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Abstract

The main aim of this paper is to study Hopf group-crossed products and Hopf
group-cleft extensions in the setting of Hopf group-coalgebras.

Introduction

In Hopf algebra theory, Hopf crossed products were introduced indepen-
dently by Doi and Takeuchi [5] and Blattner, et al. [1] as a Hopf algebraic
generalization of group crossed products. In particular, a Hopf crossed product
is in fact always a Hopf cleft extension, provided the cocycle appeared in a Hopf
crossed product is convolution invertible (see Blattner and Montgomery [2]).

Hopf group-algebras were introduced by Turaev in his work on homotopy
quantum field theories (cf. Turaev [8]) as a generalization of ordinary Hopf
algebras. It was proven in Caenepeel and De Lombaerde [3] that there exists a
symmetric monoidal category, the so-called Turaev, in which the Hopf algebras
are the same as Hopf group-coalgebras.

Apparently all notions that exist in classical and less classical Hopf algebra
theory should have a group-version (see Virelizier [9], Wang [11, 12, 13], and
Zunino [14, 15]). However, it is not easy to find a right way to do so because
the notion of a Hopf group-coalgebra is not self-dual.

In this paper, it is studied that there exists an analogue of the crossed
product for Hopf algebras in the setting of Hopf group-coalgebras. Further-
more, we can investigate group-cleft extensions and equivalences of group-crossed
products.

The paper is organized as follows. In Section 1 the basic notions of group-
coalgebras and Hopf group-coalgebras are recalled.

In Section 2, we introduce and study the notions of a group-crossed product
and a group-cleft extension. In particular, we characterize group-crossed prod-
ucts by group-cleft extensions (see Theorem 2.10).
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In Section 3, we prove equivalences of group-crossed products for Hopf
group-coalgebras (see Theorem 3.2). In Section 4, as an application of our new
theory, we consider an example based on the Sweedler’s 4-dimensional Hopf
algebra (see Theorem 4.2, Theorem 4.3 and Theorem 4.6).

1. Preliminaries

Throughout this paper, we let 7 be a discrete group (with neutral element 1),
k will be a fixed field, and the tensor product ® = ®, is always assumed to be
over k. If U and V are k-vector spaces, Ty p : U® V — V ® U will denote the
flip map defined by Ty y(u®v) =vQ®u, for all ue U and ve V.

n-coalgebra. Recall from Turaev [8] that a m-coalgebra is a family of
k-spaces C = {C,},., together with a family of k-linear maps A = {A, 3 : Cyp —
C, ® Cp} (called a comultiplication) and a k-linear map ¢: C; — k (called a
counit), such that A is coassociative in the sense that,

A%ﬁ ® l'dc/)Aa/;_y = (idcy ® A[;?y)A%ﬁy, Yo,B,veR
(ide, ® e)A,1 = idc, = (e ® idc,)A1 ., Vaem.

We use the Sweedler’s notation (see Virelizier [9]) for a comultiplication in
the following way: for any o, € n and ¢ € Cyp, we write A, g(c) = ¢(1,5) @ ¢(2,p)-

Hopf n-coalgebra. Recall from Turaev [8] that a Hopf n-coalgebra is a
n-coalgebra H = ({H,},A,&) endowed with a family of k-linear maps S =
{Sy:H, — H,},_, (called antipode) such that:

(1) each H, is an algebra with multiplication m, and unit element 1, € H,,

(2) e: H —k and A, p: Hy,p3 — H, ® Hp are algebra maps, for all o, f e,

(3) for each aem, my (S, ® idy,)A,1 o = lue = my(idy, @ S,-1)A, 4.

If a Hopf n-coalgebra H satisfies conditions (1) and (2), we call it a semi-
Hopf n-coalgebra (see Wang [12]).
We also have the set of a zm-group-like elements denoted by

G(C) = {C = ()yen € [ ] CalAuple) = ex @ cpe(cr) = 1}‘

AET

Remark. (1) (Hy;my; 1A 1;6;81) is an ordinary Hopf algebra;

(2) The antipode S = {S,} of H is said to be bijective if each S, is
bijective;

(3) The antipode of a Hopf n-coalgebra is anti-multiplicative and anti-
comultiplicative, i.e., for all a,fen, a,be H,

S,(ab) = S,(B)Su(a);  Su(1,) = 1,13

Aﬂflvrlsa[; = TH,A—MH,;—I (Sa ® S/;)Aa7ﬁ; 851 = ¢.

