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SURFACES WITH INFLECTION POINTS IN EUCLIDEAN 4-SPACE
REIKO AryAMA AND KAZUO AKUTAGAWA¥*

Abstract

For a surface in the Euclidean 4-space, we prove a reduction theorem for the
codimension of a surface all whose points are inflection points.

1. Introduction

The curvature ellipse is much interested in the study of a surface M in the
Euclidean 4-space R* (cf. [8, 9, 4]). At a point p e M, the curvature ellipse &,
is defined by the image {II(v, v) eT, M |ve T,M,|v| =1}, in the normal space
TFLM of the unit circle in the tangent plane T M under the second fundamental
form II. If the curvature ellipse &, degenerates to a segment contained in a
straight line passing through 0, of T pLM , we say that p is an inflection point. A
sufficient and necessary condition for p being an inflection point is that there
exists a unit normal vector v, € T, LM such that the v-component <IT,v) of IT at
p vanishes. In particular, if M hes an affine 3-space in R*, then all points are
inflection points. On the other hand, the converse does not hold (e.g. Example
5.2, (ii)). Lane [7] proved that if the surface is exclusively made of inflection
points, then it is locally either a developable surface or lies in a 3-space (cf. Little
[8]). In this paper, we present the following reduction theorem.

THEOREM 1. Let X be a conformal immersion from a connected Riemann
surface S into R*.  Assume that the Gauss curvature K does not vanish anywhere.
If all points of S are inflection points, then the surface X(S) lies in an affine
3-space in R*.

In order to prove this theorem, we introduce a new complex-valued local
invariant A in Section 2. For the resultant A, of X at pe S and the normal
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curvature Ky(p), A(p) satisfies that
2 2
4A, = (Kn(p))” = 4IA(p)I™

The local invariant A, was considered in [8, 9, 4], in order to study of the
curvature ellipse &). The sign of A, determines the position of &, in TLM that
is, whether the origin 0, of TM hes inside of &, or outside of 6, or on &,
(Lemma 2, cf. [8, Sectlon 2]). However, the relation between A, and curvatures
of M is not clear since A, is a polynomial of degree 4 with respect to the
components of second fundamental form IT. On the other hand, the invariant
A(p) is a quadratic polynomial with respect to the components of the mean
curvature vector and the Hopf differential. Hence, the criterion on the position
of &, in T;"M is explicitly expressed in terms of cuvatures of X(S).

In Section 2, we recall the definition of curvature ellipses &, and the
invariant A,. Then we introduce the invariant A. Moreover, we give another
simple proof of the above fact (i.e., Lemma 2) by using A and Ky. In Section 3,
we represent A in terms of the Gauss maps. In Section 4, we prove Theorem 1.
In Section 5, we give some examples of surfaces in R*.

2. Curvature ellipses

We prepare the terminologies following [8] (see also [4]).

Let S be a connected Riemann surface and X : S — R* a conformal immer-
sion. From now on, we identify locally S with X(S) (c R*) via the immersion
X. Let {ej, e, e3,e4} denote an orthonormal frame on an open neighborhood of
S, chosen e; and e, are tangent vectors to S with the frame {e, e,} agreeing with
the orientation of 7,S, and chosen so that e3 and e; are normal to the surface
with the frame {el,ez,e3,e4} agreeing with a fixed orientation of R4 As usual,
define the dual forms w4 = dX -e4 and the connection forms w? 4 =dey - ep.
The indices A, B run from 1 to 4. Then we have the structure equations:

B_ _ A _ B B _ c ., B
0y =—0g, dcoAfE w4 Nog, dcoAfE 0y A

Since w3 = w4 = 0 on S, by the Cartan Lemma, we obtain the functions h“ such
that w} Z/ i The indices i, j run from 1 to 2, and o, § run from 3to 4.
We have the symmetry hj = h;. The second fundamental form IT of the surface
is

I = (d*X - e3)es + (d*X - e4)eq = Z Z hiowje,.
=3 i,j=
The Gauss curvature K is defined by the formula

da)12 = —Kw| A ).



