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A SIMPLE MATHEMATICAL MODEL FOR HIGH TEMPERATURE

SUPERCONDUCTIVITY

Masao Nagasawa

Abstract

There exists no established theory for high temperature superconductivity,

since Müller and Bednorz’s discovery in 1986, although some partial theories have

been proposed. We will give a consistent mathematical theory of high temperature

superconductivity based on a theory of stochastic processes of Schrödinger and

Nagasawa.

1. Introduction

Kamerling Onnes discovered in 1911 an interesting phenomenon that the
electric resistance of Hg suddenly disappears at the absolute temperature 4.2 K
and the electric current flows continuously undisturbed. This phenomenon is
called ‘‘superconductivity’’. After his discovery, metals with higher transition
temperatures were looked for, but the highest transition temperature was about
10 K.

A brake-through was made by Müller and Bednorz in 1986. They dis-
covered that a ceramic La2CuO4 (precisely speaking, some percent of La are
replaced by Sr : La2�xSrxCuO4) shows the superconductivity at 40 K. This
phenomenon was called ‘‘high temperature superconductivity’’. ‘‘High temper-
ature’’ means that the transition temperature 40 K is remarkably high compared
to the transition temperature 4.2 K of Hg. However, 40 K is still an extremely
low temperature compared to the normal temperature 300 K. Up to now the
highest transition temperature observed under normal pressure is 95 K of
YBa2Cu3O7�y. (Superconductors with higher transition temperatures have been
discovered under high pressure.)

The ceramic of Müller and Bednorz consists of layers of copper oxide, which
will be called ‘‘yellow layers’’, and layers without copper oxide, which will be
called ‘‘white layers’’, as illustrated:
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Movable particles (electrons or positive holes of electrons) stay in a yellow

layer, which will be defined as R2 � ½0; l�, l > 0, and don’t move across white
layers.

There exists, however, no established theory for high temperature super-
conductivity, as far as my knowledge. We will, therefore, give a theory of high
temperature superconductivity based on a simple mathematical model.

2. Mathematical model of superconductivity

Electrons are fermions, and don’t obey Bose-Einstein statistics. Accord-
ingly, one can’t immediately apply the theory of Bose-Einstein condensation in
discussing the transition to superconductivity of electron gas. We need, there-
fore, additional ideas to solve the problem.

In an accepted theory of Bardeen-Cooper-Schrie¤er (1957) for low temper-
ature superconductivity, two electrons are coupled and regarded as a boson, and
the theory of Bose-Einstein condensation was applied to these bosons. This is
an interesting idea, and was successful in discussing low temperature super-
conductors, but has not given comprehensive understanding of high temperature
superconductivity so far, because it is a di‰cult task to fit the crystal (layer)
structure of high-temperatue superconductors to BCS theory.

We will therefore put BSC aside, and take a di¤erent way to discuss
high temperature superconductivity. It is based on a simple mathematical
idea:

The layer structure of high-temperature superconductors might play a
decisive role for the occurrence of superconductivity. Based on this observation
we will look at ‘‘the components of the motions of movable particles orthogonal
to the copper-oxide-layer’’ and regard the set of orthogonal components of the
motions of particles as ‘‘a set of one-dimensional bose particles’’.

Let us denote a yellow layer as R2 � ½0; l�. We regard the direction
orthogonal to the xy-plane R2 as the z-axis. If we look at the crystal structure
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of the high-temperatur superconductor La2CuO4 in this coordinate system, we
find that the z-direction and x, y-direction play completely di¤erent roles. In
fact, there are upper and lower boundaries in the z-direction, while there is no
such restriction in the x, y-direction. Therefore, it is plausible to assume that
the superconductive current occurs on the xy-plane and the component along the
z-axis concerns the transition to superconductivity.

This can be pictured as follows: Imagine many needles are standing on
the xy-plane (a forest of needles), where lengths of needles are various and
changing in time. (‘‘Needle’’ is just to help making an image, and has no further
meaning.) On each needlepoint sits a movable particle. If we watch arbitrarily
chosen two needles in the forest, they are allowed to have the same length and to
make the same up-down motion at the same time, because the xy-components of
our particles may be di¤erent. Therefore, even though movable particles are
fermions, their z-components may be treated as bosons.

