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POSITIVE PERIODIC SOLUTIONS FOR A NONLINEAR DENSITY-
DEPENDENT MORTALITY NICHOLSON’S BLOWFLIES MODEL*

BINGWEN LIu

Abstract

This paper is concerned with a class of Nicholson’s blowflies model with a nonlinear
density-dependent mortality term. Under appropriate conditions, we establish some
criteria to ensure that the solutions of this model converge globally exponentially to a
positive periodic solution. Moreover, we give an example and its numerical simulation
to illustrate our main results.

1. Introduction

In the classic study of biological and ecological dynamics, Nicholson’s
blowflies equation was introduced by Nicholson [8] to model laboratory fly
population. Its dynamics was later studied in [5] and [9], where this model was
referred to as the Nicholsons blowflies equation [5]. Recently, as pointed out
by L. Berezansky et al. [2], a linear model of density-dependent mortality will
be most accurate for populations at low densities, and marine ecologists are
currently constructing new fishery models with nonlinear density-dependent mor-
tality rates. Therefore, L. Berezansky et al. [2] and Wang [13] proposed the
following Nicholson’s blowflies model with a nonlinear density-dependent mor-
tality term

a(1)x(1) (i
1.1 "1 = ——7N 0 pOAx(t — (¢t y(0O)x(t—1(1))
(1) ¥(0) = O+ POl = ()

where the variable coefficients and delays are continuous functions. More details

on biological explanation to coefficients and delays of model (1.1) can be found
in [2, 13]. Moreover, the periodical variation of the environment plays an
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important role in many biological and ecological dynamical systems. Conse-
quently, there have been extensive results on existence of positive periodic solu-
tions for Nicholson’s blowflies model with nonlinear density-dependent mortality
terms. We refer the reader to [2, 3, 4, 7, 13, 14] and the references cited therein.
However, to the best of our knowledge, there is no much work on the global
exponential stability of the positive periodic solution for model (1.1). On the
other hand, the real biological applications of Nicholson’s blowflies model heavily
depend on the global exponential convergence behaviors, because the exponential
convergent rate can be unveiled. Hence, it is worthwhile continuing to inves-
tigate the existence and global exponential stability of positive periodic solutions
of (1.1).

Motivated by the above discussions, in this paper, we are devoted to the
global exponential stability of positive periodic solutions for a general nonlinear
density-dependent mortality Nicholson’s blowflies model given by

a(t)x(r) - i (O)x(i—;
1.2 ") = ——~ 27 (t t—1:(t 7, (O)x(t=7;(1))
( ) X() b(t)+x(t)+/:zlﬂj( )X( T]( ))e ! ’
where a,b,f;,7;: R — (0,4+00) and 7;: R — [0,+c0) are continuous 7-periodic
functions for j=1,2,...,m and 7 > 0. Obviously, (1.1) is a special case of
(1.2) with m = 1.

For convenience, we introduce some notations. In the following part of this
paper, given a bounded continuous function ¢ defined on R, let g© and g~ be
defined as
(1.3) g " =supg(r), ¢~ =inf g(1).

teR teR

It will be assumed that

_ + - -
(1.4) r—lréljasxmrj, o=zl j=1L2...m

Throughout this paper, let R; denote nonnegative real number space, C =
C([—r,0], R) be the continuous functions space equipped with the usual supremun
norm | -, and let C; = C([-r,0],R). If x(¢) is continuous and defined on
[-r+ ty,0) with #,0 € R, then we define x, € C where x,(0) = x(z+ 0) for all
0€e[—r,0].

It is biologically reasonable to assume that only positive solutions of model
(1.2) are meaningful and therefore admissible. Much can be learned by con-
sidering admissible initial conditions

(1.5) X, =¢, 9peCy and ¢(0) > 0.
Define a continuous map f: R x C. — R by setting

m

* Zﬁj(f)90(ffj(t))eﬂ’,(om—;,-(t)).

a(t)e(0)
+0(0) 5

TE0 =250+ p(0)
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Then, f is a locally Lipschitz map with respect to ¢ € C,, which ensures the
existence and uniqueness of the solution of (1.2) with admissible initial conditions
(1.5).

We denote x,(t,p)(x(# to,¢)) for an admissible solution of the admissible
initial value problem (1.2) and (1.5). Also, let [t,7(p)) be the maximal right-
interval of existence of x,(f, ¢).

