti-chronological order.

The rest of the paper is organized as follows. In Sections 2 and 3 we give
brief expositions of the Loewner evolution and SLE, respectively, and the funda-
mental results relevant to the present issue or used in the proof of our results. In
Section 4, consisting of three subsections, we first give the framework of our
problem, the planar graph as well as the random walk on it, and bring in the
LERW together with results associated with it (Subsection 4.1); we then present a
martingale associated with the LERW (Subsection 4.2); we also present the result
of [10] which asserts an approximation of the harmonic measure of our random
walk by the classical Poisson kernel and a trivial lemma of the planar graph
(Subsection 4.3). The statement and proof of the main result of the present
paper are given in Section 5. The convergence of the loop erasure to SLE; curve
with respect to the driving function is given in Subsection 5.1, where a certain
probability estimate proved in Section 6 is taken for granted. The convergence
of the loop erasure to SLE, curve in a uniform topology is given in Subsection
5.2, where we prove the invariance of law of LERW in (a double) time reversion.
In Section 6 we verify the aforementioned probability estimate which plays an
crucial role in the proof of our result, a probability estimate of the scaled random
walk on DN Vj starting at a boundary vertex under the conditional law given
that it exists the domain through another boundary vertex that is specified in
advance.

2. Loewner chain

In this section, consisting of four subsections, we give a brief exposition
of the Loewner evolution and some results relevant to the present issue. The
standard results in the theory as given in Lawler’s book [1] are stated under the
heading as P 2.k (k=1,2,...).

2.1. Conformal map and half-plane capacity

Let H:={zeC:Imz >0} be the upper half plane. A bounded subset
A < H is called a compact H-hull if 4 = ANH and H\4 is a simply connected
domain. Let 2 denote the set of compact H-hulls. For any 4 € 2, there exists
a unique conformal map g, : H\A4 — H satisfying |g4(z) —z| = 0 as z — 0.
The half-plane capacity hcap(4) is defined by

heap(A) = lim z(g.(2) - 2).
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Then, g4 has the expansion

gA(Z):Z“Fw"_O(L), Z — 00

z 2|7

The half-plane capacity has some nice properties, of which we need the
following.

P 2.1 (p69-71). If r>0, xeR, A€ 2, then
hcap(r4) = r* hcap(4), hcap(4 + x) = hcap(4).
If A,Be 2,4 c B, then
hcap(B) = hcap(A4) + heap(g4(B\4)).

2.2. Chordal Loewner chain in H

A chordal Loewner chain is the solution of a type of Loewner equation that
describes the evolution of a curve growing from the boundary to the boundary
of a domain in C. In this section we consider the special case when the domain
is Hi={ze C:Imz > 0}, the upper half plane and the curve grows from the
origin to the infinity in H. Suppose that y: [0,0) — H is a simple curve with
7(0) =0, y(0,00) = H. Then, for each 7> 0, there exists a unique conformal
map g, : H\y(0, 7] — H satisfying |g,(z) —z| — 0 as z — co. It is noted that g,
can be continuously extended to the (two sided) boundary of H\y(0,:] along
7(0,1. If y is parametrized by half plane capacity (i.e., if lim, o z(g,(z) — z) =
21), g, satisfies the following differential equation

0 2
(1) 59[(2) :m,

where U(t) = g,(y(t)) and U(-) is a R-valued continuous function (see [1]).
We call the equation (1) the chordal Loewner equation and U(-) the driving
function.

Conversely, suppose that U(-) : [0, 0) — R, a continuous function, is given
in advance, for z € H, solve the ordinary differential equation (1) to obtain the
solution ¢,(z) up to the time 7. :=sup{r > 0: |g,(z) — U(¢)| > 0} and put K, :=
{zeH:T.<1t}. Then for >0, g,(z) is a conformal map from H\K; to H.
The family (g,),., describes the evolution of hulls (X;),., corresponding to U(-)
and growing from the boundary to oo. Therefore, we have a one-to-one corre-
spondence between U(-) and (K;),.,. If U(:) is the driving function of a simple
curve y, we can recover y from U(-) by the formula y(7) = g, !(U(¢)) and we can
write K; = 9(0,¢]. If U(-) is sufficiently nice, then (X;),., is generated by a curve
y with y(0) e R, lim, .., y(f) = o (i.e., for any ¢ >0, H\K; is the unbounded
component of H\y(0,7]). However, there exists a continuous function U(-) such
that (K;),., can not be generated by a curve. There is known a sufficient con-
dition for U(-) to drive a curve as given by

go(z) =z,
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P 2.2 (pl08). Suppose for some r <2 and all s < t,
|U(t) — U(s)| < rvt—s.

Then (K;),. is generated by a simple curve.

The family ¢g,, £ > 0 is called the (chordal) Loewner chain generated by a
curve y or driven by a function U(z). In summary, a simple curve y brings out
a Loewner chain, whereby it determines the driving function U(t), and conversely
a continuous function U(f) with appropriate regularity generates a curve through
the Loewner chain driven by U(z).

ProposiTION 2.3 (Lemma 2.1. in [3]). There exists a constant C > 0 such
that the following holds. Let K, be the corresponding hull for a Loewner chain
driven by a continuous function U(t). Set

k(f) :=Vt+sup{|U(s) — U(0)| : 0 < s < 1}.
Then, for any t >0,
C k(1) < diam(K,) < Ck(z).

2.3. Chordal Loewner chains in simply connected domains

Let D < C be a simply connected domain and dD a set of prime ends. If D
is a Jordan domain, then 0D may be identified with the topological boundary
of D. Let a, b be distinct points on dD. For p e D, we define the inner radius
of D with respect to p,

rad,(D) :=inf{|z — p| : z ¢ D}.

Let ¢ : D — H be a conformal map with ¢(a) =0, ¢(b) = co. Although ¢ is not
unique, any other such map can be written as r¢ for some r > 0. For a simple
curve y: (0, T) — D connecting a and b so that y(0+) =a and »(T—) = b, let g,
be the Loewner chain generated by the curve ¢oy:(0,7) — H and put

¢ =910, 1€0,0).

We reparametrize the curve y so that the curve ¢oy in H is parametrized by
half plane capacity. Denote by (y(¢)) the function representing the curve in this
parametrization, so that 2¢ = hcap(¢ o y[0,¢]). The driving function U(¢) of the
chain g, is then given by

U(1) = ¢,((1))-

The family of conformal maps ¢,, > 0 may also be called a chordal Loewner
chain (in D) with driving function U(¢). For each s> 0, ¢, conformally maps
D(s) := D\y(0,s] onto H with ¢,(a,) = U(s), ¢,(b) = oo, where a, = y(s) and the
curve y)(¢) :=y(s+ ) connects a; and b in D(s). On putting

2) 9" =gyiogt and 4P =gy,
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substitution into U(s+ 1) = ¢, (y(s+ 1)) yields
(3) U(z+s> = ¢<”<y<f>< ).

