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UNIQUENESS OF L' HARMONIC FUNCTIONS ON
ROTATIONALLY SYMMETRIC RIEMANNIAN MANIFOLDS

MINORU MURATA AND TETSUO TSUCHIDA

Abstract

We show that any rotationally symmetric Riemannian manifold has the L'-
Liouville property for harmonic functions, i.e., any integrable harmonic function on
it must be identically constant. We also give a characterization of a manifold which
carries a non-constant L' nonnegative subharmonic function.

1. Introduction

The main purpose of this paper is to show that any rotationally symmetric
Riemannian manifold has the L'-Liouville property for harmonic functions, i.e.,
any integrable harmonic function on it must be identically constant.

There is a vast literature related to the L”-Liouville property for 1 < p <
(see [1], (2], 6], [7), (8] [12], [14], [15], [17], [24], (18] [20], [21], [25], [26],
[27]). For 1 < p < o0, it follows from an L?-Liouville theorem of Yau [27] that
any complete non-compact Riemannian manifold has the L”-Liouville property,
i.e., any p-th integrable harmonic function on it must be identically constant.
The L'-Liouville or L*-Liouville property, however, depends on the geometry of
manifolds. In particular, for the L!-Liouville property, the major question of
its geometric background is still open; although several sufficient conditions for
it and counterexamples to it are given (see [3], [5], [13], [16]). Among several
counterexamples, Example 1 in Section 3 of [16] seems to be a unique example
of a manifold which has only one end and does not have the L!-Liouville
property. The proof of this example, however, is not correct because these exists
no Green’s function G(0,x) on a compact surface which has the properties they
require. Thus, as for the L'-Liouville property of manifolds having only one
end, there exist no counterexamples. On the other hand, any Cartan-Hadamard
manifold has the L'-Liouville property (see Theorem 2.2 (a) of [16]). We suspect
that any manifold with only one end has the L'-Liouville property. The present
paper is an initial step toward this speculation.
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Since the absolute value of a harmonic function is subharmonic, a natural
problem related to the L!-Liouville property for harmonic functions is whether a
manifold has the L'-Liouville property for nonnegative subharmonic functions.
In this paper we also give a characterization of a manifold which carries a non-
constant L' nonnegative subharmonic function.

Now, in order to state our main results, we fix notations. Let M be an n-
dimensional (n >2) smooth Riemannian manifold with pole p which is rota-
tionally symmetric at p. Then the Riemannian metric in terms of geodesic polar
coordinates at p is given by

ds* = di? + f(r)? d®?,

where d®? is the standard metric of the unit sphere S”~! and f is a nonnegative
smooth function on [0,00) such that f >0 in (0,00), f(0)=0, f'(0)=1 and
f”(0) =0. The Laplace-Beltrami operator A on M is represented by

A= f10/or(f" 10/ or) + f2A,

where A is the standard Laplace-Beltrami operator on S”~!. The Riemannian
measure v on M is given by dv = f"(r) drdo, where do is the standard area
element on S"~!. We denote by L!'(M) the set of integrable functions on M
with respect to v. In what follows, we shall identify M and the pole p with
R" and the origin 0 of R”, respectively.

Tueorem 1.1. Any L'(M) harmonic function on M must be identically
constant.

We put emphasis on that this theorem is curvature condition free. Theorem
1.1 is a direct consequence of Theorems 2.1 and 2.2 to be shown in Section 2,
which are more quantitative and precise than Theorem 1.1.

Here we recall, for comparison, that the L*-Liouville theorem holds if and
only if

[, 1] s as)ar= o

1

(see [18] and [21]).

Next, let us consider L'(M) nonnegative subharmonic functions. Recall
that a function u on M is said to be subharmonic on M if

(i) —oo <u(x) < o0, u(x) #—oo on M;

(i) u is upper semi-continuous on M,

(iii) if D is a relatively compact domain of M, and if w is a real-valued
continuous function on D such that w is harmonic in D and satisfies w(x) > u(x)
on 0D, then

w(x) = u(x) in D.
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It is known (see [11] and [19]) that u is subharmonic on M if and only if u is
locally integrable on M and Au > 0 in the distribution sense. Put

(1) s=| o ([ s i) ar

Example 1.2. Suppose J < oo. Then there exists an L'(M) positive smooth
subharmonic function on M which is not identically constant. Indeed, consider
the equation

(—A+¥(|x|))v=0 in M,

where W € C;°((0,1/2)) is a nonnegative function which is not identically zero.
Then we see that this equation has a positive smooth radial solution v such that

I|

o(x) :J f()' 7" ds(1+0(1)) as [x] — o0
1

(see Theorem 1.2 (i) and the proof of Lemma 2.3 of [23]). Clearly, v is a desired

subharmonic function.