We now collect all needles and put them on the z-axis. (Needles’ standing
points on the xy-plane no longer play any role.) We denote by zðtÞ the value of
a needlepoint on the z-axis, and look at the up-down motion of the needlepoint
zðtÞ. What we observe is, therefore, the set of fall ‘‘needlepoints’’g, that is, the

set Z ¼ fz-components of all movable particles in a yellow layer R2 � ½0; l�g. If
the lengths of needles may become the same and make the same up-down motion
at the same time, the set of fall ‘‘needlepoints’’g is a system of one-dimensional
bose particles.

The model considered above can be formulated with Schrödinger functions.
We assume that the Schrödinger function ctððx; y; zÞ1; ðx; y; zÞ2; ðx; y; zÞ3; . . .Þ
which describes the motion of movable particles (electrons or positive holes
of electrons) in a yellow layer R2 � ½0; l� can be decomposed as

ctððx; y; zÞ1; ðx; y; zÞ2; ðx; y; zÞ3; . . .Þ
¼ ctððx; yÞ1; ðx; yÞ2; ðx; yÞ3; . . .Þ � ctðz1; z2; z3; . . .Þ;

and

ctððx; yÞ1; ðx; yÞ2; ðx; yÞ3; . . .Þ is antisymmetric;

while

ctðz1; z2; z3; . . .Þ is symmetric:

Then, under this assumption of our mathematical model,

ctðz1; z2; z3; . . .Þ is the Schrödinger function of the z-components of the motion
of movables particles in a yellow layer R2 � ½0; l�, and it describes the motion of a
set of bose particles on the z-axis.

Accordingly, we can apply the Bose-Einstein statistics to our one-
dimensional boson gas on the z-axis, and discuss the Bose-Einstein condensation
of this boson gas on the z-axis.

Therefore, under the assumption above, we can conclude:
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The set Z ¼ fz-components of all movable particles (electrons or positive
holes) in a yellow layer R2 � ½0; l�g is a boson gas and makes the Bose-Einstein
condensation.

With this fact in mind, we now look at the motion of movable particles in
a yellow layer. Then the random motion orthogonal to the xy-plane falls down
into the ground state at the time that the Bose-Einstein condensation occurs. What
remains after that is therefore the drift-motion on the xy-plane only. This drift-
motion which remains on the xy-plane is actually ‘‘the permanent electric current’’
of our superconductor.

For the statement above see Proposition 1 in the following section.

Remark. The random motion of the z-component works as a disturbance
to the electric current on the xy-plane, i.e., as electric resistance. This implies
that if the z-component of the motion falls down into the ground state, it is the
minimal unavoidable disturbance to the current on the xy-plane. There exists
therefore no better state of existence for the electric current. This is the so-called
superconductivity.

3. High temperature superconductivity

We consider the ceramic La2CuO4 of Müller and Bednorz. A movable
particle (electron or positive hole of an electron) stays in a yellow layer
R2 � ½0; l�, and doesn’t move across white layers, where l may be regarded
as a thickness of a yellow layer, which should be determined by the crystal
structure of each high temperature superconductor. (To determine the physical
quantity l of each superconductor is entrusted as a problem for physicists.)

Because of the crystal structure, the motion of every movable particle along
the z-axis is confined, but the motion on the xy-plane has no such restriction.
We will show that the z-component of the motion will fall down into the ground
state and work as the minimal electric resistance, while the xy-component of the
motion will be a (permanent) electric current. Thus our superconductor’s crystal
structure along the z-axis and xy-plane play di¤erent roles.

We will follow the observation above, and analyze first of all the z-
component of the motion of a movable particle, which is a one-dimensional
motion on the z-axis confined in an interval ½0; l�, l > 0.