It follows from (2) that ¢\ = ¢\ o 4, and ¢ (and ¢\") is the Loewner chain
generated by the curve »*¥; and also, from (3) that U (f):= U(s+1) is the
driving function of the chain ¢I> in D( ).

Define p(¢) € D by

$(p(1)) = U(1) +1i.
p(t) serves as a reference point for the study of the conformal map ¢,. (See

Proposition 4.5 and the remark advanced before Lemma 5.3.)

LemMa 24. Let T >1 and €>0, and, given a pair (D,y), put T :=
sup{r e [0,T]: |U(¢)| < 1/e}. Then there exists a constant c¢(T,e) >0, which
may also depend on (D,y(0)) but does not on (y(t),t>0), such that

rad,)(D(1)) = ¢(T,€) rad, (D) for t < T.

Proof. We claim that

) #(p(1) = p((e)] = 27T if ' <t < T
Let ¥ <t < T and z = ¢(y(¢')), and put

y(s) = g:(8(p(1)) —9s(2), O0<s<t

We prove |y(0)| = |¢(p(1)) — z| = 27 'e#T. Recalling that Im g,(w) is decreasing
in s for any we H, we see that

(5) Imgsod(p(t)) =Img,0g(p(t)) =1 if s<t

Applying this with s =0 we have |y(0)] >1/2 if Imz<1/2. Let Imz>1/2
and define 7 :=inf{7r > 0:Im g,(z) = 1/2}. Then 7 < ¢ <t (since Im g, (z) = 0)
and the Loewner equation together with the inequality (5) shows
iy(s)‘: 2[y(s)]
ds 195 0 $(p(0)) = UGs)| - 9:(2) — U(s)

<4|y(s)| for 0<s<r.

: . . d
Hence |y(s)| is absolutely continuous and satisfies $| ()] < 4|p(s)|, so that

1¥(7)] < |p(0)]e*.

Using (5) again we have 1/2 < Im y(t) so that 1/2 < |y(0)|e*", which is the same
as what we need to prove. Thus the claim (4) is verified. ~

It is proved in [8] (the proof of Corollary 4.3) that the set {¢(p(r)) : t < T} is
included in a compact set of H depending only on T and &, whence according to
the Koebe distortion theorem rad, (D) = co(T,€) rad,) (D) for some constant
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co(T,€e) > 0. For the proof of the lemma it therefore suffices to show that
|p(t) = p(¢")| = c1(T,€) dist(p(t),0D) for t' <t < T.

To this end we may suppose |p(z) — y(¢')| < 27! dist(p(¢),0D). Applying (4) and
the distortion theorem in turn yields

dist(¢(p(1)), R)
dist(p(1),0D)

We know that dist(¢(p(?)),R) < M for some constant M = M(T,¢) > 0 from the
result of [8] mentioned above. Hence |p(7) — y(¢')| = [e~*T /32M] dist(p(t), D)
as desired. O

27T < |g(p(1)) - JO())] < 16p(1) — 2(1')

2.4. Metrics on curves

Let 7,9/ (j=1,2,...) be curves which generate the Loewner chains. Let
U(t) and U;(¢) be driving functions corresponding to y and 7/, respectively. If
U;(t) converges uniformly to U(#) on any bounded interval, then we will say that
y/ converges to y with respect to the driving function.

Next, we consider the metric on the space of unparametrized curves in C.
Let fi,/:[0,1] = C be a continuous, non-locally constant functions. If there
exists a continuously increasing bijection « : [0,1] — [0, 1] such that f, = fj oa,
then we will say f; and f, are the same up to reparametrization, denoted by
fi ~ f2. A unparametrized curve y is defined to be an equivalence class modulo
~. Let d, be the spherical metric on C. We define the metric on the space of
unparametrized curves by

(6) du(y1,7,) =inf| sup d.(fi(2), f200(1))],

* lo<i<]
where f; any function in the equivalence class y;, and the infimum is taken over
all reparametrizations o which are continuously increasing bijections of [0, 1].
We often denote by the same notation y a parametrized curve as well as an
unparametrized curve. Let us denote by y~ the time reversal of y.

The convergence with respect to the driving function is weaker than the
convergence with respect to the metric dy. We will consider a sufficient con-
dition for the convergence with respect to the metric d; when we have the
convergence with respect to the driving function. Let D < C be a simply
connected domain and 0D be the set of prime ends of D. Let a,bedD be
distinct points. Let ¢: D — H be a conformal map with ¢(a) =0, ¢(b) = o0.
Let ¢~ : D — H be a conformal map with ¢ (b) =0, ¢ (a) = c0.

THEOREM 2.5 (Theorem 1.2 in [8]). Let {y/} be a sequence of simple curves
travelling from a to b in D. Suppose that there exists simple curves y and n such
that ¢ o/ converges to ¢ oy with respect to the driving function and ¢~ o/~
converges to ¢~ on with respect to the driving function. Then y~ =n and y’
converges to y with respect to the metric dy.
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3. Schramm-Loewner evolutions

3.1. SLE in the upper half plane
Let B; be a one-dimensional standard Brownian motion with By = 0.
A chordal Schramm-Loewner evolution with parameter x > 0 (abbreviated as
chordal SLE,) is the random family of conformal map ¢, obtained from the
chordal Loewner equation
) C0(D) =t (o) =z (zeH)
— z) = Z)=7Z z .
a @ - v "
Let K; be an evolving (random) hull corresponding to SLE,. Because B, is not
(1/2)-Holder continuous, we can not use P2.2 and it is not easy to see whether
K, is generated by a curve. However, according to the following results K; is
actually generated by a curve with full probability.

P 3.1 (pl48). With probability 1, the limit () :=lim, o g; ' (z + /xB;)
exists for any t >0 and K, is generated by the curve 7.

This curve y is called a chordal SLE, curve in H from 0 to oo. The
following properties of SLE, curves are easily verified.

P 3.2 (p148). Suppose that y is a chordal SLE, curve in H and r > 0. Let
3(t) :=r~'y(r*t). Then, j has the same distribution as y.

P 3.3 (pl47). Suppose that y is a chordal SLE, curve in H. Let t© be a
stopping time. Let §(t) := ¢g.(y(t + 7)) — \/kB;. Then, j has the same distribution
as y.

The behaviour of a chordal SLE, curve depends on the value of the
parameter k. There is three phases in the behaviour of a chordal SLE, curve.
The two phases transitions take place at the values x =4 and x = 8.