As for the condition J < oo, it has played a crucial role in studying the
structure of nonnegative solutions to the heat equation on M (see [23]). A
typical example satisfying it is f(r) = exp(—r*) for r > 1 with o > 2. Note that
the condition J < oo implies that I = co, where

(12) 1=[ o
since
(1.3) JZ f(n™! <J12f(s)l” ds) dr<J < o,

1/2

R R 1/2r R
(14) R-1 :J dr < H (! dr] U fr'r dr} . R>1.
1 1 1
It is well-known that —A on M is critical (i.e., there is no positive Green function
for it) if and only if 7 = co. Geometrically, J may be regarded as an quantity to
determine whether the constriction rate at infinity of M is big enough.

A manifold satisfying J < oo is interesting for several reasons: (1) It does
not carry a non-constant nonnegative superharmonic function because it is par-
abolic (i.e., critical) for I = oo; (2) it does not carry a non-constant L'(M)
harmonic function because of Theorem 1.1; but (3) it carries a non-constant
L'(M) positive subharmonic function.

Finally we give a characterization of a manifold which carries a non-constant
L'(M) nonnegative subharmonic function.

TueOREM 1.3.  There exists a non-constant L'(M) nonnegative subharmonic
Sfunction on M if and only if J < oo.
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This theorem follows from Example 1.2 and Theorem 3.3 to be shown in
Section 3. It gives an implicit geometric meaning of the condition J < co.

2. Harmonic functions

In this section we give growth estimates at infinity of non-constant harmonic
functions, Theorems 2.1 and 2.2, which imply Theorem 1.1.
For R > 0, we denote by B(R) the geodesic ball with center 0 and radius R.

THEOREM 2.1. Let n=2. Then, for any non-constant harmonic function u
on M there exists a positive constant C such that

(2.1) J lu| dv > CR*, R>2.
B(R)

THEOREM 2.2. (i) Let n > 2. Suppose J = oo. Then, for any non-constant
harmonic function u on M there exists a positive constant C such that

(2.2) L(R) | dv> CI(R), R>?2,
where

R r
(2.3) J(R) = L ()" ‘(Jl F(s)" ds> dr.

(i) Let n>3. Suppose J < oo. Then, for any non-constant harmonic func-
tion u on M there exists a positive constant C such that

(2.4) J |u| dv > CR", R >2.
B(R)

For R >0, we denote by |B(R)| the volume of B(R):

R
IB(R)| = anj £ dr,

0

where ¢, is the area of S"~!. The volume of M is denoted by Vol(M). Note
that there exists a positive constant C; such that

(2.5) J(R) > C|B(R)|, R>2.

Thus Vol(M) = co implies J = oo. Furthermore, if I < co, then there exist
positive constants C, and C; such that

(2.6) J(R) < G,|B(R)|, R>2,
(2.7) |IB(R)| > C3R*, R>2.
Indeed, (2.6) follows from (2.3) and (1.2); while (2.7) follows from (1.4).
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Let us show Theorems 2.1 and 2.2. Let o =0 < 4; < 4; < --- be the eigen-
values of —A on S”~! repeated according to multiplicity, and ¢; (j=0,1,2,...)
be corresponding eigenfunctions such that {¢j}j°i0 is a complete orthonormal
system of L2(S"!). In particular, ¢, = o, /> and A, =n— 1. Furthermore, it
is known that for any ; there exists a unique nonnegative integer k such that
Jj=k(k+n—-2). For j=0,1,2,..., let ;; =k(k+n—2) and g; be a unique
solution of the initial value problem

(2.8) SO @) W (1) = A f () Pw(r) =0 in (0, 90),
(2.9) w(r) =rf(1+0(1)) as r— 0.

In particular, go(r) = 1.

LemMA 2.3. For any j=>1, g; and g; are positive in (0,00). Furthermore,
(2.10) gi(r) = C}Jlrf(s)l_” ds, r>1,
where C; is a positive constant.

