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SURFACES WITH INFLECTION POINTS IN EUCLIDEAN 4-SPACE

Reiko Aiyama and Kazuo Akutagawa*

Abstract

For a surface in the Euclidean 4-space, we prove a reduction theorem for the

codimension of a surface all whose points are inflection points.

1. Introduction

The curvature ellipse is much interested in the study of a surface M in the
Euclidean 4-space R4 (cf. [8, 9, 4]). At a point p A M, the curvature ellipse Ep

is defined by the image fPðv; vÞ A T?
p M j v A TpM; jvj ¼ 1g, in the normal space

T?
p M, of the unit circle in the tangent plane TpM under the second fundamental

form P. If the curvature ellipse Ep degenerates to a segment contained in a
straight line passing through 0p of T?

p M, we say that p is an inflection point. A

su‰cient and necessary condition for p being an inflection point is that there
exists a unit normal vector np A T?

p M such that the n-component hP; ni of P at

p vanishes. In particular, if M lies an a‰ne 3-space in R4, then all points are
inflection points. On the other hand, the converse does not hold (e.g. Example
5.2, (ii)). Lane [7] proved that if the surface is exclusively made of inflection
points, then it is locally either a developable surface or lies in a 3-space (cf. Little
[8]). In this paper, we present the following reduction theorem.

Theorem 1. Let X be a conformal immersion from a connected Riemann
surface S into R4. Assume that the Gauss curvature K does not vanish anywhere.
If all points of S are inflection points, then the surface X ðSÞ lies in an a‰ne
3-space in R4.

In order to prove this theorem, we introduce a new complex-valued local
invariant L in Section 2. For the resultant Dp of X at p A S and the normal
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curvature KNðpÞ, LðpÞ satisfies that

4Dp ¼ ðKNðpÞÞ2 � 4jLðpÞj2:

The local invariant Dp was considered in [8, 9, 4], in order to study of the
curvature ellipse Ep. The sign of Dp determines the position of Ep in T?

p M, that
is, whether the origin 0p of T?

p M lies inside of Ep or outside of Ep or on Ep

(Lemma 2, cf. [8, Section 2]). However, the relation between Dp and curvatures
of M is not clear since Dp is a polynomial of degree 4 with respect to the
components of second fundamental form P. On the other hand, the invariant
LðpÞ is a quadratic polynomial with respect to the components of the mean
curvature vector and the Hopf di¤erential. Hence, the criterion on the position
of Ep in T?

p M is explicitly expressed in terms of cuvatures of X ðSÞ.
In Section 2, we recall the definition of curvature ellipses Ep and the

invariant Dp. Then we introduce the invariant L. Moreover, we give another
simple proof of the above fact (i.e., Lemma 2) by using L and KN . In Section 3,
we represent L in terms of the Gauss maps. In Section 4, we prove Theorem 1.
In Section 5, we give some examples of surfaces in R4.

2. Curvature ellipses

We prepare the terminologies following [8] (see also [4]).

Let S be a connected Riemann surface and X : S ! R4 a conformal immer-
sion. From now on, we identify locally S with X ðSÞ (HR4) via the immersion
X . Let fe1; e2; e3; e4g denote an orthonormal frame on an open neighborhood of
S, chosen e1 and e2 are tangent vectors to S with the frame fe1; e2g agreeing with
the orientation of TpS, and chosen so that e3 and e4 are normal to the surface
with the frame fe1; e2; e3; e4g agreeing with a fixed orientation of R4. As usual,
define the dual forms oA ¼ dX � eA and the connection forms oB

A ¼ deA � eB.
The indices A, B run from 1 to 4. Then we have the structure equations:

oB
A ¼ �oA

B ; doA ¼
X4
B¼1

oB
A5oB; doB

A ¼
X4
C¼1

oC
A5oB

C :

Since o3 ¼ o4 ¼ 0 on S, by the Cartan Lemma, we obtain the functions ha
ij such

that oa
i ¼

P2
j¼1 h

a
ijoj. The indices i, j run from 1 to 2, and a, b run from 3 to 4.