P 3.4 (p150-151). Suppose that y be a chordal SLE, curve in H.
 If 0 < <4, then wp.1, y is a simple curve with y(0,00) < H.
cIf 4<i <8, then wp.1, y(0,00)NH # H and Uz>0K:ﬁ' _
« If K> 8, then w.p.l, y is a space-filling curve, i.e., y[0,00) =H.

3.2. SLE in simply connected domains

Let y be a chordal SLE, curve in H from 0 to co. As in the subsection 2.3
let D < C be a simply connected domain, 0D a set of prime ends, a, b two
distinct points on ¢D and ¢ : D — H a conformal map with ¢(a) =0, ¢(b) = 0.
Although ¢ is not unique, any other such map ¢ can be written as r¢ for some
r>0. By P 3.2, ¢_1(y) is independent of the choice of the map up to a time
change and we consider SLE,; curves in D as unparametrized curves. A chordal
SLE, curve in D from a to b is defined by ¢~ '(y).
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The two properties stated in the next proposition, called the domain Markov
property and conformal invariance, respectively, immediately follow from the
definition of SLE.

P 3.5. Let y be a chordal SLE, curve in D from a to b and p, ., be a law
of v. Let f:D— D' be a conformal map. Then,

ﬂa,b;D("y(Oa 1) = :uy(t),b;D\y(O,t](')v

and
S0t n;0() = Byiay, rpy; 0 ()-

In the theory of SLE, it is easier to prove the convergence with respect to
the driving function than in the metric dy. Theorem 2.5 implies the following
result, which we shall apply the following result to derive the convergence with
respect to dy of LERW from that of the driving function. Let ¢~ : D — H be a
conformal map with ¢~ (b) =0, ¢ (a) = co.

TueOREM 3.6 ([8]). Let {y/} be a sequence of simple random curves travelling
from a to bin D. Let k <4, and y(a,b) be the chordal SLE, curve in D from a
to b. ¢oyl and ¢~ oy/~ converge weakly to a chordal SLE, curve in H with
respect to the driving function. Then y; converges weakly to y(a,b) with respect
to dazg.

The reversibility of SLE holds at least for x < 4.

THEOREM 3.7 (Theorem 2.1 in [11]). Let x <4. The time-reversal of a
chordal SLE, curve in D from a to b has the same distribution as chordal SLE,
curve in D from b to a.

If k¥ > 8, then SLE curve is not reversible.

4. Loop erased random walks

4.1. Some property of LERW

For any u,veC, we write [u,0]={(l—t)u+1tw:0<t<1} for the line
segment whose end points are u and v. Let V< C be a countable subset
with 0e V. Let E:V xV —[0,00) and E = {(u,v): E(u,v) >0}. We call
G=(V,E) a directed weighted graph. We assume that ) _, E(u,v) < o©
for every ue V', and put

_ E(u,v)
P o Bl

welV

We call G that satisfies the following conditions a planar irreducible graph.
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1. G is a planar graph.
(i.e. for every distinct edges (u,v),(v',v") € E, [u,v]N[u',v] € {0,{u},
{0}})
2. For any compact set K < C, the number of vertices v e K is finite.
3. The Markov chain S(-) on V with transition probability p(u,v) is
irreducible.
(i.e. for every u,v e V, there exists n € N such that P(S(n) = v|S(0) = u)
>0.)
We call S(-) the natural random walk on G. For the reminder of this paper we
think that G is a planar irreducible graph.
For any simply connected domain D < C, let V(D) := VN D. Define

Oou V(D) := {(u,v) € E : [u,v]N 3D # O,ue V(D)}
and
OV (D) :={(u,v) € E : [u,v]NOD # O,ve V(D)}.
The first exit time from D is defined by
inf{n>1:(S(n—-1),Sn)) € dV,u(D)} if S0)e V(D)
D = { 1nf{n >2: (S(I’l - 1)7S(n)) € aVoul(D)} if (S(O)’S(l)) € ainV(D)'
0 otherwise

We sometimes consider the edge (u,v) € 0,V (D) as the vertex v, and the
edge (u,v) € 0;,V(D) as the vertex u; e.g., we write S(tp)€ 0oy V(D) and
S(0) € 0;, V(D) and for a set J = dD, we write S(tp) € J instead of writing
[S(’L'D — 1),S(TD)]0J # Q)

Loop ERASURE. Let w = (wg, w1, ...,w,) be a finite sequence of points. Let
so =max{k >0:wy = wr}. Inductively, we define s, = max{k >0:0w,, 1 =
oy If I=min{m >0 : w,, = w,}, then the loop erasure of w is defined by

Liw] = (wsy, 0,5 - - -, Dg)-
The time-reversal of w is defined by
o = (wna W1y ,600)~

It is readily recognized that the operations L and ~ are not commutable, namely,
Liow] # Llw]” in general. If the transition probability p(u,v) is symmetric,
then the following result has been proved by Lawler in [2]. For our purpose, we
prove the following result without assuming that p(u,v) is symmetric.

ProposITION 4.1.  Let S(-) be a natural random walk on G.

P(L[(S(0),S(1),...,S(zp)) ] = w) = P(L[(S(0),S(1),...,S(zp))]” = ).

Remark. Theorem 4.1 implies that the convergence to the radial SLE, in
the result of Yadin and Yehudayoff (Theorem 1.1 in [10]) is valid also for LERW
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with the loops discarded in the chronological order instead of unti-chronological
order.

Proof. Let = (wy,...,w,) and owy,...,w,—1 € V(D) be distinct and
(Wp—1,0p) € Opuy V(D). Our task is to show the identity

@) P(L[(S(0),...,S(wp))] = @) = P(L[(S(0),...,S(zp)) ] = @)

Let ¢: VxV —[0,1]. Set

0
Gq(x§D) =1 +Z Z q(w(l)aw{)"'q(wl/cfl’wl/c)7
Duwg=x,w;,

k=0 o' =X

where the inner summation is taken over all paths o’ = (w,...,w;) in D such
that o) = x, o, = x.
The probability of LERW is described by the following (See [2]).

n—1

P(L[(S(0),...,S(w0)] = @) = [ ] pley, @1)Gply; D\{@o, .., 1))
Jj=0

By the exchange lemma (the equation (12.2.3) in [2]), we get

n—1

9) P(L[(S(0),...,S(zp)] =w) = H p(wj, 0i11)Gy(wj; D\{wjy1, ..., 0p-1})

On the other hand,
lw'|—1

PLISO),...Sw) T=0) = > ] sepop)

|oo’| -1

= Z H p*(Cl),-,,CUl(Jrl),

o'eD:Liw'|l=0- =0

where |w’| is the length of w’ and p*(x,y):= p(y,x). This equation and

decomposing @’ between its last visit to w,_i,...,w imply that
(10) P(L[($(0),...,S8(tp)) ] = ")
n—1

P (w1, 0) Gy (s D\{@p-1, - . ., 0j11})

Il
o

j
1
P(@j, 0j41) Gy (05 D\{@j11, . . ., 0p-1}).

n

Il
o

J

Finally observe that G,(x;D’) = G,-(x;D’). Thus, (9) and (10) imply (8). O
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Let y = (y9,71,---,7;) be the loop erasure of the time-reversal of the natural
random walk stopped on exiting D. By Proposition 4.1, we may think that y
is the time-reversal of the loop erasure. (In Section 5, we treat y as the time-
reversal of the loop erasure. But in this section, we treat y as the loop erasure of
the time-reversal because it is more suitable to consider the following properties
of 7.)