Proof.  We have by (2.8) and (2.9)

@.11) g0 =4 | £ ) s
This implies that g;(r) >0 and g;(r) >0 for r > 0. Furthermore, (2.10) holds

with |

G=4 | 16 ts) . 0
LEMMA 2.4, Let n=2. Then
R
(2.12) inf R‘ZJ g;(r)f(r)dr>0, j>1.
R>2 0

Proof. In the subcritical case, i.e., I < oo, (2.12) directly follows from (2.10)
and (2.7). Let us treat the critical case, i.e., / = c0. We have

F)(f(r)gj(r)" = 24g;(r) =0 in (0, c0).
Change the variable r to
(2.13) - J 7(s)" ds,
and set h;(f) = g;j(r). Then

/(1) = 2;h(t) in (=0, ),
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h;(0) >0 and £;(0) > 0. Thus there exist constants @ >0 and beR such
that —a < b < a and

hi(t) = ae* + be ™ in (0, 0),

where u = /4;. Hence () > ce’ in (0,00) for some ¢ >0. We have

r-1=[Car<][ anse dr}l/z INCRCRG "

1 1
On the other hand,

J gj(r)_lf(r)_l d”ZJ hj(t)_l dr < J ‘(ce”t)_l dt < .
1
This implies (2.12). O

LemMma 2.5. Let n>=2. Suppose J = co. Then

R
(2.14) inf J(R)’lj g(Nfr)"dr>0, j=1.
R>2 0
Proof. The assertion follows from (2.10). O

ProroSITION 2.6. Let n>3 and J < co. Then

R
(2.15) inf R‘”J g(Nf)" dr>0, j=1
R>2 0

The proof of this proposition is decomposed into the following 3 lemmas,
where we assume that n >3 and J < c0.

LemmA 2.7. For any o€ (0,n—1], f*e L'((0, 0);dr).

Proof. Choose S > 1 so large that

S
J F) " dr > 1.
1

For any R > S, we have
R

w57 < [ o ([ o as)a

S
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Thus

(2.16) exp[(R — S)*/J] < JIR f(n'""dr, R>S.

Hence

r

S 1

J C e < J o) (J S(5)'" dS> @

<J < 0.

This shows that /"' e L'((0, c0);dr). Next, let 0 <o <n—1. Forany R > S,
we have
R N o2l oD
[Crwrarsd [ o ew =2 @
s s J

s P J n—1—ua

<,

where C is a positive constant depending only on J and «. Hence

f*e LY((0, 00);dr). O
Here we note that Lemma 2.7 implies that

(2.17) JlRf(r)_l dr>C(R-1) R>1,

where C is a positive constant independent of R. Indeed,

o[ roe)([1r0a)

Lemma 2.8. For any o,f >0,

(2.18) JRf(r)f exp(ﬁjrf(s)_l ds) dr > <’§)a(R - R> 1.

1 1 o

Proof. By Hoélder’s inequality,

R LR 10 e( [ 0" i) arf
. { LR f(r)*l o (_{;’)J:f(s)l ds) dr}a/(lw).

1/(1+a)
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This together with

[ o en(<2[ s i) ar=

1
shows (2.18). O

LemMma 2.9. For any j > 1, there exists a positive constant C; such that
(2.19) g;(r) = G eXP( 4 Jl O dS>, r>1.

Proof.  We write g =g, 2= 4;, and h = f"gl. Then i’ = Jf"3g, g(0) =
h(0) =0, g(r) >0 and A(r) >0 for r > 0. We have
(gh)' = "+ 0"y
> 2V " gh.
Thus

(gh)(r) = (gh)(1) exp (m [

Therefore, with 4 = 2(gh)(1),
370" 0 = 5 exp(27 ]

Hence

r

(2.20) g(r)?* > AJ f(s)' ™ exp (NZLS f™! dz) ds, r=1.