We have the symmetry ha
ij ¼ ha

ji . The second fundamental form P of the surface
is

P ¼ ðd 2X � e3Þe3 þ ðd 2X � e4Þe4 ¼
X4
a¼3

X2
i; j¼1

ha
ijoiojea:

The Gauss curvature K is defined by the formula

do2
1 ¼ �Ko15o2:
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The normal curvature KN is also defined by the formula

do4
3 ¼ �KNo15o2:

Both the Gauss curvature K and the normal curvature KN are described in terms
of the components ha

ij :

K ¼ h311h
3
22 � ðh312Þ

2 þ h411h
4
22 � ðh412Þ

2;

KN ¼ ðh311 � h322Þh412 � ðh411 � h422Þh312:

For a given point p A S, consider the unit circle S1
p in TpS parametrized

by the angle y. We call the following map h from S1
p to the normal space T?

p S
the normal curvature vector. Denote by gy the unit-speed curve on S satisfying
gyð0Þ ¼ p and g 0yð0Þ ¼ xy ¼ cos ye1 þ sin ye2, and define hðyÞ ¼ hðxyÞ by the
normal part of g 00y ð0Þ. Then we obtain that

hðyÞ ¼
X4
a¼3

X2
i; j¼1

ha
ijoiðxyÞojðxyÞea

¼ ðe3 e4Þ
h311 cos

2 yþ 2h312 cos y sin yþ h322 sin
2 y

h411 cos
2 yþ 2h412 cos y sin yþ h422 sin

2 y

 !

¼ ðe3 e4Þ

1

2
ðh311 þ h322Þ þ

1

2
ðh311 � h322Þ cos 2yþ h312 sin 2y

1

2
ðh411 þ h422Þ þ

1

2
ðh411 � h422Þ cos 2yþ h412 sin 2y

0
BB@

1
CCA:

Recall that the mean curvature vector H is given by

H ¼ 1

2
ðh311 þ h322Þe3 þ

1

2
ðh411 þ h422Þe4:

Then we have

hðyÞ �H ¼ ðe3 e4ÞH
cos 2y

sin 2y

� �
; where H ¼

1

2
ðh311 � h322Þ h312

1

2
ðh411 � h422Þ h412

0
BB@

1
CCA:

The normal curvature KN coincides with 2 detðHÞ. When KN is not zero at p,
the locus Ep of hðyÞ is an ellipse centered at H in T?

p S. So we call the locus Ep

the curvature ellipse at p. When KN is zero at p, the curvature ellipse Ep is a
segment.

At a point p in S, if the origin 0p of T?
p S lies outside the curvature ellipse

Ep, then the point p is said to be hyperbolic. The point p of S is said to be
elliptic if 0p lies inside Ep, and the point p of S is said to be parabolic if 0p lies
on Ep. (In [11], the hyperbolic points are said to be convex and the elliptic
points are said to be aconvex.) When Ep degenerates to a segment contained in
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a straight line passing through 0p, the point p of M is said to be an inflection
point. At an inflection point p in S, KN ¼ 0 at p. Moreover, we can choose a
unit normal vector ~ee3 A T?

p S such that the components of the second fundamental
form with respect to ~ee3 are zero, that is,

d 2X � ~ee3 ¼
X2
i; j¼1

~hh3ijoioj ¼ 0:

The last condition is a necessary and su‰cient condition for that p is an inflection
point.

The resultant Dp of X at p is defined by

Dp ¼
1

4

h311 2h312 h322 0

h411 2h412 h422 0

0 h311 2h312 h322
0 h411 2h412 h422

���������

���������
;

which is the resultant of the two polynomials h311x
2 þ 2h312xyþ h322 y

2 and
h411x

2 þ 2h412xyþ h422 y
2. By the resultant Dp, we can distinguish the position

of Ep in T?
p M as follows:

Lemma 2 ([8], [9]). At a point p of S, assume that KN 0 0.
(i) p is a hyperbolic point if and only if Dp < 0.
(ii) p is a parabolic point if and only if Dp ¼ 0.
(iii) p is an elliptic point if and only if Dp > 0.

Set ha ¼ 1
2 ðha

11 þ ha
22Þ and ja ¼ 1

2 ðha
11 � ha

22Þ � iha
12 (a ¼ 3; 4), where i denotes

the imaginary unit. Then we have H ¼ h3e3 þ h4e4, K ¼ ðh3Þ2 þ ðh4Þ2 � jj3j2 �
jj4j2 and KN ¼ 2 Imðj3j4Þ. Moreover, we set

L ¼ �h3j4 þ h4j3:

Then, we have the following lemma by a straightforward computation.