176 REIKO AIYAMA AND KAZUO AKUTAGAWA

The normal curvature Ky is also defined by the formula
dw%‘ = —KNa)1 N Q7.

Both the Gauss curvature K and the normal curvature Ky are described in terms
of the components /;;:

K =iy h3, — (hy)? + b iy — (h)?,

Ky = (h131 - hgz)hi‘z - (hfl - hgz)/7132~
For a given point p €S, consider the unit circle S, 'in 7,5 parametrized
by the angle 0. We call the following map » from S, ' to the normal space TlS
the normal curvature vector. Denote by y, the unit- speed curve on S satlsfymg

79(0) = p and y,(0) = & = cos e + sin Oe,, and define 5(0) = n(&y) by the
normal part of y”(O). Then we obtain that

2

Z CO; f@ COj f(9)

— (e e 3, cos? 0+ 213, cos O sin O + h3, sin® 0
S I}, cos? 0+ 2h}, cos 0'sin 0 + h3, sin” 0
1 1
3 (hi) + h3,) + 3 (h3, — h3,) cos 20 + hi, sin 20

= (e e 1
3 (hi) + h3y) + 3 (hi, — h3,) cos 20 + ht, sin 20

Recall that the mean curvature vector H is given by
(hn +h3)es + 5 (hn +h3)es.
Then we have

cos 20 (hfl - hgz) h132

n(0) = H = (es &;).%”( sin 260

), where # =

| = =

(i, —liz,)

The normal curvature Ky coincides with 2 det(#’). When Ky is not zero at p,
the locus &, of #(0) is an ellipse centered at H in 7,-S. So we call the locus &,
the curvature ellipse at p. When Ky is zero at p, the curvature ellipse &, is a
segment.

At a point p in S, if the origin 0, of T;S lies outside the curvature ellipse
&y, then the point p is said to be hyperbolic. The point p of § is said to be
elliptic if 0, lies inside &,, and the point p of § is said to be parabolic if 0, lies
on &,. (In [11], the hyperbolic points are said to be convex and the elliptic
points are said to be aconvex.) When &, degenerates to a segment contained in
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a straight line passing through 0,, the point p of M is said to be an inflection
point. At an inflection point p in S, Ky =0 at p. Moreover, we can choose a
unit normal vector é; € TPLS such that the components of the second fundamental
form with respect to e; are zero, that is,

2
de . é3 = Z hSw,w, =0.
i,j=1

The last condition is a necessary and sufficient condition for that p is an inflection
point.
The resultant A, of X at p is defined by

hiy 2hiy hy 0
1 hty 2ht, R, 0
410 K, 2k}, h3,)|

0 Ay 2k,
which is the resultant of the two polynomials /3x? + 2hi,xy + h3,»?> and

ht x? + 2ht,xy + h3,y*. By the resultant A,, we can distinguish the position
of &, in T,-M as follows:

A, =

LemMa 2 ([8], [9]). At a point p of S, assume that Ky # 0.
(i) p is a hyperbolic point if and only if A, <O0.

(ii) p is a parabolic point if and only if A, = 0.

(iii) p is an elliptic point if and only if A, > 0.

Set h* =1(h}; + h3,) and ¢* =1 (h#, — h3,) — ihiy (0 = 3,4), where i denotes
the imaginary unit. Then we have H = h’e; + h'ey, K = (h*)> 4+ (h*)* — |¢?|* —
lp*)? and Ky =2 Im(p*p*). Moreover, we set

A=—hp*+hp’.
Then, we have the following lemma by a straightforward computation.
LEMMA 3. At a point p of S,
(1) 4A, = (Ky(p)* —4/A(p)I*.
Remark 4. We can write

d(e) —iey) - (e3 +ieq) nd(e) —ier) - (e3 —ieq) = —2iAP A @,

where ¢ = w; + iws.