Let D; : D\U, o 7i>7ip1]. For any jeN,

nj:=min{n > 0: S(n) = y;}.

Because the loop erasure y is determined from the boundary, y has the following
Markov property.

ProposiTION 4.2 (Lemma 3.2. in [3]). Conditioned on |0, j], the following
holds.
1. S[0,n;] and Sn;,tp) are independent.
2. y[j, 1] has the same distribution as the loop erasure of time-reversal of the
natural random walk S[0,7p,] conditioned to exit at y;.

4.2. Martingale observable for LERW

Let D& C be a simply connected domain. Let S¥(-) be a natural
random walk on G started at xe V. Let vye V(D)U0d;,,V (D) and y be the
loop erasure of time-reversal of the natural random walk S*[0,7p]. Let D;:=
D\U, _o i»7i+1). The hitting probability H;(u,v) is defined by

H(u,0) i= P(S"(zp,) = v).
Let % be a filtration generated by [0, j].

ProposiTION 4.3.  For any we V(D), let

I‘Ij(W,j)]-)
1_1./(007))_1')

Then, M; is a martingale with respect to 7.

M; =

Lawler, Schramm and Werner [3] point out that the martingale M; given
above should be a possible martingale observable, although they dont adopt
it but a martingale formed by the Green functions of evolving domains. They
pr0V1de a curtailed proof that M; is a martingale. Since M; plays the central
role in this paper we give a detalled proof of this fact.

Proof. First, we consider another representation of M;. Let S*(-) be a
independent copy of S¥(-) and L be the loop erasure of the time-reversal
of §¥[0,7p]. We will denote by Q the law of S. Fix y[0,/]. By Proposition
4.2,
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Q(L,[0, /] =700, /]) Q(S"(tn,) = 7,)Q(L,[0, j] = 70, /])
Q(L,,[0, j] = 7[0, 1) Q(S’O(f) 7)Q(L,, [0, /1 = 7[0, j])

Therefore, we can write

Hence,

Q(Lw[o7j] = V[07j]; Lw(j + 1) = U)
Q(LUO[Ovj] = y[ovj]aLvo(j+ 1) = U)’

E(M;[y0, /]l = > Py, =vy[0,/])-
ve V(D;)

and, since P(y;,; = v[y[0, j]) = Q(Ly,(j + 1) = v|Ly[0, j] = [0, j]), the right-hand
side reduces to
) Q(Ly[0, /1 =700, J], Lu(j +1) =v) _ Q(Ly[0,/] =7[0,/])
ve V(D)) Q(Ly[0, /1 = 7[0, /]) Q(Ly [0, /1 = 7[0, j])

Thus, M; is a martingale. O

4.3. Estimates of discrete harmonic measures
For 6 > 0, the graph G5 = (Vs,Es) defined by

Vs ={ou:ueV}, Es=/{(0u,ov): E(u,v)>0}.

Let the Markov chain S5(-) on Vs be the scaling of S(-) by a factor of . We
call S5(-) the natural random walk on Gs. Let Sj(-) be a natural random walk
on Gs started at x € V5. Similarly, we can define H( >(u, v), Vs(D), 0puVs(D),
ain V(F(D)

Let D={zeC:|z] < 1} be the unit disc.

DerINITION 4.4, If the family of the random walks S5 satisfies the following
condition, then we say that Sj satisfies invariance principle:

For any compact set K = D and € > 0, there is some Jy > 0 such that the
following holds. Let Z* be a two-dimensional Brownian motion started at x
stopped on exiting D. For any 0 < J < dy and x € KN Vs, there exists a coupling
of S5 and Z* satisfying

P(du(S5[0,tp],Z%) >¢€) <€
In view of the Skorokhod representation theorem the above condition is

equivalent to holding that S5 weakly converges to Z* uniformly for all x e K.
In [10] (Lemma 1.2) the following result is proved.
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PrOPOSITION 4.5.  Suppose that Sj satisfies invariance principle. For any
positive constants r, ¢ and n < 1, there exists some oy > 0 such that for all 0 <
0 <y the following holds. Let D c D, let pe Vs(D) be such that rad,(D) > r,
and let y : D — D be a conformal map with yy(p) =0. Let ye Vs(D) be such
that |W(y)| <1 —n and let a € 04y, Vs(D). Then,

H (r.0) Ko((»), (@)
Hé(s)(p,a) Kp(y(p),y(a))

where Kp stands for the Poisson kernel of D.

< €,

The Poisson kernel of H is given by

K].[(u,v)::—l Im( ! >—l ImuZ.
T u—7v n\u—v|

The result above may be translated in terms of Ky. For our purpose we apply it
in a rather trivial fashion. Let

CoROLLARY 4.6. Suppose that Sj satisfies invariance principle. For any
constants r >0, € >0, 5> 0 and 1 > 1, there exists some dy > 0 such that for all
0 <9d <y the following holds. Let D < D, let pe D be such that rad,(D) >r,
and let ¢ : D —H be a conformal map with ¢(p) =i Let y,we Vs(D) be
such that Tm ¢(y) > n, Im ¢(w) >n and |p(y)| < A, |¢(w)| <A Then, for all
ae aout V(S(D)

Héé)(Wa a) B Ku(p(w), ¢(a)) < €.

H (y,a)  Kul(g(y), $(a))

Proof. Let ps e Vs(D) be a nearest point of p. Applying Proposition 4.5
with p = ps,
Héd)(w, a) Hé(s)(w, a)/Héé) (ps,a)
) - 0 0
Hy (v.a)  Hy(y.a)/Hy" (s, a)
_ Ko (w), ¥(a))
KD(lp(y)a lﬁ(a))

Because the ratio of the Poisson kernel is conformal invariance, we find

Kp((w),¥(a) _ Kul(g(w), ¢(a))
Ko((y),¥(a)  Kul(¢(y), ¢(a))

This completes the proof. ]

+ O(e).

Here we present the following trivial lemma for convenience of a later
citation.
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LemMa 4.7. Suppose that S5 satisfy invariance principle. For any € >0,
there exists g such that for all 0 <9 < dy, the length of edges of Gs in D is
bounded above by e.