—x

ex

Since the function is decreasing with the range [0, 1], it follows easily

that there exists a unique x € (0,1) such that

I—K_l

(1.6)

ek o2
Obviously,
1

(1.7) sup 1=~

X=>K

e’

eX

Moreover, since xe ™ increases on [0, 1] and decreases on [l,+o0), let £ be the
unique number in (1,+o0) such that

(1.8) Ke " = ke .

The remaining of this paper is organized as follows. In Section 2, we give
some lemmas, which tell us some kinds of solutions to (1.2) are bounded. These
results play an important role in Section 3 to establish the existence of positive
periodic solutions of (1.2). Here we also study the global exponential stability
of positive periodic solutions. The paper concludes with an example to illustrate
the effectiveness of the obtained results by numerical simulation.

2. Preliminary results

In this section, some lemmas will be presented, which are of importance in
proving our main results in Section 3.

LemMA 2.1. Suppose that there exists a positive constant M such that

(2.1) M>EZM7 0<  min {_ a(r) +iﬂ_/(l)6_s}7

7;(1) 1€[0,T],s€[0,x]

where j=1,2,...,m. Let
C'={p|lpeC,x<o(t) <M, for all te|-r0]}.

Then, the set of {x(to, ) : t € [to,n(p))} with ¢ € C° is bounded, and n(p) = + 0.
Moreover, k < x(t;ty,p) < M for all t > t,.
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Proof.  Let x(t) = x(t; ty, ), where p e C°. We first claim:
(2.2) x(t) <M for all 1€ [ty,n(p)).
Suppose, for the sake of contradiction, there exists #; € (fo,7(p)) such that
(2.3) x(n)=M, x(t)y<M for all tety—r1).

. o . 1
Calculating the derivative of x(#), together with the fact that sup, g xe ™ =—
e

(1.2), (2.1) and (2.3) imply that

bl

0<x'(n1)

)M o (¢ :
_ a( 1) + f]( 1) Vj(tl)x(tl _ ‘L_j(tl))ef/j(tl)x(tlf';,-(tl))

<0,

which is a contradiction and implies that (2.2) holds.
We next show that

(2.4) x(t) > x, for all 1€ [ty,n(p)).

Assume, by way of contradiction, that (2.4) does not hold. Then, there exists
ty € (to,7(p)) such that

(2.5) x(ty)=x and x(f) > for all t€[ty —r ).
Hence,
K < p(n)x(n —1(n)) < 7;(L)M <K,
which, together with xe™ = ke™*, (1.2), (2.1), (2.2) and (2.5) imply that

0> x/(lz)

a(ty)k " Bi(t2) . o
- e - (t t — 1:(t 7 ()x(—7(12))
)+ 2 gty B )

=
~ ~

Ke *

ale B
= b(tz)JrK—’_j;yj(lz

~—

> i — -
=n te[O,I%’]l,lsne [Ovrc]{ b(l) + s + ]ZI: yj(l) ¢ }

>0,
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which is a contradiction and implies that (2.4) holds. This implies that x(¢) is
bounded on [f,7(p)). From Theorem 2.3.1 in [6], we easily obtain 7(p) = +o0.
This ends the proof of Lemma 2.1.

LemmA 2.2. Suppose (2.1) holds, and

b m 1
(2.6) % > ;ﬁj(z)e—z, for all teR.

Moreover, let
X0 = x(t00,0%),  xX(1) = x(t;10,9),  where 9,9 € C°.
Then, there exists a positive constant A such that

(2.7) x(t) = x*(1) = O(e™™).

Proof. Define a continuous function I'(u) by setting

(2.8) I'(u) = sup{—lba(t)f(jel— ul + zm:[)’j(t)elze”"}, uel0,1].

teR J=1

Then, from (2.6), we have
B ~a()b(1) Z’” A 1
o= f?g{ (b(t) + M)* ! j=1 A0 62} ="

which, together with the periodicity of coefficient functions, implies that there
exist two constants # > 0 and A€ (0,1] such that

oo S [Lawpy
29) T _f‘e”,?{ Lb(z)+M)2 g
Set y(f) = x(z) — x*(¢), where t € [t) —r,+00). Then

: a()x(r)  a()x*(n)
(2.10) y'(n)= _[b(z) Tx(0) b))+ x*(t)]

“ |
+ Zﬁj(l)e_zeb} <-n<0, VieR.
=

m

£ 3B = () PO — (1 — gy 1)) O 0]
=1

It follows from Lemma 2.1 that

(2.11) Kk <x(t), x*(t)< M, forall te€[ty—r,+0).
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We consider the Lyapunov functional
(2.12) V() = [y(0)le™.