The normal curvature vector 5(f) at p e S is given by

3 3020
(2) n(0) = (e3 eq) <Z4 i E:EZ%M); ) ’
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and

dn —2 Im(p3e™?)
do (e ea) ( —2 Im(p*e???) )

Proof of Lemma 2. We give here a different proof from that in [8, Section

2. When 0, lies outside the curvature ellipse &,, there exist 0,0, € [0,7)
d . o

(61 # 6,) such that the tangent vectors d—Z(Hi) of &, is a scalar multiplication of

the position vectors 5(6;) (i =1,2). This implies that the following equation for

0 must have two distinct solutions:

h3+Re(¢3ei20) Im((p3ei20)
h4+Re(ga4ei29) Im((péleizé)) :

(3) 0 = det (;,(9) _% j_g) _

This equation implies that /°+ @3¢’ and h* + ¢p*™’ lie on the same line
through the origin in the complex plane. We then obtain

4) 0 = Im{(h* + p ™) (h* + p*ei20)}
; 1
= Im{(—h’p* + h4(p3)e’29} + EKN.

Then, we have |A| = [—h%p* + h*p?| > 1|Ky|.

When 0, € &, there exists only one ¢ € R/nZ satisfying (4). Then, we have
Al = |=h¢* + h*p®| = 3 |Kn.

When 0, lies inside &,, there exists no solution of the above equation (4).
Then, we have |A| = [—h%p* + h*p®| < L|Ky|. O

LEMMA 5. At a point p of S, assume that Ky = 0.

(I) The curvature ellipse &, consists of only one point if and only if ¢> =
p* =0 at p. In this case, the origin 0, of T,S lies on &, if and only if
H=0 at p.

(II) The curvature ellipse &, is a segment (which is not only one point) if and
only if 93 #0 or p* #0 at p.

(i) The origin 0, of T,S lies on the segment as the curvature ellipse &, if
and only if A =0, |k’ < |9 and |h*| < |p*| at p.

(ii) The origin 0, of T,S lies at the end points of the segment as the
curvature ellipse &, if and only if A =0, |h*| = || and |h*| = |p*|
at p.

Proof. (1) It follows from the equation (2).

(II) When 0, lies on the segment &, there exists 0 € R/nZ such that
7(0) =0, and hence Re(p*e™’) = —h* (a« =3,4). This implies that |p* = |h?¥,
and hence
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1 > LYY
0= EKN = Im(pe™/piei20)

— _Re(¢3€i20) Im((p4ei29) + Im((p3ei29) Re(¢4ei20)
— h3 Im((p4ei2(i) _ h4 Im((p3€i2€)
= —Im{(—h3p* 4+ h*p*)e™’}.

Furthermore, we have

(—h3(p4 + h4gﬂ3)€i20 _ Re{(—h3¢4 +h4¢3)€i20}
— —/’13 Re((p4ei20) + h4 Re(¢3ei2€) —0.

Then, we obtain that A = —h3p* + h*p> = 0.
Conversely, assume that A =0, |h*| <|p*| and [i*] < |p* at p. There
exists 0, € R/nZ satisfying Re(p*e™%*) = —h*. The equation —h3p* + h*p> =0
3 3
implies the existence of w e C satisfying <Z L)=w 24)’ and hence arg ¢ =
arg p*(=: 0y). Hence, we have |p*| cos(0y+20,) = |w||p*|, and then 6; =
04(=: ). This gives that () =0. Now we can conclude the assersion (i).

When 0, lies at the end points of the segment &,, there exists 0 € R/nZ
d .
such that 5(0) =0 and d—ZzO. Hence, we have g%’ = —h* and then A =
—h3p* 4+ h*e* =0 and |p*| = |h*.
Conversely, assume that A =0 and |p% = |h% at p. Then we can get
dn

0 € R/nZ satisfying n(0) = 0= 0 similarly to the above. O

Little [8] has also proved the following equivalent condition on inflection
points. In the following theorem,

Wy by | Lk
& — Wiy ki 20k B
LIk h3 ’h?z 3,
2y | Ly by

We remark that A = det ¥ and Ky = trace <.