Proof.  Suppose that this Lemma is not true. Then, there exists € > 0 such
that for some sufficiently small J, there exists an edge e of Gy such that the length
of e is bounded below by €. Since Gj is planar graph, S; can not cross the edge
e, so that it cannot behave as a Brownian path and the invariance principle fails
to hold. O

5. Scaling limit

5.1. Convergence with respect to the driving function

Let D < C be a simply connected domain and a, b two distinct points on
0D. We say that 0D is locally analytic at z e dD if there exists a one-to-one
analytic function f:D — C with f(0)=z and f(D)ND=f({weD:Imw >
0}). Let G=(V,E) be a planar irreducible graph and S a natural random
walk on G started at x (see Section 4 for detailed descrlptlon) Let F" be a
natural random walk on Gj started at a; and stopped on exiting D and condi-
tioned to hit 6D at bs, where as is a point of 0, V(D) close to a and by is a point
of 0y Vs(D) close to b such that there exists a path on Gs connecting a; and b;
1n D If 0D is locally analytic at « and b, we can choose such as and bs. Let

’ be the loop erasure of l""b

THEOREM 5.1.  Suppose that S; satisfy invariance principle. Let D be a
bounded simply connected domain and a, b be distinct points on 0D. Suppose
that 0D is locally analytic at a and b. Let ¢ : D — H be a conformal map with
#(a) =0, ¢(b) = 0. Then, ¢o (y(?’“)f converges weakly to the chordal SLE,
curve in H as 6 — 0 with respect to the driving function.

Remark. In order to assure the uniformity of invariance principle so im-
posed in Definition 4.4 it suffices to suppose it only for the walk starting at a
point, e.g., the origin as is shown in [9].

We abbreviate (/(5 9 =y=0o,1,--->7). By Proposmon 4.1, y has the
same distribution as the loop erasure of the time-reversal of l"a . Hence it is
possible for y to use results in Section 4. Let % be a filtration generated by

7[0,7]. We may also think that 70, ] is the 51mple curve that is a linear
interpolation.

Let U(t) be a driving function of ¢(y) and g, be a Loewner chain driven by
U(r). Let t;:= 1 heap ¢(y[0, j]) and

U' = U(t'), ¢j =gy 0 ¢ and Dj = D\V[Oaj]

Let p;:=¢; (i+ U;). p; plays the role of a reference point, an ‘origin’, of
D;. In radjlal case, such a point is fixed at the origin. But in chordal case, p;
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must be moved with j, so that there remains sufficient space around p; in D;, a
sequence of reducing domains formed by encroachment of y into D. (Cf. [7]).

We use the martingale introduced in Proposition 4.3, as in [3] and [10]. But
we need to normalize it appropriately. We denote by Sf a natural random walk
on Gs started at bs. Let 4 := ¢_l([—1, 1]) and the normalization is made by
multiplying P(S?(zp) € 4), which we name M;:

©)
(1) )
I—Ij (b7yj)

(for any 0 > 0 and w e V3(D)), where we write H(g&)(b;A) = P(St(tp) € A).

Let D < C be a simply connected domain, @, b two distinct points on D and
¢ : D — H a conformal map with ¢(a) =0, ¢(b) = oo as before. Let p = ¢~ '(i).
Put W(z) =(z—1i)/(z+1i). Define y:=%¥o¢:D — D, which is a conformal
map with (b)) =1, y(p) =0, y(a) = —1. Let 2 =2(r,R,n) be the collection
of all quadruplets (D,a,b, p) such that rad,(D) >r and D = RD and ' has
analytic extension in {zeC:|z— 1] <#u}.

In the rest of this section let r, R and # be arbitrarily fixed positive constants
and suppose the same hypothesis of Theorem 5.1 to be valid. We write & for
2(r,R,n) and consider (D,a,b,p)e 2. For dealing with the martingale ob-
servable M; defined above the following lemma plays a significant role and
2(r,R,n) is introduced as a class for which the estimates given there is valid
uniformly.

LeEmMA 5.2.  There exists a number g = Ao(n) > 1/2 such that for any ¢ >0
and A > Jg, there exists numbers 5y > 0 and o € (0,1/2) such that if (D,a,b,p) €
G(r,R,5), 0<d<dy and D' = D\¢p ' ({z : |z| < 2A}), then

(12) P(Im ¢(S{(1p))) < 2k | SL(tp) € A) < ¢,
and, if diam(4(y[0, j])) < 1, then
(13) P(Im ¢(S3 (1)) < 24| S} (tp,) = 3;) < €.

The proof of Lemma 5.2 is involved and postponed to the end of Section 6.
For any ¢ > 0, let

m:=min{j>1:4>¢ or |U — Uy| > €}.
LeEMMA 5.3. There exists a constant C > 0 and a number ¢y > 0 such that

Sor each positive € < €, there exists 5y > 0 such that if (D,a,b, p) € 2(r,R,n) and
0 <0 <0y, then

|E[U,, — Uy]| < C€,
and

|E[(l]ﬂl - U0)2 - 2t}n“ S CE3.
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(Although Uy = 0, we write Uy in the formulae above to indicate how they show be
when the starting position Uy =y, is not mapped to the origin by ¢.)

Proof. This proof is broken into four steps. It consists of certain estima-
tions of the harmonic functions that constitutes the martingale observable defined

by (11).

Step 1. In this step we derive an expression, given in (16) below, of the
ratio

H (b,7,)/H (b; 4).

We take sufficiently small ¢y > 0, which we need in this proof. Given 0 < e < ¢
we take a number 1=1/¢® that will be specified shortly. Let D’:=
D\¢ ' (B(Uy,22) NH) (note that B(Uy,24) = {z:|z| <22)). In the following
we consider for j=0,1,2,..., although we apply the resulting relation only
for j=0,m,

HO (b)) = Y P(SHtp) = »,8 (1) =)
yeVs(D)

We split the sum on the right-hand side into two parts according as y is close to
the boundary of D or not. The part of those y which are close to the boundary
must be negligible.

Proposition 2.3 and the definition of m imply that diam(#(y[0,m — 1])) =
O(e). By Lemma 4.7, the harmonic measure from p of y[m — 1,m] in D,, is O(e)
for sufficiently small 6 > 0. By conformal invariance of harmonic measure, the
harmonic measure from ¢,,_;(p) of ¢,_;(yim—1,m]) in H\¢,,_,(y[m — 1,m]) is
O(e). This implies that diam(¢,,_;(y[m — 1,m])) = O(e), and we have

(14) diam(¢(3[0,m])) = O(e).