Lemma 3. At a point p of S,

4Dp ¼ ðKNðpÞÞ2 � 4jLðpÞj2:ð1Þ

Remark 4. We can write

dðe1 � ie2Þ � ðe3 þ ie4Þ5dðe1 � ie2Þ � ðe3 � ie4Þ ¼ �2iLf5f;

where f ¼ o1 þ io2.

The normal curvature vector hðyÞ at p A S is given by

hðyÞ ¼ ðe3 e4Þ
h3 þReðj3e i2yÞ
h4 þReðj4e i2yÞ

� �
;ð2Þ
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and

dh

dy
¼ ðe3 e4Þ

�2 Imðj3e i2yÞ
�2 Imðj4e i2yÞ

� �
:

Proof of Lemma 2. We give here a di¤erent proof from that in [8, Section
2]. When 0p lies outside the curvature ellipse Ep, there exist y1; y2 A ½0; pÞ

(y1 0 y2) such that the tangent vectors
dh

dy
ðyiÞ of Ep is a scalar multiplication of

the position vectors hðyiÞ (i ¼ 1; 2). This implies that the following equation for
y must have two distinct solutions:

0 ¼ det hðyÞ � 1

2

dh

dy

� �
¼ h3 þReðj3e i2yÞ Imðj3e i2yÞ

h4 þReðj4e i2yÞ Imðj4e i2yÞ

����
����:ð3Þ

This equation implies that h3 þ j3e i2y and h4 þ j4e i2y lie on the same line
through the origin in the complex plane. We then obtain

0 ¼ Imfðh3 þ j3e i2yÞðh4 þ j4e i2yÞgð4Þ

¼ Imfð�h3j4 þ h4j3Þe i2yg þ 1

2
KN :

Then, we have jLj ¼ j�h3j4 þ h4j3j > 1
2 jKN j.

When 0p A Ep, there exists only one y A R=pZ satisfying (4). Then, we have

jLj ¼ j�h3j4 þ h4j3j ¼ 1
2 jKN j.

When 0p lies inside Ep, there exists no solution of the above equation (4).
Then, we have jLj ¼ j�h3j4 þ h4j3j < 1

2 jKN j. r

Lemma 5. At a point p of S, assume that KN ¼ 0.
(I) The curvature ellipse Ep consists of only one point if and only if j3 ¼

j4 ¼ 0 at p. In this case, the origin 0p of TpS lies on Ep if and only if
H ¼ 0 at p.

(II) The curvature ellipse Ep is a segment (which is not only one point) if and
only if j3 0 0 or j4 0 0 at p.
(i) The origin 0p of TpS lies on the segment as the curvature ellipse Ep if

and only if L ¼ 0, jh3je jj3j and jh4je jj4j at p.
(ii) The origin 0p of TpS lies at the end points of the segment as the

curvature ellipse Ep if and only if L ¼ 0, jh3j ¼ jj3j and jh4j ¼ jj4j
at p.

Proof. (I) It follows from the equation (2).
(II) When 0p lies on the segment Ep, there exists y A R=pZ such that

hðyÞ ¼ 0, and hence Reðjae i2yÞ ¼ �ha (a ¼ 3; 4). This implies that jjajf jhaj,
and hence
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0 ¼ 1

2
KN ¼ Imðj3e i2yj4e i2yÞ

¼ �Reðj3e i2yÞ Imðj4e i2yÞ þ Imðj3e i2yÞ Reðj4e i2yÞ

¼ h3 Imðj4e i2yÞ � h4 Imðj3e i2yÞ

¼ �Imfð�h3j4 þ h4j3Þe i2yg:

Furthermore, we have

ð�h3j4 þ h4j3Þe i2y ¼ Refð�h3j4 þ h4j3Þe i2yg

¼ �h3 Reðj4e i2yÞ þ h4 Reðj3e i2yÞ ¼ 0:

Then, we obtain that L ¼ �h3j4 þ h4j3 ¼ 0.
Conversely, assume that L ¼ 0, jh3je jj3j and jh4je jj4j at p. There

exists ya A R=pZ satisfying Reðjae i2yaÞ ¼ �ha. The equation �h3j4 þ h4j3 ¼ 0

implies the existence of w A C satisfying
h3

h4

� �
¼ w

j3

j4

� �
, and hence arg j3 ¼

arg j4ð¼: y0Þ. Hence, we have jjaj cosðy0 þ 2yaÞ ¼ jwj jjaj, and then y3 ¼
y4ð¼: yÞ. This gives that hðyÞ ¼ 0. Now we can conclude the assersion (i).