1

By Holder’s inequality, for any 6 >0 and 1 < p,g < o0 with 1/p+1/q=1,

"t exp( o[ £ dr) ds
Jl ( .[1 )

{roref (Lo o))

Put ¢=(2/3)(n—1) and 6 =2vA/q=3V2/(n—1). Then ¢>1 and p/2=
(n—1)/(2n—35) <n—1 because n > 3. Thus, by Lemma 2.7,

Jrf(S)‘1 CXP<5J:f(t)_1 dt> ds

< C{ Jrf(s)lﬂl exp(Z\/ILSf(z)1 dt) ds}l/q

1
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for any r > 1, where C is a positive constant independent of r. Choose S > 1 so

large that
s
exp(éJ VIO dt> > 2.
1

Then, for any r > S,

Jr 75" exp(ér 0! dt) ds = %

1

Hence, in view of dq = 2v/4,

r

(2.21) J £ exp<2\/ZJj 70! dt) ds > (20C)~ exp(ZﬂJ: f(z)"dz)

1

for any r > S. This together with (2.20) implies (2.19). O
We are now ready to show Proposition 2.6.

Proof of Proposition 2.6. By Lemmas 2.8 and 2.9,

R r

JOR w0 = G [ exp( |

Z CVJI(R_ l)n

fls)™ ds) dr

1

for any R > 1, where C; and Cj’ are positive constants independent of R. O

Let us complete the proof of Theorem 2.1. We show only Theorem 2.1,
since Theorem 2.2 can be shown similarly by using Lemma 2.5 and Proposition
2.6 instead of Lemma 2.4.

Proof of Theorem 2.1. Let u be a harmonic function on M. It suffices to
show that if

lim inf R*ZJ |u| dv =0,
B(R)

R—

then u must be a constant. Put

ui(r) = LH u(rw)¢;(w) do(w), r>0, j=0,1,2,....
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Then u; satisfies the equation (2.8),
lim uy(r) = +/o,u(0),
r—0
lim uj(r)=0, j=12,....
r—0

Thus u;(r) = a;g;(r) for some constants a; (j =0,1,2,...). We have

R 1 R 1
j () ()" drsj j u(ro)|19,()] do(es) ()" dr
0 0

Sn-1

< sup |¢j(a))|J |u| dv.
o|=1 B(R)
Thus
R

|aj|{1igli£f R JO g () f(r)"! dr} =0.

This together with Lemma 2.4 shows that a; =0 for j > 1. Since {¢;}~, is a
complete orthonormal system of L?(S""!), we conclude that u is a constant.

O

3. Nonnegative subharmonic functions

In this section we give growth estimates at infinity of non-constant non-
negative subharmonic functions.

We begin with an estimate based upon a simple mean-value inequality. The
following proposition directly implies Theorem 1.1 in the case Vol(M) = oo.

ProposITION 3.1.  Suppose Vol(M) = co.  Then any nonnegative subharmonic
Sfunction u on M which is not identically zero satisfies

1
3.1) liminf—J udv>0.
( P2 BOR L,

For the proof of this proposition, we prepare a lemma on the Poisson kernel Kz
of —A on B(R) with respect to the area element f(R)""' do of dB(R).

Lemma 3.2. The Poisson kernel Kg is represented by

(3.2) KR(x,a)):f(R)“”i:ZFJ;';¢/<%)¢,(w), x| <R, weS™ ",
=0 9

where the series converges uniformly on the product of any compact subset of B(R)
and S"'.  In particular, K(0,w) = f(R)"c .

n
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Proof. Put
R

(3.3 ) =) | S0 a9 ds
where g; is the solution of (2.8) and (2.9). Then the Green function Gz of —A
on B(R) is represented by

G4 Gatx.) = Yo allohs ()0, (2)

= |x ||

for x, y with |x| <|y| <R, and Ggr(y,x) = Gr(x,y) (see (3.20) of [20] and
Lemma 8.3 of [22]). Since

0GR

KR(x,a)):—W(x,y) , x| < R, weS" 1

[VI=R
we get (3.2) (see Lemma 8.9 of [22]). O

Proof of Proposition 3.1. Let u be a nonnegative subharmonic function on
M. From definition, we have

u(x) < L K(x,0)u(Ro) f(R)" do(w), xe B(R).

Fix xe M. Since Kz(0,w) = f(R)' o', the Harnack inequality shows that

n oo

there exists a positive constant C such that
Kr(x,0) < Cf(R)"™"
for any R > |x|+ 1. Thus

u(x) < CJ u(rw) do(w), r>|x|+1.