THEOREM ([8, Theorem 1.2]). Let pe S. The following three conditions are
equivalent.

(@) p is an inflection point,

(b) & =0 at p,

() Ay =0 and Ky(p) =0.
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Here, we give briefly another proof of the equivalence of (a) and (c). First,
note that p is an inflection point if and only if the equation (3) (and hence (4))
holds at p for any 6. Then, the equation (4) with Ky = 0 implies that A =0,
and hence that A =0.

Moreover, we can get the following characterization in terms of A.

LemMmA 6. A point p in S is an inflection point if and only if A =0 and
Ky =0 at p. When H, #0 especially, p is an inflection point if and only if
A=0 at p.

Proof. Set ¢ = ¢p3e; + p*es and hy = hfje3 +hf‘/e4. Then, we obtain that
1 j \
oAH =Aes neq = Eh“ Ahy — %hlz A (h11 + h»n). Accordingly, the condition

that A =0 is equivalent to that s Ahxy = hio A (B + h2p) = 0. On the other
hand, the condition that Ky =0 is equivalent to /s A (1] — hxp) = 0. Since
the condition that & = 0 is equivalent to sy Ay = hip Al = hip Ay =0, we
obtain the first assertion.

When H # 0, hia A (h1 + hy) = 0 implies that there exists a real number «
satisfying /’112 = Cl(/’l]] + hgz). Then /112 /\]’l]] = ah22 /\h]] = h22 /\/’112. Hence the
conditions H #0 and A =0 imply /Ay Ahyp = hip Ahyp =0. Therefore, we
obtain the second assertion. O

Remark 7. When H, = 0, it is clear that p is an inflection point if and only
if Ky =0 at p.

3. Gauss maps

Following Hoffman-Osserman [6], we will recall some terminologies.

Let S be a connected Riemann surface and X : S — R* a conformal immer-
sion. If z=¢ 414y is a local conformal parameter on S, the (conjugate) Gauss
map G of X is the map from S into the complex quadric Q> in the complex
projective 3-space CP? defined by

(5) G(z) = [‘Z—ﬂ

0, is biholomorphic to the product S? x S? of the Riemann sphere S? = C.
The identification C x C = Q, is given by the map

¢:Cxé—>Q2cCP3,
(w1, w2) = (1 + wyiwa, i(1 — wiwa), wi — wa, —i(wy + w2)).

Set f;}Aznko(_? (k =1,2), where n; and 7, are the projections from @, on
S? = C. Then, the Gauss map G(z) is expressed by the pair (fi(z), f2(z)) of the
functions.



SURFACES WITH INFLECTION POINTS IN EUCLIDEAN 4-SPACE 181
Set ® = ¢(f1, f>) and
A= (fo= fi.=i(fo+ i), 1+ fifo, —i(1 = fi5)).
We conclude that

Re @ Im @ Re 4 Im 4
e =V2—— e=V2"—"—" e=V2—1, e=V2—01
(@]l Dl | 4] 4]

give an adapted local frame field on S [6, Proposition 4.4]. It follows from
D A=d-4=0 that

d(el — iez) . (63 + i€4) /\d(61 — i€2) . (63 — i€4)

) (fizfoz = fizf2z) dz ndz
(1+|f1\2)(1+|f2‘2)(f1~f2 fiz/z) dz ndz

= (F\Fy, — FIF) dz A dZ,
where

Fie =F(fi) = (fo): and F, =F(f;) = )

R L+ Al

Denote the induced metric on S by the form ds? = 2%|dz|>. Then we obtain the
following

LEmMA 8.

i T ~ ~ _—
A == ﬁ(Fle - F]Fz).
Remark 9. The equation (1) combined with this lemma implies that
1 . .
4A = (Ky)? - 7 |FLFy — FL |

J. Monterde has also proved this equation in [10].

On the other hand, in [6, Proposition 4.5], it is also proved that the square
norm of the mean curvature vector H, the Gauss curvature K and normal
curvature Ky of X are given by
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2
©) HE = (R + R
(7) K=J +J,,
(8) Ky =J1— /5.