LET



CROSSED PRODUCTS OF HOPF GROUP-COALGEBRAS 327

2. Group cleft extensions and existence of group crossed products

DeriniTION 2.1, Let H be a Hopf n-coalgebra and 4 an algebra. We
say that H acts weakly on A4 if there exists a family of maps: H,® A — A4,
h®av— h—a, Yoen, he H,, such that

(1) 1, —a=a, for any ae 4; aemn,

(2) h— (ab) = (h(l,a) - a)(h@,/;) - b), for all he H,, a,b EA,

(3) h— 14 =c¢(h)ly, for every he H,.

Furthermore, if 4 is an H, module for each o € = and satisfies (2) and (3),
we call that 4 is a n-H-module algebra.

Let H be a Hopf m-coalgebra and 4 a family of algebras A = {4,,m,,
L byene Let x={x,: HH ® H — A,} be a family of k-linear maps and that y
is an invertible map. Suppose that H acts weakly on each 4, with o« e 7. For
any o €n, we define a multiplication on 4, ® Hg by

(2.1) (@®h)(b®g) =alhu ) — b)x.(ha . 90.1) @ hi pge.p)
for all a,be A, and h,g € Hy with fen.

DErFINITION 2.2. For a e n, set Aa#“H = A, ® H, with the multiplication
defined by Eq. (2.1). If the A,# Y H, is an associative algebra with 14, ® 1, as
identity element, we call the family of algebras {4,#;H,},., as a Hopf n-crossed
product and denote it by A#7H. And we call ( ,x) the m-crossed system
for A#7H. We denote {4, #“Hl} by A#;H; and denote {A,#;Hp}

A#7Hg with some f € 7.

XET XET

The proofs of the following two propositions are straightforward.

ProposITION 2.3. With the above notations. Then A#7H is a Hopf
n-crossed product if and only if the following conditions hold: for any o emn

(22) Xq(llﬂh) :8(/’1)114“ :Xot(hall)a
(23)  (hay — (9o, — a)x.(hen,90.10) = 2(ha, v, 90,10) ()90, — a),
(2.4) Lol 90, 0) 1 (he, )92y, k)

= (ha, 1y = 90,0 ka, )1 (he, s 90 ke, )
for all h,g,ke Hy and ae A,.
ProposiTiON 2.4, If A#jH\ = {As#,H\},c, is a family of ordinary Hopf

crossed algebras, then A#”H is a Hopf n-crossed product and A#7Hp =
{4, #“H/g}xen with some /)’e 7 is a family of associative algebras.

Remark 2.5. (1) If we set = = {1}, then the Hopf n-crossed product is the
ordinary Hopf crossed product.
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(2) If we take y,(h,/) =e(h)e(l)1,, with o en, then the Hopf rm-crossed
product becomes the Hopf z-smash product (see Wang [11]).

(3) For some 1 ;é,B e, if A#;Hp = {A.#;Hp},, 1s a family of associative
algebras, then A#7H is not necessarlly a Hopf n-crossed product.

A concrete counterexample is presented as follows.

Let 7 and G be two finite groups, and ¢: G — n be a group homomor-
phism. Then ¢ induces a Hopf algebras morphism F(z) — F(G), given by
f+— fo¢, whose image is central. Here F(G) = C® and F(n) = C™ (where C
is a complex domain) denote the Hopf algebras of complex-valued functions on
G and 7 respectively. By Virelizier [10] this data yields to a Hopf n-coalgebra
HY = {H}} Denote by (e;),.; the standard basis of F(G) given by

o Jouemn:

eq(h) =04 4. Then for any «,f en, we have that

HY = Z Ce,,  p,(e, ®en) =0,4e, for any g hed (),

ged ()
Z ey, &(eg) =0,1 for any ge g (1),
ged ()
Avple)) = en®e; for any ged™ ' (af), he g (2), ke s (B),
hk=g

Sy(ey) = e, for any ge ¢ ().

Given any k-algebra 4, we can endow A with the action of H on A is trivial,
the multiplication on A4, ® Hy is

(@@en)(b®ey) = aby,(er,em) @ e,
h=g
for any I,megb_](l), h,ge(ﬁ_l(ﬁ) and a,be A,. A#jH is a Hopf n-crossed
product if and only if the following conditions hold: for any o e
Xa(llyem) = 8(6’,71)1,4“ = Xa(emy 11)7
a%oz(elh el’l) = Xq(e,m en)aa

Xa(€prem)y(eren) = xy(em,ep) s (e en),

for any I,m,p,ne ¢ ' (1) and a e A,.