Sn-1

We have
R R
ww | sortasc] ([ uoo) dotw) ot a
[x]+1 [x]4+1 \J 71
< CJ udy.
B(R)
Thus, for sufficiently large R
C
3.5 u(x) < 7J udv
3 )= BR) e

with another positive constant C. Suppose (3.1) does not hold. Then it follows
from (3.5) that u(x) =0. Hence u must be identically zero. O
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We conclude this section with an estimate via flux. The following theorem
together with Example 1.2 implies Theorem 1.3 immediately.

THEOREM 3.3. Let n>2. Suppose J= oo. Then, for any non-constant
nonnegative subharmonic function u on M there exist positive constants C and Ry
such that

(3.6) J udv> CI(R), R> Ry.
B(R)

Proof. By virtue of Theorem 2.2(i), it suffices to show the theorem in the
case where u is a nonnegative subharmonic function which is not harmonic on the
whole space M. Choose S > 0 so large that u is not harmonic in B(S/2). We
first show (3.6) with Ry = 2S in the case where u is smooth in B(R). For r > 0,
put

= | o) dato).

Fix R>2S. We claim that
(3.7) ], > AJ F6) " ds, S<r<R
s
for some positive constant 4 independent of R. Since Au > 0 in B(R), we have

£V ()" 0rlu,) = j £ 0, ()" dpu(r) do(eo)

Sn-1
> —J f(r)szu(rw) da(w) = 0.
Sn—1
Thus f(r)" ',[u], is increasing on (0,R). On the other hand,

£ 0,0, j £)" u(reo) do(o)
Sn—l

= J Au dv.
B(r)

r

Hence, for re[S,R)
£ o], = J @Au dv,
B(S)

where ¢ € C;°(B(S)) is a function such that 0 < ¢(x) <1 on B(S) and ¢(x) =1
on B(S/2). This implies (3.7) with

(3.8) A= J oAu dv > 0,
B(S)
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since Au# 0 in B(S/2). The proof of the claim is now complete. From (3.7),
we obtain that
R

n—1
(3.9) JB<R) udv>oa, L [u,f ()" dr

> ot [ 507 ([ i)

> ABJ(R),

where B is a positive constant independent of R > 2S and u.

We next show (3.6) with Ry = 2.5 in the general case. By the Riesz decom-
position theorem (see [11], [19], [9], [10], [4]), for a subharmonic function u on M
there exists a unique Borel measure 4 on M with u(K) < co for any compact
subset K of M such that for any 7 >0

u(x)z—j Gr(x,y) du(y) — vr(x), xe B(T),
B(T)

where Gr is the Green function of —A on B(T) and vy is harmonic on B(T).
With 4 = | gy, we have

(3.10) u(x) = —L(m Gor(x, ¥) dA(y) + w(x) in B2R),
where

w(x) = Gar(x, ) du(y) — var(x)

- J B(2R)\B(R)

is harmonic in B(R). Let  be a canonical diffeomorphism from M to R”
which maps the pole p to the origin. Let 4 be the induced measure on R” by v
from A: A(B) = A(y "'(B)) for any Borel set B of R”. Let pe CZ(R") be a
nonnegative function satisfying supp p = {|x| <1} and [p(x)dx =1 with the
Lebesque measure dx. For j=1,2,..., put 4(x) = j" [ p(j(x —z)) dA(z). Set

my(y) = LN (WD'™, v e B2R),
d)\j = m;j dV,

o)== | Gy dy(). xeBER)
B(2R)

and u; = vj+w. Then u; are smooth and Au; = m; > 0 in B(R). Thus, by (3.8)
and (3.9)

J uj dv > A;BJ(R),
B(R)

A/ZJ (;)d/llzj gﬂd)u/
' B(S) ' B(2R) )



14 MINORU MURATA AND TETSUO TSUCHIDA

We see that as j — oo,

a=| = @A)
B(2R) ¥(B(2R))

ww*unﬂuw{’ pdi=A>0.
B(2R)

—

JW(B(ZR»

Since the function

J Gar(x, y) dv(x)
B(R)

of ye B(2R) is bounded continuous and supp 4; are compact in B(2R) for
sufficiently large j, we obtain

lim J uj dv= J udv
7= JB(R) B(R)

(see also Lemma 4 of [10]). Hence
J udv > ABJ(R).
B(R)
This completes the proof. O

Acknowledgment. The first author thanks Eiji Yanagida for his suggestion
to use the change of variable (2.13) in the proof of Lemma 2.4.
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