When 0p lies at the end points of the segment Ep, there exists y A R=pZ

such that hðyÞ ¼ 0 and
dh

dy
¼ 0. Hence, we have jae i2y ¼ �ha, and then L ¼

�h3j4 þ h4j3 ¼ 0 and jjaj ¼ jhaj.
Conversely, assume that L ¼ 0 and jjaj ¼ jhaj at p. Then we can get

y A R=pZ satisfying hðyÞ ¼ dh

dy
¼ 0 similarly to the above. r

Little [8] has also proved the following equivalent condition on inflection
points. In the following theorem,

S ¼

h311 h312
h411 h412

����
���� 1

2

h311 h322
h411 h422

����
����

1

2

h311 h322
h411 h422

����
���� h312 h322

h412 h422

����
����

0
BBB@

1
CCCA:

We remark that D ¼ det S and KN ¼ trace S.

Theorem ([8, Theorem 1.2]). Let p A S. The following three conditions are
equivalent.

(a) p is an inflection point,
(b) S ¼ 0 at p,
(c) Dp ¼ 0 and KNðpÞ ¼ 0.
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Here, we give briefly another proof of the equivalence of (a) and (c). First,
note that p is an inflection point if and only if the equation (3) (and hence (4))
holds at p for any y. Then, the equation (4) with KN ¼ 0 implies that L ¼ 0,
and hence that D ¼ 0.

Moreover, we can get the following characterization in terms of L.

Lemma 6. A point p in S is an inflection point if and only if L ¼ 0 and
KN ¼ 0 at p. When Hp 0 0 especially, p is an inflection point if and only if
L ¼ 0 at p.

Proof. Set j ¼ j3e3 þ j4e4 and hij ¼ h3ije3 þ h4ije4. Then, we obtain that

j5H ¼ Le35e4 ¼
1

2
h115h22 �

i

2
h125ðh11 þ h22Þ. Accordingly, the condition

that L ¼ 0 is equivalent to that h115h22 ¼ h125ðh11 þ h22Þ ¼ 0. On the other
hand, the condition that KN ¼ 0 is equivalent to h125ðh11 � h22Þ ¼ 0. Since
the condition that S ¼ 0 is equivalent to h115h22 ¼ h125h11 ¼ h125h22 ¼ 0, we
obtain the first assertion.

When H 0 0, h125ðh11 þ h22Þ ¼ 0 implies that there exists a real number a
satisfying h12 ¼ aðh11 þ h22Þ. Then h125h11 ¼ ah225h11 ¼ h225h12. Hence the
conditions H0 0 and L ¼ 0 imply h125h11 ¼ h125h22 ¼ 0. Therefore, we
obtain the second assertion. r

Remark 7. When Hp ¼ 0, it is clear that p is an inflection point if and only
if KN ¼ 0 at p.

3. Gauss maps

Following Ho¤man-Osserman [6], we will recall some terminologies.
Let S be a connected Riemann surface and X : S ! R4 a conformal immer-

sion. If z ¼ xþ ih is a local conformal parameter on S, the (conjugate) Gauss
map G of X is the map from S into the complex quadric Q2 in the complex
projective 3-space CP3 defined by

GðzÞ ¼ qX

qz

� �
:ð5Þ

Q2 is biholomorphic to the product S2 � S2 of the Riemann sphere S2 ¼ ĈC.
The identification ĈC� ĈCGQ2 is given by the map

j : ĈC� ĈC ! Q2 HCP3;

ðw1;w2Þ 7! ð1þ w1w2; ið1� w1w2Þ;w1 � w2;�iðw1 þ w2ÞÞ:

Set fk ¼ pk � G (k ¼ 1; 2), where p1 and p2 are the projections from Q2 on
S2 ¼ ĈC. Then, the Gauss map GðzÞ is expressed by the pair ð f1ðzÞ; f2ðzÞÞ of the
functions.
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Set F ¼ jð f1; f2Þ and

A ¼ ð f2 � f1;�ið f2 þ f1Þ; 1þ f1 f2;�ið1� f1 f2ÞÞ:

We conclude that

e1 ¼
ffiffiffi
2

p Re F

kFk ; e2 ¼
ffiffiffi
2

p Im F

kFk ; e3 ¼
ffiffiffi
2

p Re A

kAk ; e4 ¼
ffiffiffi
2

p Im A

kAk

give an adapted local frame field on S [6, Proposition 4.4]. It follows from
F � A ¼ F � A ¼ 0 that

dðe1 � ie2Þ � ðe3 þ ie4Þ5dðe1 � ie2Þ � ðe3 � ie4Þ

¼ 4

kFk4
ðdF � AÞ5ðdF � AÞ

¼ 4

kFk4
fðFz � AÞðFz � AÞ � ðFz � AÞðFz � AÞg dz5dz

¼ 1

ð1þ j f1j2Þð1þ j f2j2Þ
ð f1z f2z � f1z f2zÞ dz5dz

¼ ðF1F̂F2 � F̂F1F2Þ dz5dz;

where

Fk ¼ Fð fkÞ ¼
ð fkÞz

1þ j fkj2
; and F̂Fk ¼ F̂F ð fkÞ ¼

ð fkÞz
1þ j fkj2

:

Denote the induced metric on S by the form ds2 ¼ l2jdzj2. Then we obtain the
following

Lemma 8.

L ¼ i

2l2
ðF1F̂F2 � F̂F1F2Þ:

Remark 9. The equation (1) combined with this lemma implies that

4D ¼ ðKNÞ2 �
1

l4
jF1F̂F2 � F̂F1F2j2:

J. Monterde has also proved this equation in [10].

On the other hand, in [6, Proposition 4.5], it is also proved that the square
norm of the mean curvature vector H , the Gauss curvature K and normal
curvature KN of X are given by
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jH j2 ¼ 2

l2
ðjF1j2 þ jF2j2Þ;ð6Þ

K ¼ J1 þ J2;ð7Þ
KN ¼ J1 � J2:ð8Þ

Here, Jk (k ¼ 1; 2) is the Jacobian of the map fk from ðS; l2jdzj2Þ to the sphere
ðS2; g0Þ of radius 1=

ffiffiffi
2

p
:

Jk ¼ 2

l2
ðjFkj2 � jF̂Fkj2Þ:

4. Inflection points

In this section, we prove Theorem 1.
In order to prove that XðSÞ in R4 lies in an a‰ne 3-space, we recall the

following theorem for degenerate Gauss maps by Ho¤man and Osserman [6]. A
surface M in R4 is said to have degenerate Gauss map if the image of M under
the Gauss map (5) lies in a hyperplane of CP3, that is, there exists a non-zero
complex vector B ¼ ðb1; b2; b3; b4Þ such that

b1j1ðzÞ þ b2j2ðzÞ þ b3j3ðzÞ þ b4j4ðzÞ1 0;ð9Þ
where ðj1ðzÞ; j2ðzÞ; j3ðzÞ; j4ðzÞÞ ¼ FðzÞ ¼ jð f1ðzÞ; f2ðzÞÞ:

Theorem 10 ([6, Theorem 5.3]). Let M be a surface in R4 with degenerate
Gauss map, so that (9) holds for some vector B. M lies in some a‰ne 3-space in
R4 if and only if B can be chosen to be a real vector.

Proof of Theorem 1. First, if KðpÞ0 0 ( p A S), we show that the pullbacks
of the metric g0 on S2 by f1, f2 induce a same metric g on an open neighborhood
around p in S.