For some 1 # femn, if A#”H/; = {Au#,Hp},, is a family of associative
algebras, for any h,g,ke¢” (ﬁ) and a,b,c eAa, then

[(a ® Eh)(b ® eg)](c ® e/c) = Z[ab)(a(eh em) ® E}J(C ® Ek)

h=g

= Z ab%a(el’em)c)(a(epyen)®e/1,

h=g=k
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for any l,m,p,neqﬁ_](l), and
(@®e)(b®ey)(c®e)] = (a®en)lbey,(ep en) @ ¢,]

g=k

- Z abcxa(e/,em))(“(ep,en) ® en,

h=g=k

for any I,m,p,ne ¢ '(1). Then

Z ab}f(x(ela em)c}fa(epv en) ®e, = Z abcxa(el, em))(gg(epv en) ® ep.

We let a=b=1,4, and 1, = Zne¢—l(1) e,, then

(2.5) Z)(m(e/,en,)(:@eh = Zcxa(el,em) ® ej.

From Eq. (2.5), we can’t obtain that y,(e;, en)c = cx,(er, em), only take =1 and
apply id ® ¢ to the Eq. (2.5), we get y, (e, en)c = cx,(er, en) for any Ime ¢~ (1).
Then A#;H is not necessarily a Hopf n-crossed product.

DEFINITION 2.6. Let B be a family of algebras B = {B,,m,, 1z}, ., and
AcB= {A1 < Bl}uen'

(1) We say that 4 =« B= {4, < B,},., is a n-H-extension if B is a right
n-H-comodule algebra (see Wang [11, 12]) with a family of k-linear maps p =
{rgo: Bp— By ® H,}, gy and B = A, where

Bt — {b = (by)ye, € HB“ | Py, p(bug) = by ® 15 € B, ® Hg, o, f € n},

AET

(called a m-subalgebras of right m-coinvariants).

(2) A m-H-extension 4 « B={A4, = B,},., is a n-H-cleft if there exist
a family of right n-H-comodule maps y ={y,: H, — B,},., such that y is
convolution-invertible in the sense that there exist a family of maps y~! =
{»,} : Hw — B,},., satisfying

oLET

Valh,2) 75 (1)) = 7,5 (1)) 74 (B2, o) = e(h) 1,

for all he H; and « e .

LemMa 2.7. Let A< B={A4, < B,},., be a n-H-cleft with a right n-H-
comodule structure map:  p = {pg, : Bg, — Bg ® Hy}, g, via b — b p @ b )
for o, € n and with a n-H-cleft structure map: y={y,: H, — By}, such that
v.(14) = lg, with e n.  Then we have

( )pﬂa (ﬁi) _(/;}1®S )OTOA*I/)’

(L2) b, 7,1 (b1.o1y) € A = B“H for any be By.
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Proof. First observe that since p is an algebra map, Pps© V() is the
inverse of pg, 0yg, = (yy®id) o Ag,. Let 0= (y,;l ® S,1)oToA, i 4, for all
he H;. Then '

[(p[)’x o y([)’oc)) * 0](h)
= (rp ®id) 0 Ag o (h1 p) (75" ® Sy 1) 0 T oA,y )y gy
= (yp(h,p) ® h<2,a))(V,}11 (g p1)) @ Sy1 (b 5o1)))
= S(h)IB/; ® 1“

Thus 0 is a right inverse of pg, o 75, and so 0 = pg, oy
inverse.
As for (L2), we compute

-1

()" by uniqueness of

-1 -1
pﬁa(b(o,ﬁa)y(ﬂ%)—l (b(l,(/)’of)il)>) = pﬁa(b(o‘[ia))p/j’ay(ﬂa)*l (b(l,(ﬁgg)’l))
= b.p)75 1 (b 1)) ® b1, Syt bz, 51)))

= b(oj/;)y/;ll (b(Lﬂ’])) ®1,.
This finishes the proof. O
ProrosiTioN 2.8. Let A< B={A,< B,},., be a m-H-cleft via y=

{yy: Hy — By}, e, such that y,(1,)=1p, with oen. Then there is a Hopf

n-crossed product with a weakly action of H on A given by
h—a= yx(h“ﬂa))ay;,ll (h,41)), for all ae A,, he H

and a family of convolution-invertible maps y = {y, : Hl ® Hy — A,},., given by

LET

Xx(hvk) = yac(h(l,%))ya(k(lﬁfx))yaill (h(Z,cF‘)k(Z,crl))a fO}" all hvkEHl'

Furthermore, there is an algebra isomorphism @, : Ay#,H, — B, given by
ay @ hy — ayy,(h,) with o € 7w such that ® = {®,},_, is both a left 7-4-module
and right n-H-comodule map, where right n-H-comodule structure map of
Aaﬂ#;ﬁHa/; is given by Claﬂ#h“ﬂ — aaﬁ#h(17a) ® h(z,ﬁ).