Calculating the upper left derivative of V() along the solution y(#) of (2.10), we
have

(213) D (V(1) < - [b(a[()tfg()t) ~ b(at()l)j;(f(t) e
* ) ﬁ_/(l‘)‘X([ - Tj(l))e_}ff(’)x(l—rj(r))
=

— X*(t — j(t))e WO =T 4 1 y(1)]e,  for all ¢ > g
We claim that
(2.14) V() = |p(r)]e

< e’““( max |x(¢) — x*(0)| + 1)

telto—r,t0]

=t max Jo(0) - o ()] +1)

0e(-r,0]
=K, for all > t.
Contrarily, there must exist 7, > #y, such that
(2.15) V(t.) =K and V(t) <K for all tety—r,t.).

Since x(¢) > x and x*(¢f) >« for all ¢ >ty —r. Together with (1.7), (1.8), (2.13),
(2.15) and the inequalities

a()A4 a(t)B
216) - <b(t) w4 b0+ B> sen(4 — B)
a(t)b(1) |
(b(t) + A+ (A — B))*

_B|

_%M_BI, where 4, Be [, M],0 <0 <1,
1)+

and

1 —(s+0(t—y)

(2.17) |se™ —te”!| = )

|s — |

1
< —5ls—1, where s,1€ [k, +0), 0<O<1,
e

we obtain
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(2.18) 0<D (V(.))

a(t.)x(t.) a(t)x*(t.) . .
L@0+Mu>zm»+x%m}%““@x<mki

Y Bt — gy (a.))e e )
Jj=1

—x*(t, — Tj(,*))efyj(t*)x%trf/(fx))|ei’* + A y(t.)|e™"

,M At m . . —y(t)x(t (1))
(b([*HM)zly(z*)le +;ﬁ](z*)|x(z* (t))e

= (2 = () MR TN e ]y e

e

IA

m
(T , '
+ Aie) )Ivj(t*)X(t**f_/(t*))e*’f“*)»*(m,-(m)

_ yj(t*)x*(t* _ Tj(t*))eﬂy(u)X*(Irf_,‘(u))|e/lh

[ ate)p(e)
t

(m>+MV_4mem

Thus,

| a(z)b(t.) .
(b(r.) + M)?

m
1,
+3 B e
=1

which contradicts with (2.9). Hence, (2.14) holds. It follows that
(2.19) ly(1)| < Ke™™ for all t> t.
This completes the proof.

3. Existence and exponential stability of positive periodic solutions

In this section, we establish sufficient conditions on the existence and global
exponential stability of positive T-periodic solutions of equation (1.2).
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THEOREM 3.1.  Suppose that all conditions in Lemma 2.2 are satisfied. Then
equation (1.2) has at least one positive T-periodic solution x*().

Proof.  Let x(t) = x(t; ty, p), where p € C°. By Lemma 2.1, we get
Kk<x(t)y<M, forall t>1t—r.

By the periodicity of coefficients and delays for (1.2), we have, for any natural
number £,

(3.1 x(t+ (h+1)T))

_a+(h+D)T)x(+ (h+ 1)T)
bt+(h+DT)+x(t+ (h+1)T)

m

+Y B+ (h+ D)T)x(t+ (h+ )T =75t + (h+ 1)T))
j=1
=y (t+-(h+1) T)x(t++-(h+1) T—1; (t4-(h+-1) T))

~a@)x(t+ (h+1)T)
b(t)+x(t+ (h+1)T)

X e

+ Zﬁ] x(t+ (h+1)T Tj(l))e—y,-(f)xv+(h+l)T—T/(I))7

t+ (h+ )T € [ty, +0).

Thus, for any natural number /, we obtain that x(¢+ (h+ 1)T) is a solution of
system (1.2) for all 1+ (h+ 1)T > t;. Hence, x(t+ T) (t € [to — r,+0)) is also a
solution of (1.2) with initial values

U(s)=x(s+t+T), se[-r0].