If we confine the motion of a particle on the z-axis in an interval ½0; l�, then
the eigenvalue problem of the motion is

d 2F

dz2
þ 2m

�h2
ðl� VðzÞÞF ¼ 0;

where the potential function VðzÞ is

VðzÞ ¼ 0; z A ½0; l�;
VðzÞ ¼ y; z B ½0; l�:
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In this case, eigenfunctions are

F ¼
ffiffiffi
2

l

r
sin

npz

l
; n ¼ 1; 2; 3; . . . ;

and eigenvalues are

l ¼ �h2

2m
p2 n

2

l2
; n ¼ 1; 2; 3; . . . :ð1Þ

These are possible energies of the random motion of z-components of movable
particles in a yellow layer R2 � ½0; l�.

We now consider a set

Z ¼ fz-components of all movable particles in a yellow layer R2 � ½0; l�g:

As explained in our mathematical model of superconductivity, we can assume
that Z is a set of independent bose particles.

Therefore, the mean number hnei of particles with the energy e is given by
the Bose-Einstein distribution

hnei ¼ 1

expððe� mÞ=kBTÞ � 1
;ð2Þ

where m is the chemical potential, kB is the Boltzmann constant and T is the
temperature (cf. Einstein (1924, 1925)).

Then the mean number Nex of particles in excited states is given by

Nex ¼
X
e

hnei:

In equation (2) we set e ¼ �h2

2m
p2 n

2

l2
as obtained in equation (1), and m ¼ 0.

Then the mean number Nex of particles in excited states is given by

Nex ¼
Xy
n¼1

1

exp
�h2

2m
p2 n

2

l2
=kBT

 !
� 1

:

We denote a ¼ �h2

2m
p2 1

l2
=kBT f 1 and replace summation by integration

Nex ¼
Xy
n¼1

1

expðan2Þ � 1

¼
ðy
1

1

expðax2Þ � 1
dx
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and set y ¼ expðax2Þ

¼ 1

2
ffiffiffi
a

p
ðy
ea

1

yðy� 1Þ
1ffiffiffiffiffiffiffiffiffiffiffi
log y

p dy:

Then, since the only y near by ea contributes mainly to the integral, we
have

F
1

2a

ðy
ea

1

yðy� 1Þ dy;

where the indefinite integral of
1

yðy� 1Þ ¼ � 1

y
þ 1

y� 1
is log

y� 1

y

����
����,

¼ 1

2a
log

y� 1

y

����
����

� �y
ea

¼ 1

2a
log

ea

ea � 1

����
����;

where a ¼ �h2

2m
p2 1

l2
=kBT f 1 and

F
1

2a
log

1

a
:

Therefore,

Nex F
1

2

kBT

�h2

2m
p2 1

l2

log
kBT

�h2

2m
p2 1

l2

:ð3Þ

Now let N be the number of particles per unit volume. If the temperature
T is high enough and Nex > N, then all particles are in excited states. We now
lower the temperature T . Then Nex decreases and will be Nex < N.

We denote the critical temperature by Tc at which Nex ¼ N. Then

kBTc F
�h2

2m
p2 1

l2
2N

log 2N
;ð4Þ

that is, the critical temperature Tc is determined by a structure constant l2 of our
crystal and the number N of particles in our electron gas.

According to Einstein (1924, 1925), the gas of particles is saturated at the
temperature T ¼ Tc. Since the number Nex is less than N at T < Tc, the number

N0 ¼ N �Nex

of particles must be condensed into the state of the lowest energy. This is the so-
called Bose-Einstain condensation. In other words, the motion along the z-axis
falls down into the lowest energy state.
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Definition 1. We will call the critical temperature Tc given in equation (4)
‘‘the transition temperature for high temperature superconductivity’’.

The transition temperature Tc of a high temperature superconductor depends

on
1

l2
, that is, on its crystal structure and the number N of moveable particles

per unit volume.

Remark. About the Bose-Einstain condensation in lower dimensions we
refer to e.g. Görlitz et al. (2001), section 2.6 of Pethick-Smith (2002).