Proof.  First we compute, for a = (ay),., € [1,c, 4 he Hi,

pﬁa(h — ap,) = Pﬁa(yﬁa(h(l,ﬂz)))ay(_ﬂ]“)—l (h(z‘,(/;a)*l)))
= (P2 © V12282 (P © ¥ iy 1 (i 1))
= (1p(ha1p) ® ha)ap ® 1) (75" (hyy 1)) ® Syi (3 o))
:héa/;@laeA/;@Ha

and thus 4 — a e A = B«!. Furthermore it is easy to see that Definition 2.1 (2)
and (3) hold.
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Similarly we can prove that y = {y,},., has values in 4. In fact, for all
/’l, ke H],

Ppa(Xpo (B, K)) = p/)’ozy/)’ot(h(l,/5’0())p/j’oz(Vﬂa(k(l,/ia))p/)’ay(_ﬂ;)*l (ha, (py1yK 2, (1))
= (Vﬂ(hl.ﬁ) ® h(la))(y[)’(kl,/}) ® k(Z,a))(Vg}l (h(47/3*1)k(4,/3*1))
® Sy 1(h3 0 1ykE,01)
= 7(hap) sk )75 (o gk, p1y) © Lo
= xp(h, k) ® 1.
Now, for o« en, we define
W, : By — Ay# Hy, by b by, i (b1 a1)#b,)-

It is easy to show that W, is the inverse of ®, with « € z. Furthermore, ® is
an algebra map:

DO (a#h)O(b#k) = ay,(h)by, (k)
= ay,(h1, )by, (ha,u)) 72 (h3,2)) 7 (K1, 2))
Vit (B, k1)) 7, (s, k3,))
= a(hq,1) - b)x(he 1) ka,1)vs(hia 0k2.)
= O((a#h)(b#k))

for any h,k € H, and a,b e A,. Therefore, we have {B, =~ Ad#;H“}ocen'
Finally, it is easy to check that ® = {®,},__ is a left 7-4-module map and is
a right n-H-comodule map. O

PrOPOSITION 2.9.  Let A#;H = {As#,Hy},., be a Hopf n-crossed product
and define y ={y,: Hy, — Au#;Hy},ep by 7,(h) = 14,#h for acen. Then y=
{Vatuen i @ family of convolution invertible with inverse

() = 1, (S(ha)s s ) #Ss1 (Bt o).
In particular A = A#7H = {4, = Aa#;‘Ha} is n-H-cleft.

LET

Proof.  Let v,-1(h) = 1, (S(ho, 1), h,1))#S,-1 (h ,1y). Then it is straight-
forward to verify that v is a left inverse for y, we have

Dyt (it )7 (hw) = (Gt (S(hay)s i) #Sa1 (it o) (Lo, #hia, )
2 (S(his 1) hia 1) 2(S(ha, )y s, 1) #Su1 (it 1)) s,
= &(S(ha,1)))elha 1)) #Sy 1 (a1,

e(h)14,#1,.
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To check that v is a right inverse for y is more complicated, by a computation
similar to the above, we have

(2.6) 7, (h1, )01 (ha 1)) = Ther 1y — 25 (SCha, ) s, ) (B, S(ha 1)) #1s
and hence that v is a right inverse for y if and only if
(2.7) oy = 1, (S ) s )2 (hays S(ha.n)) = e(h) 14,

for all h e H;.
Since y = {y,: HH ® H; — A,} is invertible, Eq. (2.4) gives

(2.8)  h— 1,(9:k) = xa(ha. vy, 90.0)x(he.nga . ko n)x, (hey 96 nke.n)
for any h,l k € Hy. Letting he H; act on the identity
2900 ka2, (e, ko) = &(g)e(k) L,
we have
29)  [ha1) = %0901 ko)l — 2 e, ko) = e(h)e(g)e(k)1 4,
Hence from Eq. (2.9) we obtain
(2.10) 7 — x; ' (9,k) = 1. (h 1y 90, 0ka, )0 (hangen, ke )xs (e, 96,1)-
We may now verify Eq. (2.8) using Eq. (2.11):
oy — 25 (S(ha 1) his, )12 (he,n, S(h, )
= Zu(h 1y, SChs ). )y (S, 1)) b 1)
(s SChie )2 (a1 S(his. 1))

= 1, (h 1y, S(his )b 1)y (ha 1y S(hs 1)), his 1))e(h 1))e(ha 1))

= 2 (h1, 1), S(ha ) his )5 (e S(hia, )y s, 1y)

=e(h)1y,.