Then, by the proof of Lemma 2.2, there exists a constant

K = ¢*0 ( max |¢( (9)|+1)

Oe[-r,0

such that for any natural number 7,

(3.2) [x(t4+ (h+1)T) — x(¢ + hT)|
=|x(t+hT+T)—x(t+hT)|
SKE*).(H’//IT)

A 1Y
— Ke ™ (67) , t+hT > 1.

Now, we show that x(¢+ ¢T) is convergent on any compact interval as ¢ — oo.
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Let [a,b] = R be an arbitrary subset of R. Choose a nonnegative integer ¢y such
that 1+ qoT >ty for t€ [a,b]. Then for t € [a,b] and g > go we have

-1
(3.3) x(t+qT) =x(t+qoT) + qz:[x(z +(h+1)T) — x(t+hT)).
h=qo

Then x(¢+ ¢T) will converge uniformly to a continuous function, say x*(¢), on
[a,b]. Because of arbitrariness of [a,b], we see that x(t+ ¢T) — x*(¢) as ¢ — o
for 1€ R. Then, (3.1) leads to

(3.4) Kk<x*(t) <M, for all teR.

It remains to show that x* is a T-periodic solution of (1.2). The periodicity

is obvious since
x*(t+T)=lim x((t+T)+¢T) = I}m x(t+(¢g+1)T) =x"(1)
q— 0 q+1—

for all e R

Noting that the right side of (1.2) is continuous, together with (3.1) and (3.4),
we know that {x'(¢+ (h+1)T)} converges uniformly to a continuous function
on any compact set of R. Therefore, letting # — 400 on both sides of (3.1), we
get

m

(3.5) %{x*(l)}: Zﬁ “(1 = ,(1))e H O (=500

t—l—x*

Therefore, x*(¢) is a solution of is a positive T-periodic solution of (1.2). This
completes the proof.

THEOREM 3.2.  Suppose that all conditions in Lemma 2.2 are satisfied. Then
equation (1.2) has exactly one positive T-periodic solution x*(t). Moreover, x*(t)
is globally exponentially stable. That is

x(t) — x*(t) = O(e™), where x(t) = x(t; 10, ).

Proof. From Theorem 3.1, we should show the global exponential stability
for positive T-periodic solution x*(f) of equation (1.2). Since ¢ € C,, using
Theorem 5.2.1 in [10, p. 81], we have x,(f,p) € C, for all te [t,n(p)). Let
a(t)x < a(t)x

x(t) = x(t; to,p). From (1.2) and the fact that < for all e R,
x>0, we get b(t) +x = b(1)
(3.6) x'(t) = + Z/}/ x(t — 7;(1))e =5 (0)
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In view of x(#) = ¢(0) > 0, integrating (3.6) from #, to 7, we have

(3.7)  x(t) > e*J‘,’(,<a<u)/b<u>>dux(t0)

m
=}y (al)/b(0) di J Jiyla 3 Or(s=7(5)
+e n 0 x(s —zj(s))e % 150 ds
. Z il

>0, for all te[t,n(p)).
We next show that there is 73 € [fo,7(p)) such that
(3.8) Kk <x(t) <M for all t€[ts,57(p)), and n(p)=-+c0.
We first prove that there exists #4 € [ty,7(¢)) such that
(3.9 x(t4) < M.
Otherwise,
(3.10) x(t) = M for all 1€ [ty,n(p)),
which together with (2.1), implies that

(B.11) X)) = %+ Z JE;) 9, (Ox(t — 75(1))e HOXu=5(0)

HM LKD)
+_ J
ejzly] (1)

<0, for all tet,n(p)).

This yields that x(¢) is bounded and monotone decreasing on [fo,7(p)). Again
from Theorem 2.3.1 in [6], we easily obtain #(p) = +00. Then, (3.11) leads to

t

x(t) = x(t0) + J x'(s) ds

to

Z M 1 m l
< x(#) + max ) + - ﬁ/L (t—1ty), Vt=1,
1eR b + M e 1)
and
i, (0= 0

which contradicts with (3.7). Hence, (3.9) holds. We claim:

(3.12) x(t) <M for all teta,n(p)), and #5(p)=+o0.