Here, J; (k =1,2) is the Jacobian of the map f; from (S,4%|dz|*) to the sphere
(52, 40) of radius 1/v/2:

2 R
Ji = p(lel2 —El?).

4. Inflection points

In this section, we prove Theorem 1.

In order to prove that X(S) in R* lies in an affine 3-space, we recall the
following theorem for degenerate Gauss maps by Hoffman and Osserman [6]. A
surface M in R* is said to have degenerate Gauss map if the image of M under
the Gauss map (5) lies in a hyperplane of CP?, that is, there exists a non-zero
complex vector B = (by,b,,b3,bs) such that

9) b1g(z) + b2, (z) + b3gs(z) + bagy(z) = 0,
where (¢(2), 9,(2), 93(2), 94(2)) = ®(2) = (/1 (2), /2(2)).

TuroREM 10 ([6, Theorem 5.3)). Let M be a surface in R* with degenerate
Gauss map, so that (9) holds for some vector B. M lies in some affine 3-space in
R* if and only if B can be chosen to be a real vector.

Proof of Theorem 1. First, if K(p) #0 (p € S), we show that the pullbacks
of the metric gy on S by fi, /> induce a same metric g on an open neighborhood
around p in S.

When H =0 at p € S, from (6), we have |F|| = |F>| =0, and hence (f1): =
(f2): =0 at p. It follows from K # 0 and (7) that we have either |Fy| # 0
or [F>| #0 at p. Since p is an inflection point, we have Ky = 0 and, from (8),
|F1| = |F2|: that iS,

2 2
T 7 T A,
(LA A+ 1A

Now we consider the point p at which H # 0. Since p is an inflection

point, it follows from Lemmas 6 and 8 that

(10) FiF, — F\F, = 0.

Since H # 0, the equation (6) implies that (F}, F>) # 0. Hence, the equation (10)
implies that there exists a complex number o such that at p

(5)-+(5)
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Since K # 0, the equation (7) combined with (11) implies that |a| # 1. Since
Ky =0, it follows from (8) and |x| # 1 that

|F1| = |F2] #0.

This implies that fi, f; are local difftomorphisms. Moreover, we obtain that,
for k=1,2,

dfi|?

(1+ 14l
e (1 4+ Re(2))? + Im(x)? —2 Im(a) dé
— |F e dﬂ)( R (1_Re(“))2+lm(a)2>(dn),

where z =& +iy. Since |a| # 1, these are nondegenerate.

Consequently, the pullbacks of the metric gy by fi, f> induce a same metric
g on an open neighborhood around p in S.

Second, we show that ¢ o fj = f; on S for an orientation-preserving isometry
¢ € Isom, (S? go). For any point pe S, we can take ¢peIsom+(S2,go) such
that (¢, o f1)(p) = f2(p) and d(¢, o f1), = (df2),. From the above argument,
there exist open neighborhoods U, in S and ¥, in S? such that ¢, 0 f1, /» are
isometric diffeomorphism from (U,,g) onto (V},go). Hence ¢,0 fi = f» on U,
(e.g. [5, Lemma 11.2]).

For a fixed point py € S, set W ={pe S|(4, o /1)(p) = f2(p)}. Then, W
is nonempty and obviously closed. Moreover, for any point p € W, there exists
a finite sequence of points {pi|k=0,...,n} in S such that p,=p and
Up ,NUy, #0 (k=1,...,n). On U,  NU,, we have ¢, ofi=fr=¢,ofi
Since fi(U,, ,NU,,) < (S% go) contains obviously at least three distinct points,
then ¢, =¢,. Then ¢,=¢,, and hence U, = W. This implies that W is
open. Since S is connected, W =S, that is, ¢, o fi = f> on S.