By (14) and Lemma 5.2, we can choose o = a(¢) < 1/2 so that for all sufficiently
small 6 >0, for j=0,m,
P(Im (S} (1p)) < 24| S (p,) = 7;) = O(€)).
This implies
P(Im ¢(S)(tpr)) < 2,87 (tp,) = ;) _ P(Im #(S7(zp)) < 0h| S (tp,) = ;)

P(Im ¢(S7(zp1)) = 04, S} (1p) =) P(Im §(SP(zp')) = 0i| S} (tp,) = 7))
= 0(%).

Therefore,

) h h
(15)  HO(by)=01+0E) Y. P(SHip) =y, S() =7,).
yeVs(D)
Im¢(y)=>ol
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By strong Markov property,
P(S}(zp) = .87 (wn) =7;) _ P(S)(rp) = »)P(S5 () = 1)

HY (b; 4) P(Sy(tp) € 4)
P(S!(zp) = y)P(S](tp) € A) . P(S; (tp,) = 7;)
B P(S)(tp) € A) P(S)(tp) € A)
Therefore, (15) implies
(16) M (1+0() > P(SH(p) = p|Si(ep) € )
H()@)(b;A) yeVs(D) o VISotep
Im ¢(y) >0l
H (3,)
H (v;4)

Step 2. Let we Vs and y e Vs(D) satisfy
1
(17)  Im ¢(w) > 3 lp(w) — Up| <3; Ima(y) =ad, A<|p(y)— Up| <24

Applying Corollary 4.6 to the domain D with a reference point p,
s
Hy (v, 70) _ Im §(w)/|(w) = Uol’

(18) , = o(e%),
HY (v,70)  Tm §(3)/16(») = Uol’
and the assumed invariance principle implies
) 1
(19) HY (y;4) le de—kO(s%/l)
~1[p(y) — x|

since |¢(y) — Up|*/Im ¢(y) < 22/a (recall o/4 must get small together with &).
The relations (17), (18) and (19) together imply

)
Hé ', 75) ©)

Img(w) (" () — Uo|? 3
20 Hy'(y;4) = dx + O(e
@) g e H )nWM—uﬁjwmw—ﬁ + o)
_ 2 Im d(w)

R 63.
7 loom — vof T O

From (16) and (20) we infer that
L H ()

Mo 5 (b; A)HS (w3 9,)

_ 3 E Im ¢(w) &3
= (14 0(%)) Z) p(y)/[nim 7U0|2+0( )|

yeVs(D (W)
Im ¢(y)>al
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where p(y) =P(St(tp) = y|Si(zp) € 4). In view of Lemma 5.2, we can
suppose

(21) > p(y)=1+0(),
yeVs(D)
Im ¢(y)>al

by replacing o by smaller one if necessary. Since Im @(w)/|¢(w) — Up|* is
bounded by a universal constant, we now conclude

2 Img(w)
"R g(w) — U

-2 m(gmrg) O

Step 3. We derive an analogous formula for M,,. Lemma 2.3 and (14)
imply

(23) tw = O0(€?), |U(s) — U(0)] = O(e) for Vse[0,1,).

(22) O(€)

The Loewner equation (1) shows that

2
(24) 0l zl < R =T

and, observing the imaginary part of the Loewner equation,

(25) 12%2@){1) 7t~sup;2 .
Im z o<s<t |gy(z) — U(s)]

We also find % Im ¢,(z) = —2/Im g¢,(z), and this implies %(Im 9:(2))* = —4.

By integrating this relation over [0,7], we get (Im g,(z))? > (Im z)* — 4z. Since
tm = O(€?), we have Im g;0¢(w) > 1/4 for 0 <s <t,. Therefore, (24) gives

(26) lgs 0 p(w) — p(w)| = O(*)  for Vs e [0, 1,,].
Let o:=inf{r > 0:|g,(z) — U(2)] < A/2}. Using (24), we get |gs(z) —z| <
40/J and
4 1
Iz U(0)| < 7"+§+ \U() — U(0)].
Thus, if |z — U(0)| > 4, then ¢ > t,. This implies |g; 0 ¢(y) — U(s)| = 4/2 for
0 <s<t,. Therefore, (24) and (25) lead to

@) 40(0) = #0)] = O() and TR 1+ 0(s).
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(26) and (27) imply

1 L7} ,

Im ¢m(W) = 57 |¢m(w) - Um| < 47 Im ¢m(y) = 7a 5 < |¢m(y) - Um| < 3L
and it follows from Lemma 2.4 that rad,,(D,,) > r’ for some r' > 0. Therefore,
we can apply Corollary 4.6 to the domain D,, with the reference point p,,, and
hence the relation (19) implies

H”(f)(waym) H(§>( A) _ Im ¢m(w) Jl Im ¢(y) . |¢m(y) - ljm'2

I =

Hy (7, 7) 7l (w) = Unl® ST 60 () 16(9) = xI?

+ 0(é%).

Thus, from (16), (21) and (27) we get

dx

(28) Mngm(gzilaﬁ+o@y

Step 4. Proposition 4.3 implies that M; is a martingale. Because m is a
bounded stopping time,

E[M,, — My] = 0.

Thus, (22) and (28) lead to

@ () s e
(23) and (26) imply

1 1

= -
gsop(w) = Uls)  ¢(w) — Uy
By integrating this relation over [0,7,], Loewner equation and (23) show that
2
30 m(W) = o(w) + ———
(30) ) = $0) + g
Let f(u,v) =1/(u—v). Using (23) and (30), we Taylor-expand f(¢,,(w), U,) —

f(p(w), Up) with respect to ¢,,(w) — ¢(w) and U,, — Uy, up to O(e*). Observing
imaginary part of this Taylor expansion, from (29) and (30) we get

O(e) for Vse[0,1,].

i+ 0(63).

o _ o U
(31) Im <(¢(w) — U0)2>E[Um Uy + Im<(¢(w) - U0)3>E[( U, — Up)” — 2tn]
= 0(e).

Now, we consider two different choices of w under the constraint w e Vs such
that Im ¢(w) > 1, |¢(w)| <3. By the Koebe distortion theorem we can find w
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satisfying ¢(w) — Uy = i + O(e*). Then, (31) implies
(32) E[(Uy — Up)® = 2t) = O(€?).
Similarly, we can find w satisfying ¢(w) — Uy = e'™3 + O(¢’) and we get
(33) E[U,, — Up] = O(€%). O

As in Subsection 2.3, let D(¢) = D\y[0,1], ¢, =g, 0 ¢ and p(t) = ¢, (i + U(2)).

Lemma 5.4. Let T >1 and &> 0, and, given a quadruplet (D,a,b,p) e Z,
put T =sup{te[0,T]:|U(t)| <1/e}. Then, there exists 5, =n(T,e) >0 and
ri =r(T,e) >0 such that (D(t),y(¢),b, p(t)) € Z(r1,R,n,) for all t < T.

Proof. Let g;(z):=g,z)— U(t). Put ¥(z) = (z—1i)/(z+i). Define the
conformal map h, : D\y(y[0,7]) — D by

h(z):=Wog o¥(2).