Suppose, for the sake of contradiction, there exists s € (#4,7(p)) such that
(3.13) x(ts) =M, x(t) <M for all t€[t4,t5).
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Calculating the derivative of x(#), together with the fact that sup, g xe™ =—
(1.2), (2.1) and (3.13) imply that ¢

0< x’(t5)

a(ts) M Z’" B;(is) () x{te—ts
— + () x(ts — 7:(1<))e 7i(ts)x(t5—7;(t5))
b(ts) + M~ & ,(15) lis)x{ts = (1s)

)M 109

b(ts)+ M e = 7;(2s)

<0,

which is a contradiction and implies that (3.12) holds.
Furthermore, we prove that there exists a positive constant / such that

(3.14) liminf x(7) = 1.

t—+w

Otherwise, we assume that liminf, ., x(¢) =0. For each ¢ > fy), we define

m(t) = max{gZ ¢ < t,x(€) = min x(s)}.

th<s<t
Observe that m(f) — 400 as t — +oo and that

(3.15) lim x(m(t)) = 0.

11—+

However, x(m(f)) = min,<s<, x(s), and so x'(m(r)) <0 for all m(t) > t.
According to (1.2), we have

0> ¥'(m(1)
= — IS B on(1) (1) — )5
=1
> — D)L on(0)on(t) — ()7 -5,

and consequently,

S

a(lﬂ(l))Xf(fﬂ(l)) = 3 B,m(0)x(m(1) — 15(m(r)))e OO m(0)

(3.16) 5D

~—

=1
B (1)) x(m(1) — gi(m(1)) )P 0=5 ),

v
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where m(t) > ty, j=1,2,...,m. This, together with (3.15), implies that
(3.17) tlir+n x(m(t) —j(m(2))) =0, j=12,....m

Noting that the continuities and boundedness of the functions a(7), b(7) and f;(7),
we can select a sequence {z,},%] such that

(3.18) Jim 4, = o0, lim x(m(s,)) =0,
. Bim(t)b(m(t))
nkrfm J a(m(ln)) :aj’ J= 1,2,...,7}’1.

In view of (3.16), we get

iﬁ (m(t,) — 7 (m(z )))e—y,(mm))X(m<tn)—fj(m(tn)))
i x(m(ty))
Zﬁ (1) = gm(t)))e 7))
/ x(m(tn) — 1j(m(n)))
— Zﬁ/ _Vl m ’n) T/(m(tn)»7
and
(3.19) 1> < ﬁi(m(ln))b(m(ln)) e—y/,*x(m(ln)f‘r,'(m(tn))).

22 alm(n,)
Letting n — 400, (3.17), (3.18) and (3.19) imply that

(320) 12 zm: lm ﬁ](M(tn))b(m(tn)) hm e_/ “(’”(tn) ( (Ex)))
n—+

I
=
5
8
=
=4
&
=
3
5

a(t)

\%
=
:
R
v
=
—~
=
S~
—
=

From (2.1), we get

. a(?) B
0< ze[o,rTr]l,lsne[o,K]{b(t) Jrs+ Z y;(t) ¢ }
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. a(t) =Bt
—ffy}s{——t Z—,}

. a(t) <&
= Itnel}lzl{er;ﬁj(f)},
and
1< iﬁjgzgm, for all e R,
J=1

which contradicts to (3.20). Hence, (3.14) holds.

To prove (3.8), it is sufficiently to show / > k. If not, we assume that / < «.
Then, for fixed ¢ > 0, there is J = J(¢) such that

(3.21) x/(to,0) > 1l,:=1—¢ for all t>J.

By the fluctuation lemma [11, Lemma A.1.], there exists a sequence {x};
such that

(3.22) tv /40, x(tx;to,9) — [, and
xX'(tx) = f(t, x4, (t0,90)) — 0, as k — 400,
For 1t > J, (3.7) and (3.12) leads to that there is a constant B > 0 such that
¥ (510, 9)] = 1/ (&, x:(10, 9))]

a(t)x(t; to, 9) . oy (O)x(t—15(): 1
== b N B ()X (1 — (1) £, )T 00)
b(0) + x(tsta.g) 2O T3 10:0)

< B.