If the temperature goes down, then the kinetic energies of particles decrease,
but in our model the kinetic energy of the motion along the z-axis goes down
to the lowest energy state at the transition temperature Tc, that is, the spatial
symmetry of the motion of particles remarkably breaks down.

We now consider the motion of movable particles in a yellow layer
R2 � ½0; l� at the temperature T aTc.

Let the motion of particles be determined by a complex evolution function
(Schrödinger function)

ctðx; y; zÞ ¼ eRðt;x;y; zÞþiSðt;x;y; zÞ;

or, what is the same, by a pair of evolution functions

ftðx; y; zÞ ¼ eRðt;x;y; zÞþSðt;x;y; zÞ; f̂ftðx; y; zÞ ¼ eRðt;x;y; zÞ�Sðt;x;y; zÞ:

To be precise, ctðx; y; zÞ or a pair fftðx; y; zÞ; f̂ftðx; y; zÞg determines the motion
of the set of movable particles (electron gas) in a yellow layer R2 � ½0; l� as
follows:

If ctðx; y; zÞ or a pair fftðx; y; zÞ; f̂ftðx; y; zÞg is given, then a pair of functions
Rðt; x; y; zÞ and Sðt; x; y; zÞ determine the so-called ‘‘evolution-drift’’

aðt; x; y; zÞ ¼ s2‘ðRðt; x; y; zÞ þ Sðt; x; y; zÞÞ;
and ‘‘time-reversed evolution-drift’’

âaðt; x; y; zÞ ¼ s2‘ðRðt; x; y; zÞ � Sðt; x; y; zÞÞ;

with s2 ¼ �h

m
, where they are defined by

aðt; x; y; zÞ ¼ s2‘ log ftðx; y; zÞ and âaðt; x; y; zÞ ¼ s2‘ log f̂ftðx; y; zÞ:
The evolution-drift aðt; x; y; zÞ is an extension of the notion of velocity in classical
mechanics to the random motion of particles. Therefore, paths of a particle
Xt ¼ ðxt; yt; ztÞ obey a stochastic di¤erential equation

Xt ¼ Xa þ sBt�a þ
ð t
a

aðs;XsÞ ds;ð5Þ

where Bt ¼ ðB1
t ;B

2
t ;B

3
t Þ is a three dimensional Brownian motion.

253a simple mathematical model for high temperature superconductivity



For details of the dynamic theory of systems of random particles, cf., e.g.
Nagasawa (1993, 2000, 2002, 2007, 2012*), or Appendix of Nagasawa (2012) for
a short explanation.

Remark. The ‘‘evolution-drift’’ is first defined for the motion of a single
particle. However, since a Schrödinger function describes also a system of
particles (cf. Nagasawa (1990, 2012*)), the evolution-drift can be regarded as ‘‘the
evolution-drift vector of a system of particles’’.

We now assume T aTc and analyze the motion of movable particles in a
yellow layer R2 � ½0; l� for some details.

Because of the Bose-Einstein condensation, the motion along the z-axis is in
the lowest energy state

F0ðzÞ ¼
ffiffiffi
2

l

r
sin

pz

l
:

In this case the z-component of the evolution-drift is given by

s2 q log F0ðzÞ
qz

¼ s2 p

l
cot

pz

l
:

Therefore, the motion along the z-axis is strongly repelled at the boundary points

z ¼ 0 and l, and attracted to z ¼ l

2
by the evolution-drift s2 p

l
cot

pz

l
, and hence

randomly oscillates at z ¼ l

2
.