Put ,(z) := h, o y(z) so that ,: D(¢) — D is a conformal map with ¥, (y(z)) =
=1, ¥, (b) =1, Y (p(t)) =0. Clearly d(D\y(y[0,1])) is locally analytic at 1 and
h(1)=1. On using the Loewner equation we infer that g/(z) =1 as z — oo,
which implies 7;(1) = Now we can choose a positive #; < /4 such that if
t < T, then y(y [ 1) does not intersect with B:={zeC:|z— 1| <4n,}. Thus,
h, is analytically extended to B for 1 < T, so that in view of Koebe’s 1 /4 theorem
h! has an analytlc extension in {zeC: \z— 1| <n} for t < T. Since v,
xp’ oh ! and ! is analytic on B, x//, has an analytic extension in {z e C
|z —1] < n} for t < T. The existence of r; is deduced from Lemma 2.4. Thus
the assertion of the lemma has been proved. O

Proof of Theorem 5.1. Having proved Lemma 5.3 it is easy to adapt the
arguments given in [7]. Let D be as in the theorem and take R so that D < RD.
Let r:=rad,(D). From our hypothesis of local analyticity of 0D at b, the
function { has an analytic extension in a neighborhood of 5. Thus, we can
choose 1 > 0 such that y ! is analytic in {ze C: |z — 1| < 5}, hence (D, a,b, p) €
Z(r,R,n). N

Let T > 1 and ¢ >0 and put T =sup{re[0,7]:|U(t)| < 1/e;}. Lete>0
be small enough. Let my =0 and define m, inductively by

My c=min{j > my_1 1 t; — by, | = € or |Uj — Un, | = €}

Let N:=max{neN:¢, < T}. By Lemma 5.4, we can take some positive
constants r; and #; such that (D > Vs D s Pm,) € Q(rl,R n,) for any n < N.

By the Markov property stated in Proposition 4.2, we find that y(m)(.) =
y(tm, + ) is the same distribution as the time-reversal of the loop erasure of
a natural random walk on G; started at b5 and stopped on exiting D, and
conditioned to hit dD,,, at y,, . We apply Lemma 5.3 with (D,,7,, ,b, pm,) for
any n < N. Then, we deduce from the fact stated at (3) that there exists dy =



324 HIROYUKI SUZUKI
oo(€, €1, T) > 0 such that if J < Jy, then for any n < N

E[Umnﬂ = Up, | 7[0,my,]] = 0(63)’
and

E[(Un1n+1 - Umn)z |70, m,]] = E[Z(tmn+1 — tm,) | 70, my]] + 0(63)'

The rest of proof of Theorem 5.1 is the proof that U(r) weakly converges to
V2B(t) uniformly on [0, T] as 6 — 0, where B(¢) is a one-dimensional standard
Brownian motion with B(0) = 0. This proof follows from the above estimate
and the Skorokhod embedding theorem as in [3] and [7]. (See Subsection 3.3 in
[3] and Corollary 4.3 in [7].) O

5.2. Convergence with respect to the metric dy

Now, we assume that there exists an invariant measure 7z for a natural
random walk S(-) on G such that 0 < z(v) < oo for any ve V. Let p(u,v) be
the transition probability for S(-). We consider the dual walk S*(-). The transi-
tion probability of S*(-), denoted by p*(u,v), is given by

Then, the dual walk S*(-) is a natural random walk on some other planar
irreducible graph. As in the case of S(-), we define (S*);, (TP, (y)&?
corresponding to S*(-). The following lemma is a relation between the time-
reversal and the dual walk.

PrROPOSITION 5.5.  Suppose that there exists an invariant measure w for a
natural random walk S(-) on G such that 0 < n(v) < oo for any ve V. Then, the
time-reversal of T3"" has the same distribution as (U*)2“.  Similarly, the time-

reversal of y“" has the same distribution as (y*)2¢.
y() Y )s

Proof. The first assertion immediately follows from the definition of the
dual walk and the conditional probability. In addition to the first assertion,
applying Proposition 4.1,

by — b1— d by—1 d *\ b, *\ b,
(757)" = LIIF°] = LITS") 7] = LI(T7)7 ] = (07)5",
where £ means the same distribution. Hence, we get the second assertion.

O

Let #? be a chordal SLE; curve in D from a to b. Recall the metric dy
defined by (6) in Subsection 2.4.

THEOREM 5.6. Suppose that there exists an invariant measure 7 for a natural
random walk S(-) on G such that 0 < n(v) < oo for any ve V and Sy and (S*);
satisfy invariance principle. Let D be a bounded simply connected domain and
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a,be dD be distinct points. Suppose that 0D is locally analytic at a and b.
Then, y(’;’b converges weakly to n®* as 5 — 0 with respect to the metric dy.

Proof. Let ¢: D — H be a conformal map with ¢(a) =0, ¢(b) = oo and
Let ¢ : D — H be a conformal map with ¢(b) =0, ¢(a) = co. Theorem 5.1
implies that ¢~ o (y(?’b)f converges weakly to a chordal SLE, with respect to the
driving function. Because we also assume that (S*); satisfy invariance principle,
Theorem 5.1 implies that ¢ o ((y*)f“)f converges weakly to a chordal SLE, with
respect to the driving function. By Proposition 5.5, yg"b is the same distribution
as ((y*)é””)f. Hence, ¢ o y(g“b converges weakly to a chordal SLE, with respect
to the driving function. Therefore, Theorem 3.6 completes the proof. O

6. Estimates of hitting probabilities of the random walk started
at a boundary point

In this section we prove Lemma 5.2. To this end it is convenient to work
in the disc D instead of H. Let D < C be a simply connected domain and «a, b
be distinct points on 0D. Let ¢: D — H be a conformal map with ¢(a) =0,
¢(b) = 0. Let p:=¢ '(i). Put ¥(z)=(z—1)/(z+1) and y = P o ¢ so that
Y is a conformal map of D onto D with y(a) = —1, y(b) = 1, Y(p) =0. Let S?
be a natural random walk on Gy started at bs, where bs is a point of 9, Vs(D)
close to b.

Recall the class Z(r,R,7,), which is the collection of all quadruplets
(D,a,b, p) such that rad,(D) >r and D = RD and ! has analytic extension
in {zeC:|z—1] <ny}. Throughout this section we consider the constants r, R
and 7, to be fixed and write 2 for Z(r,R,#,); also suppose that Sy satisfies
invariance principle.

For (D,a,b,p) € ¥ and n <nyA 3 put

U=U,={zeD:|y(z) - 1| <n}
and for any number o from the open interval (0,1/2),

Jy, ={z€dU : dist(y(z),0D) < o,z € D}.