The isometry ¢, can be expressed by
_Ow-—P

¢p°(w)_Pw+Q for weC =5 (P,QeC, |P|2+|Q|2=1).

Set B = (b1, b2,b3,b4) = (—Re(P), Im(P), Re(Q), —Im(Q)). Since f> =4, o fi =

(Qfi — P)/(Pfi + Q), the Gauss map G = ¢(f1, f>) of X(S) satisfies the linear
equation

bi(1+ f1/2) + bai(1 = fif2) + b3(fi = f2) — bai(fi + f2) = 0.

Hence, the image of G is contained in the hyperplane in CP3, which is defined by
the real vector B. Theorem 1 can now follow from Theorem 10 by Hoffman and
Osserman. We then conclude that X(S) lies in an affine 3-space in R*. [J

Remark 11. If all points of S are inflection points, the dimension of the first
normal space

NIX(p) = span{Il(v, w) |v,w € T,S}
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at any point p € S is less than 2. Assume that N forms a rank-1 vector sub-
bundle of the normal bundle 7+S. It is well known that X(S) lies in an affine
3-space in R* if and only if N{ is parallel in the normal connection of X (see
[2]). Moreover, from Theorem 1 in [3], if N{¥ is nonparallel, we have that K = 0.

5. Examples

Example 5.1 (Whitney sphere). Let X be a conformal immersion from
a Riemann sphere {(cosu cosv,cosu sinv,sinu)} into the complex 2-space
C? ~ R* given by

X (u,0) = (a(u)e”, fu)e™)
= (a(u) cos v, a(u) sin v, f(u) cos v, f(u) sin v),
where

cos u CoS u sin u
2 2

a(u) = - ) u) = . .
I +sin” u 1 +sin” u
The plane curve y,(u) = (a(u), f(u)) is the lemniscate of Bernoulli, and X gives

the Whitney sphere. Following the computation in [1, Example 3.2], we have

W =0 h4:—2\/§cosu
’ V3 —cos2u’
o= i V2 cos u o= —V2 cosu
V3 —cos2u’ V3 = cos2u’
Ky — 4 cos’ u :i4coszu.
3 —cos2u’ 3 — cos 2u

Hence, X has only two infection points which are parabolic, and the other points
are hyperbolic.

Example 5.2 (graphs in R*). For two functions s(u, v) and #(u,v), the graph
surface X (u,v) in R* is given by
X(“? U) = (u’ U7 S(u’ U)7 t(u’ U))
Set

ny = ( Suy —Sv, 1,0), n = <_lu; _lv707 1)7
E =n-n=1 +(su)2+(sv)2, F' =ny-ny = sty + spts,
G = n-n =1+ ([u)z + (Zv)27 gl = EIG/ - (F/>2>
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1 E F
€] :7Xu7 e = <XU_XM>7
g

VE E
1 _[E F'
6’3—\/—E_/I’117 €4 = ? I’lz—Fnl .

Using the orthonormal frame {e;,es,e3,e4}, we can compute the mean curvature
vector hies + h'es and Ky as follows:

1 E a F?
h* = EXW €y +E (va - ZEXW +EXMM> €y (OC = 354)
! E F G
KN - Suu Suv Sw |5
7 3
\/g_(\/g) luu tul/‘ ZUU
. 1 .
; —E Jgi—F —E(\/gz—F)2
2A = \/a(\/g)3 Suu Suv Svv '
[MM tul/‘ tl/‘l"

2 2
(i) For example, we set s(u,v) :u?—i—v and #(u,v) :%—&—u. Then, the

graph surface has only hyperbolic points and no inflection point.

(i) On the other hand, set s=s(u) and ¢#=t(u). Then, we have that
Ky =0 and A =0, and hence all points are inflection points. This
graph is the product of a curve (u,s(u),#(u)) in R® and a straight line
in R*. Hence, the Gauss curvature K is obviously identically zero.
Therefore, this implies that the assertion in Theorem 1 never hold
without an assumption on the Gauss curvature K.
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