Moreover,

qRðt; x; y; zÞ
qz

þ qSðt; x; y; zÞ
qz

¼ p

l
cot

pz

l
;ð6Þ

qRðt; x; y; zÞ
qz

� qSðt; x; y; zÞ
qz

¼ � p

l
cot

pz

l
ð7Þ

must hold. We have, therefore,

qRðt; x; y; zÞ
qz

¼ 0;
qSðt; x; y; zÞ

qz
¼ p

l
cot

pz

l
:ð8Þ

Thus we have shown:

Lemma 1. The evolution-drift vector aðt; x; y; zÞ of movable particles (elec-
trons or positive holes) in a yellow layer is given by

s2 qðRðt; x; yÞ þ Sðt; x; yÞÞ
qx

; s2 qðRðt; x; yÞ þ Sðt; x; yÞÞ
qy

; s2 p

l
cot

pz

l

� �
;ð9Þ

254 masao nagasawa



where s2 ¼ �h

m
. If

cðt; x; y; zÞ ¼ eiðE=�hÞteRðx;yÞþiðSðx;yÞþlogð
ffiffiffiffiffiffi
2=l

p
sinðpz=lÞÞÞ;

then on the xy-plane there exists a flow

aðx; yÞ ¼ s2 qðRðx; yÞ þ Sðx; yÞÞ
qx

; s2 qðRðx; yÞ þ Sðx; yÞÞ
qy

� �
ð10Þ

of movable particles (electrons or positive holes). The z-component s2 p

l
cot

pz

l
of

the drift vector in equation (9) no longer disturbs the flow aðx; yÞ in equation (10),
and hence the flow aðx; yÞ is a permanent electric current.

Lemma 1 implies, therefore,

Proposition 1. A permanent electric current aðx; yÞ in equation (10) occurs
at the transition temperature Tc given by equation (4) (see equation (5) for the
motion of particles), because the z-components of movable particles (electrons or
positive holes) in a yellow layer R2 � ½0; l� fall down into the lowest energy state at
Tc, and no longer disturb the electric current aðx; yÞ.

Remark. According to the general theory of random motion, the kinetic
energy of a particle is given by

Kðt; x; y; zÞ ¼ 1

2m
�h2ðð‘Rðt; x; y; zÞÞ2 þ ð‘Sðt; x; y; zÞÞ2Þ:

Therefore, if the kinetic energy is constant and the z-component of the evolution-
drift vector becomes larger, then the xy-component decreases naturally, i.e., the
z-component of evolution-drift vector works as electric resistance to the electric
current aðx; yÞ on the xy-plane given in equation (10).

This is the reason why we observed the z-component of the motion of
particles and its Bose-Einstein condensation first of all.

One of characteristic phenomena of superconductors is the so-called
Meissner-Ochsenfeld e¤ect, that is, if a magnetic field is weak, it can’t invade
into superconductors. This e¤ect can be explained in our model as follows.
Suppose a magnetic field invades into a superconductor. Then new momentum
is induced to the motion along the z-axis. Consequently, the motion stays
no longer in the lowest energy state. This means that the superconductivity is
destroyed by the magnetic field. Therefore, in order to keep being a supercon-
ductor, any invasion of magnetic fields must be prevented.

If a magnetic field in the enviroment becomes stronger, it will then invade
gradually from the surface of the superconductor and the superconductivity will
be destroyed.
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4. Low temperature superconductivity

Our mathematical model of superconductivity can be applied also to the
low temperature superconductivity, i.e., the case with no white layers. In this
case we may choose the z-axis arbitrarily. We assume Hooke’s potential for the
motion along the z-axis, so that the motion makes random harmonic oscillation.
This is a model hypothesis.

We set m ¼ 1
2 hn in equation (1). Since the energy of the one-dimensional

harmonic oscillation is e ¼ nþ 1
2

� �
hn, the mean number of particles in excited

states is

Nex ¼
Xy
n¼1

1

expðnhn=kBTÞ � 1
:ð11Þ

We set a ¼ hn=kBT in equation (11) and replace the summation by integration

¼
Xy
n¼1

1

expðanÞ � 1

¼
ðy
1

1

expðaxÞ � 1
dx:

By changing variable as expðaxÞ ¼ y, we have

¼ 1

a

ðy
ea

1

yðy� 1Þ dy

where the indefinite integral of
1

yðy� 1Þ is log
y� 1

y

����
����,

¼ 1

a
log

y� 1

y

����
����

� �y
ea

¼ 1

a
log

ea

ea � 1

����
����

where a ¼ hn=kBT f 1 and

F
1

a
log

1

a
:

Thus we have

Nex F
kBT

hn
log

kBT

hn
:ð12Þ

Let N be the number of particles per unit volume. If the temperature T is
high enough and Nex > N, then all particles are in excited states. We now lower
the temperature T . Then Nex decreases and will be Nex < N.
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We denote the critical temperature by Tc at which Nex ¼ N. Then

kBTc F hn
N

log N
:ð13Þ

Therefore, the critical temperature Tc is determined by a structure constant n of
our superconductor and the number N of movable particles.