ProposITION 6.1. Let U = U, and J, be as described above. Then for any
e > 0 there exists 69 = 0(g,n) > 0 such that for all positive 6 < dy, o < dy and for
all (D,a,b,p)e P,

P(S!(tv) € J,| SL(tv) € D) <e,
Here 0y may depend on the graph (V,E).
Remark. 1t is only for this proposition that we need the condition of the

analyticity about . Without that condition the estimate of the proposition is
obtained by Uchiyama [9].
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Proof. This proof is an adaptation of a part of the arguments given in
[9]. Put
C={zedD:Imy(z) > 0,|¥(z) — 1] < n/3},

and

B={zeC:|Y(z) -1 <n/3\U, Q=BUCUU.
Let

Cs={veVs(D):[u,v)NC #0 for some ue Vs(B)},
and v* be a vertex in Cs such that Im y(v*) is closest to #/6 among vertexes
of Cs.

Let L denote the last time when the walk S¢" in Q killed when it crosses the
boundary 0Q exits B:

;! +max{0 <n<1q:S/ (n)eB} if S ()¢ 0B
o if S¥'(1q)€dB

We write 7 =1ty. Putting J;) =J,NH we compute ¢ = P(S} (1) € J,"), the
probability that the walk exits Q through J;°, which we rewrite as

q= P(S(;”*(T) o0 el, L<1q),

where the shift operator 6, acts on T as well as on SY. By employing the
strong Markov property

g=>_Y P(SJ(T)ob,el; L=nS(n)=y)

n=0 yeC;s

=Y D PSS (D) obyel] S (n) =)

- f: P(Sy (n) = y)P(S}(T) e J,")

The occurrence of the event S3(7) € J,/ for y € C; entails Sj(T) € D, so that
P(S;(T)eJ}) =P(S;(T) e J,;,S;(T)e D). Hence, bringing in the conditional
probability

p(y) =P(S5(T)eJ, | S5(T) e D),
we infer that
g=>_ Ga(v",y)P(S}(T) e D)p(y),
yeCs

where Ggq stands for the Green function of the walk killed on exiting Q. We
have

p(y) = pb), yedG,
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for, if y* denote a path joining b5 with J; in Vs(U), then the walk starting at
y € Cs and conditioned on the event S;(7') € D must hit y? UJ} before existing
U. Observing the identity

Z Ga(v*, y)P(S](T) € D) = P(S; (ta) € D),
7eGy

we finally obtain

4> p(B)P(S! (z0) € D).
This concludes p(b) < €/2 since P(S}{ (1q) € D) > 1/3 and ¢ < €/6 for all suffi-
ciently small 6 and o. Let J; =J,\J,;;. On defining C with Im y(z) <0 in

place of Im (z) > 0 we repeat the same argument to show that P(S/(T) e J, |
SH(T) e D) < ¢/2. O

LEMMA 6.2. Let A := ¢ '([—=1,1]). For any € > 0, there exists o = do(e,n)
> 0 such that the following holds. Let (D,a,b,p) € %. Then, for all 0 <J <y
and 0 < o < dy,

P(S!(ty) e J,|Si(tp) e 4) < e

e

Proof. By the definition of the conditional probability and the strong
Markov property,

P(S!(zv) € Jy| S (wp) € 4) _ P(S{(tu) € T, SE(zp) € 4)
P(Si(ty) ¢ J,| Sl (tp) e A)  P(SE(ty) ¢ Jy, SE(1p) € A)
_ 200, P87 (r0) = »)P(S; (zp) € 4)
Ey$], P(S(?(TU) = y)P(Sg(TD) ed)

Because we assume invariance principle, the hitting probability P(S;(zp) € 4)
can be approximated by the same probability for a Brownian motion. Because
the hitting probability for a Brownian motion is conformal invariant, we can
calculate the hitting probability on the upper half plane instead of D. Therefore,
we find that there exists a universal constant C such that for sufficiently small o,

sup, ., P(S](tp) € 4)

; <C.
inf, ¢, P(S5(tp) € 4) ~

Thus, we obtain
P(Sf(TU) ey | S(;)(TD) € A) < CZ}’EL P(S[)(TU) = y)
P(S)(tu) ¢ Ju|Sy(tp) € A) =~ Xoy4s, P(SP(ruv) = »)

Because
>, P(S"(tv) = »)  P(SL(tv) € J,|Si(zy) € D)

Ypen, PSP (zv) =) P(S(t0) ¢ Ju| S} (tv) € D)’
Proposition 6.1 completes the proof. O
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LEMMA 6.3. For any € >0, there exists o9 =0o(e,) >0 such that the
Sfollowing holds. Let (D,a,b,p) e 2. Then, for all 0 <3 <Jdy and 0 < o < dy,

P(S}(tv) € 11| S5 (tp) = @) < e,
where as is a point of 0y Vs(D) close to a.

Proof. By the definition of the conditional probability,

P(Sp(tv) € Ju| Sy (tp) = @) _ P(S7(tv) € J2, S5 (D) = as)
P(SP(t0) ¢ J«| S} (tp) = as)  P(SP(v) ¢ J, S} (2p) = a)
_P(SP(tv) €44, 7 (tp) = a5 | S (tp) € 4)
P(Si(tv) ¢ Ju, SE(tp) = as | Sk(zp) e A)

Since the random walk conditioned on exiting D through A is Markovian, the
right-hand side above may be written as

>yer, P(Sy(tv) = »| 87 (zp) € A)P(S; (tp) = a5] S5 (tp) € A)
>y es, P(Sy(tv) = »| 87 () € A)P(S; (tp) = a5 | S5 (tp) € A)

By Lemma 5.8. in [10], there exists a universal constant C such that for
sufficiently small 6,

Sup,,c s, P(S;(tp) = as| S; (1p) € A)
infy¢]y P(Sg(TD) =ds | S(;y(‘L'D) € A) -

Hence, we obtain

P(S)(tv) € Ju| S5 (tp) = @) _ P(S;(tv) € 12| S5 (xp) € 4)
P(S(tu) ¢ J. |87 (tp) = as) — ~ P(S§(tv) ¢ Ju| SP(tp) € A)

Therefore, Lemma 6.2 completes the proof. O

Proof of Lemma 5.2. By the mapping ¥(z) = (z —i)/(z + i), the half disc
B(22) := B(Uy,24)NH is mapped to a small disc of radius ~ 1/24 and centered
at 1. For 1/22 <y, (12) follows from applying Lemma 6.2 with this small
disc in place of U, the little discrepancy between them making no harm. If
diam(¢(y[0, j])) < 1, the difference between B, (24) and g, (B, (24)) is insignificant
for sufficiently large 2. Hence, we also have (13) by applying Lemma 6.3 with
(Dj,y,,b, p;), which is legitimate because of Lemma 5.4. O
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