When H ¼ 0 at p A S, from (6), we have jF1j ¼ jF2j ¼ 0, and hence ð f1Þz ¼
ð f2Þz ¼ 0 at p. It follows from K0 0 and (7) that we have either jF̂F1j0 0
or jF̂F2j0 0 at p. Since p is an inflection point, we have KN ¼ 0 and, from (8),
jF̂F1j ¼ jF̂F2j, that is,

jdf1j2

ð1þ j f1j2Þ2
¼ jdf2j2

ð1þ j f2j2Þ2
0 0 at p:

Now we consider the point p at which H 0 0. Since p is an inflection
point, it follows from Lemmas 6 and 8 that

F1F̂F2 � F̂F1F2 ¼ 0:ð10Þ
Since H0 0, the equation (6) implies that ðF1;F2Þ0 0. Hence, the equation (10)
implies that there exists a complex number a such that at p

F̂F1

F̂F2

� �
¼ a

F1

F2

� �
:ð11Þ
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Since K0 0, the equation (7) combined with (11) implies that jaj0 1. Since
KN ¼ 0, it follows from (8) and jaj0 1 that

jF1j ¼ jF2j0 0:

This implies that f1, f2 are local di¤eomorphisms. Moreover, we obtain that,
for k ¼ 1; 2,

jdfkj2

ð1þ j fkj2Þ2

¼ jFkj2ðdx dhÞ ð1þReðaÞÞ2 þ ImðaÞ2 �2 ImðaÞ
�2 ImðaÞ ð1�ReðaÞÞ2 þ ImðaÞ2

 !
dx

dh

� �
;

where z ¼ xþ ih. Since jaj0 1, these are nondegenerate.
Consequently, the pullbacks of the metric g0 by f1, f2 induce a same metric

g on an open neighborhood around p in S.
Second, we show that f � f1 ¼ f2 on S for an orientation-preserving isometry

f A IsomþðS2; g0Þ. For any point p A S, we can take fp A IsomþðS2; g0Þ such
that ðfp � f1ÞðpÞ ¼ f2ðpÞ and dðfp � f1Þp ¼ ðdf2Þp. From the above argument,

there exist open neighborhoods Up in S and Vp in S2 such that fp � f1; f2 are
isometric di¤eomorphism from ðUp; gÞ onto ðVp; g0Þ. Hence fp � f1 ¼ f2 on Up

(e.g. [5, Lemma 11.2]).
For a fixed point p0 A S, set W ¼ fp A S j ðfp0 � f1ÞðpÞ ¼ f2ðpÞg. Then, W

is nonempty and obviously closed. Moreover, for any point p A W , there exists
a finite sequence of points fpk j k ¼ 0; . . . ; ng in S such that pn ¼ p and
Upk�1

VUpk 0j (k ¼ 1; . . . ; n). On Upk�1
VUpk , we have fpk�1

� f1 ¼ f2 ¼ fpk � f1.
Since f1ðUpk�1

VUpk ÞH ðS2; g0Þ contains obviously at least three distinct points,
then fpk�1

¼ fpk . Then fp ¼ fp0 , and hence Up HW . This implies that W is
open. Since S is connected, W ¼ S, that is, fp0 � f1 ¼ f2 on S.

The isometry fp0 can be expressed by

fp0ðwÞ ¼
Qw � P

PwþQ
for w A ĈC ¼ S2 ðP;Q A C; jPj2 þ jQj2 ¼ 1Þ:

Set B ¼ ðb1; b2; b3; b4Þ ¼ ð�ReðPÞ; ImðPÞ;ReðQÞ;�ImðQÞÞ. Since f2 ¼ fp0 � f1 ¼
ðQf1 � PÞ=ðPf1 þQÞ, the Gauss map G ¼ jð f1; f2Þ of X ðSÞ satisfies the linear
equation

b1ð1þ f1 f2Þ þ b2ið1� f1 f2Þ þ b3ð f1 � f2Þ � b4ið f1 þ f2Þ ¼ 0:

Hence, the image of G is contained in the hyperplane in CP3, which is defined by
the real vector B. Theorem 1 can now follow from Theorem 10 by Ho¤man and
Osserman. We then conclude that X ðSÞ lies in an a‰ne 3-space in R4. r

Remark 11. If all points of S are inflection points, the dimension of the first
normal space

NX
1 ðpÞ ¼ spanfPðv;wÞ j v;w A TpSg
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at any point p A S is less than 2. Assume that NX
1 forms a rank-1 vector sub-

bundle of the normal bundle T?S. It is well known that XðSÞ lies in an a‰ne
3-space in R4 if and only if NX

1 is parallel in the normal connection of X (see
[2]). Moreover, from Theorem 1 in [3], if NX

1 is nonparallel, we have that K1 0.