According to Einstein (1924, 1925), the gas of particles is saturated at the
temperature T ¼ Tc. Since the mean number Nex is less than N at T < Tc, the
number

N0 ¼ N �Nex

of particles must be condensed into the state of the lowest energy, that is, the
Bose-Einstain condensation occurs. In other words, the motion along the z-axis
falls down into the lowest energy state.

Definition 2. The critical temperature Tc given in equation (13) is ‘‘the
transition temperature for low temperature superconductivity’’.

The motion along the z-axis is in the lowest energy state, and the z-
component of the evolution-drift is �s2hnz. Therefore, equations (6), (7) and (8)

hold with �hnz in place of
p

l
cot

pz

l
, and we have

Lemma 2. For low temperature superconductors, the evolution-drift vector
aðt; x; y; zÞ of movable particles ( free electrons) is given by

s2 qðRðt; x; yÞ þ Sðt; x; yÞÞ
qx

; s2 qðRðt; x; yÞ þ Sðt; x; yÞÞ
qy

;�s2hnz

� �
;ð14Þ

where s2 ¼ �h

m
. If

cðt; x; y; zÞ ¼ eiðE=�hÞteRðx;yÞþiðSðx;yÞ�ð1=2Þhnz2Þ;

then on the xy-plane there exists a flow

aðx; yÞ ¼ s2 qðRðx; yÞ þ Sðx; yÞÞ
qx

; s2 qðRðx; yÞ þ Sðx; yÞÞ
qy

� �
ð15Þ

of movable particles ( free electrons). The flow aðx; yÞ is a permanent electric
current, since it is not disturbed by the z-component �s2hnz.

Therefore, Lemma 2 implies

Proposition 2. For low temperature superconductors, a permanent electric
current aðx; yÞ in equation (15) occurs at the transition temperature Tc given
by equation (13) (see equation (5) for the motion of electrons), because the
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z-components of movable particles ( free electrons) fall down into the lowest energy
state at Tc, and no longer disturb the electric current aðx; yÞ.

The transition temperature Tc in equation (13) contains a parameter n, which
is a structure constant of a superconductor, for instance, Hg.

5. Remarks

Remark 1. Low temperature superconductors such as Hg have no structure
of yellow and white layers as in high temperature superconductors such as
La2�xSrxCuO4. A comparison of their transition temperatures

ðlowÞ kBTc F hn
N

log N
; and ðhighÞ kBTc F

�h2

2m
p2 1

l2
2N

log 2N
;

suggest that the lowest energy
�h2

2m
p2 1

l2
of high temperature superconductors

is higher than the lowest energy hn of low temperature superconductors. We
should notice that both transition temperatures depend also on the number N of
particles per unit volume.

Remark 2. It is known (cf., e.g. Fukuyama (1997)) that the occurrence of
superconductivity and the transition temperature Tc of La2�xSrxCuO4 depend not
only on the crystal structure but on the doping x sensitively as illustrated:

We denote Tc ¼ f ðxÞ. Then
1

kB

�h2

2m
p2 1

l2
2N

log 2N
F f ðxÞ in our model. There-

fore, the crystal structure constant l2 and the number N of movable particles
(electrons or positive holes) in yellow layers must be functions of x and

f ðxÞF 1

kB

�h2

2m
p2 1

l2ðxÞ
2NðxÞ

log 2NðxÞ :ð16Þ

Namely, the function f ðxÞ is a result of a mixture of l2ðxÞ and NðxÞ.
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