It follows that x(t; 10, 9) and x'(t; 1y, ¢) are uniformly bounded on [fy,+o0), thus
{x,.(to,9)}72; is bounded and equlcontlnuous By Ascoli-Arzela Theorem, for a
subsequence, still denoted by {x; (t,9)}{", we have

%, (t0,0) — ¢° for some ¢* € C([~r,0], (0,420)).
Since

x(to,9) > 1, for t>J and &> 0 is arbitrary,
then ¢*(s) >/ for te[—r,0]. From (3.12), we get
(3.23) 0" (0)=1<¢"(s) <M for te[-r0].

By the boundedness of {7j(tx)},2;, there is a subsequence of {tk}k 15 stlll

denoted by {#};], which converges to a point T e[t ST ] with j=1,2,.
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Similarly, we can also suppose that

li ) =a* “at lim b(t) =b*elb™,b"
Jim a(t) =a”efa”,a],  lim b(n)=0b"e[b™,b7]
and

. _ * — + . ok — + .

kﬂrfx B =B elB; Bl ,CETOC =yl J=12m.

Hence,
(3.24) Sty xe (10, 0)) — A, as k — +oo,
with
(3.25) A==l LS Bt () ),

b*+¢*(0)
According to (1.7), (1.8), (1.9), (2.1) and the fact that
0<l<k, I<yjo"(—t))<yM<k, j=12,...,m,

we obtain

- i e (=)
- b*+l+z y] v !

. a(t) T Bi(t)
>/ min — + - Le*
reo, T],se[O,K]{ b(t)+s ; 7;(0)

——

>0,

which contradicts (3.22) and implies / > «.
The notations in Lemma 2.2 are still used as follows. With a similar
argument as that in the proof of Lemma 2.2, we can prove that

(3.26) V() =[y()le”

= [x() — x" (1)
< 6/1’3( fnax ]|x(t) —x*(0)| + 1)
te|ty—r,t3

=K, for all 1> 13,
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which yields
x(1) = x*(1) = O(e™™),

and hence the proof is complete.

4. An example

In this section, we present an example to check the validity of our results we
obtained in the previous sections.

Example 4.1. Consider the following Nicholson’s blowflies model with a
nonlinear density-dependent mortality term:

0.6951934x() 100 + sin ¢

4.1 ")y = —
41 Y0 = = 57537127 7 (1) T 100 £ cos ¢

x(l _ 2esin4 t)efx(t72e°‘“4 D)

Obviously, r=2e, a =a"=0.6951934, b~ =b"=0.7537127, B; > 75,
B <%, yr =y =1 From (1.6), (1.8), £ > 1 and ke ™™ = Ke*, we obtain

K~ 0.7215355, &
Let M = 1.087308, we get

X

1.342276.

a~M  0.6951934 x 1.087308
bt +M 0.7537127 + 1.087308
+

ﬁ—l_l < ﬂl ~ 0.3753113,
)y e 99 e
min {_ a(t> +ﬁl(t) es}

te[0,T),s€0,x] b(l) + s yl(l)
- min B 0.6951934 +2e_s
~ tefo,T),sefo,] | 0.7537127 + 5 101
e 0.6951934 +2

sefo,] | 0.7537127 +s 101

b~ 1934 x 0.753712
a~b _ 6951934 x 0.7537 72z0.15459457
(bt + M)*  (0.7537127 + 1.087308)

1 101 1
+_ el
B e? = 99 ¢2

~ 0.4105817,

e_s} ~0.005143492,

~ 0.1380693,

which implies that the Nicholson’s blowflies model (4.1) satisfies (2.1) and (2.6).
Hence, from Theorems 3.2, equation (4.1) has exactly one positive 2z-periodic
solution x*(¢). Moreover, x*(¢) is globally exponentially stable. This fact is
verified by the numerical simulation in Fig. 1.
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FIGURE 1. Numerical solution x(z) of equation (4.1) for initial value ¢(s) = 0.8, s e [—2e,0].

Remark 4.1. As is known to us, there is no literature concerning the global
exponential stability of the positive periodic solution of Nicholson’s blowflies

model with a nonlinear density-dependent mortality term M. Thus, all

b(t) + x(2)
the results in the references [3, 4, 7, 13, 14] cannot be applied to prove that all
the solutions of (4.1) converge exponentially to the positive 2z-periodic solution.
Moreover, in [1, 12], the authors only proved the existence of positive periodic
solutions for the first order functional differential equations with no conclusions
about the globally exponential stability. This implies that all the results obtained
in [13-14] also fail for (4.1).
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