5. Examples

Example 5.1 (Whitney sphere). Let X be a conformal immersion from
a Riemann sphere fðcos u cos v; cos u sin v; sin uÞg into the complex 2-space
C2 GR4 given by

X ðu; vÞ ¼ ðaðuÞe iv; bðuÞe ivÞ
¼ ðaðuÞ cos v; aðuÞ sin v; bðuÞ cos v; bðuÞ sin vÞ;

where

aðuÞ ¼ cos u

1þ sin2 u
; bðuÞ ¼ cos u sin u

1þ sin2 u
:

The plane curve gaðuÞ ¼ ðaðuÞ; bðuÞÞ is the lemniscate of Bernoulli, and X gives
the Whitney sphere. Following the computation in [1, Example 3.2], we have

h3 ¼ 0; h4 ¼ �2
ffiffiffi
2

p
cos uffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

3� cos 2u
p ;

j3 ¼ �i

ffiffiffi
2

p
cos uffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

3� cos 2u
p ; j4 ¼ �

ffiffiffi
2

p
cos uffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

3� cos 2u
p ;

KN ¼ 4 cos2 u

3� cos 2u
; L ¼ i

4 cos2 u

3� cos 2u
:

Hence, X has only two infection points which are parabolic, and the other points
are hyperbolic.

Example 5.2 (graphs in R4). For two functions sðu; vÞ and tðu; vÞ, the graph
surface Xðu; vÞ in R4 is given by

X ðu; vÞ ¼ ðu; v; sðu; vÞ; tðu; vÞÞ:
Set

E ¼ Xu � Xu ¼ 1þ ðsuÞ2 þ ðtuÞ2; F ¼ Xu � Xv ¼ susv þ tutv;

G ¼ Xv � Xv ¼ 1þ ðsvÞ2 þ ðtvÞ2; g ¼ EG � F 2;

n1 ¼ ð�su;�sv; 1; 0Þ; n2 ¼ ð�tu;�tv; 0; 1Þ;

E 0 ¼ n1 � n1 ¼ 1þ ðsuÞ2 þ ðsvÞ2; F 0 ¼ n1 � n2 ¼ sutu þ svtv;

G 0 ¼ n2 � n2 ¼ 1þ ðtuÞ2 þ ðtvÞ2; g 0 ¼ E 0G 0 � ðF 0Þ2;
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e1 ¼
1ffiffiffiffi
E

p Xu; e2 ¼
ffiffiffiffi
E

g

s
Xv �

F

E
Xu

� �
;

e3 ¼
1ffiffiffiffiffi
E 0

p n1; e4 ¼
ffiffiffiffiffi
E 0

g 0

s
n2 �

F 0

E 0 n1

� �
:

Using the orthonormal frame fe1; e2; e3; e4g, we can compute the mean curvature
vector h3e3 þ h4e4 and KN as follows:

ha ¼ 1

E
Xuu � ea þ

E

g
Xvv � 2

F

E
Xuv þ

F 2

E2
Xuu

� �
� ea ða ¼ 3; 4Þ

KN ¼ 1ffiffiffiffi
g 0p
ð ffiffiffi

g
p Þ3

E F G

suu suv svv

tuu tuv tvv

�������
�������;

2L ¼ iffiffiffiffi
g 0p
ð ffiffiffi

g
p Þ3

�E
ffiffiffi
g

p
i � F � 1

E
ð ffiffiffi

g
p

i � F Þ2

suu suv svv

tuu tuv tvv

��������

��������
:

(i) For example, we set sðu; vÞ ¼ u2

2
þ v and tðu; vÞ ¼ v2

2
þ u. Then, the

graph surface has only hyperbolic points and no inflection point.
(ii) On the other hand, set s ¼ sðuÞ and t ¼ tðuÞ. Then, we have that

KN 1 0 and L1 0, and hence all points are inflection points. This
graph is the product of a curve ðu; sðuÞ; tðuÞÞ in R3 and a straight line
in R4. Hence, the Gauss curvature K is obviously identically zero.
Therefore, this implies that the assertion in Theorem 1 never hold
without an assumption on the Gauss curvature K .
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