By Proposition 2.8 and Proposition 2.9, we easily get the main result of this
section as follows.

THeOREM 2.10. With the above notations, a n-H-extension A < B =
{4, = B,} is a n-H-cleft if and only if {B, = A“#;H%}

LET aemn

3. Equivalences of m-crossed products

In this section, we will show that an analogue of the result in Doi ([4],
Lemma 2.1) still holds for the setting of Hopf group-coalgebras.
Let H be a Hopf z-coalgebra and A4 a family of algebras A4 = {4,,m,,

lu,}ye, over k, and y={y,: H, — A,},., a family of convolution-invertible
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linear maps. Define y7» = {y)* : Hy ® Hy — A,}
A by

1< and weakly action of H on

27 (h.g) = ,(h,0) (ha, 1y = 2290, 9))x(hi 1), 92.0) 75 (ha o-1)9G.0-1))
and
h—7a=y,(hqu)(ho1 — @)y, (hz ,)
for any h,g € H, and ae€ 4, with o en.
Lemma 3.1, Let A#}H = {A,#H,},., be a Hopf n-crossed algebra.

Then y'+#v = (y*)" and —"+s = (—*)"™ where y ={y,: Hy — Ay}, ., and p =
{ug - Hp — Aﬁ}pen are a family of convolution-invertible linear maps.

Proof. For any h,ge Hy, ae A,z with o, e n, we have
17 (hy g) = ((Pattp)up(hir.ap)) (B ty =" (9(1.p)))
203,115 901) 0attp) iy P oy 195, 1)
= Vol (hia p) (B 1y — 72(9(1,2)))
(ha, 1) = #p(90.5)xChis 1) 96,115 (g 51190 1) 71 (e o195 )
= 7, (h )it (hia ) (his 1y = 72(900,2) ) (i g1y p (s gy)
(he,1) = tp(9.p)x(hr, 1) 96,115 (s 511904 1)) 7501 (o o195, 1)
= 7, (h1,0) () =" 2,090,910 (ha 1) 92.0) 75 (a1 9(3,001))
= (") (h,g)

and thus y7=# = (y*)".
Also,

h(—#5)"a = p,(h ) (he, 1) =" @)y, (hs,ae)
= Vaz(h(l‘a)>/vtﬁ(h(2,1)(1‘ﬂ)>(h(2,1)(2,1) - a)ﬂﬂ_—ll (h(z,l)(wfl))y}]l (h(s,orl))
= 7.(h(,0) (2 ) (hiz, 1) — a),uﬂ_,]l (h(4,/r1)>7’;11 (h(s.a1))
RN

and so —7#H = (—FH)7,
This completes the proof. 0

THEOREM 3.2. Let H be a Hopf m-coalgebra and A a family of algebras
A={Ay,my,14,} and y={y,: H, — Ay}, ., a family of convolution-invertible

oAET oET
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linear maps, y = {y, : HH ® Hy — Au},., is a family of k-linear maps. With the
above notations y’» for any o,f € n Then we have the following assertions:
(1) As algebras, A#“ﬂH A#/{M
(2) x satisfies Eq. (2 2) if and only if x" satisfies Eq. (2.2);
(3) (x,—) satisfies Eq. (2.3) if and only if (x?,—7) satisfies Eq. (2.3);
@) If (x,—) satisfies Eq. (2.3), then (y,—) satisfies Eq. (2.4) if and only if
(x7,—7) satisfies Eq. (2.4);
(5) A#“ﬁH is a Hopf n-crossed algebra if and only if A#P H is a Hopf

- crossed algebras, and they are isomorphic.

Proof. (1) Define @ : A,#., Hys — A, #0Hg by a ® h — ay,(h,2) ® hop),
For a,be A,,h,g € Hyp

Q((a®h)(b®g))
D(alha, 1y =7 D)y (ha1),90.1)) ® hi,p92,48))
= a(hq,y —" b)y'™ (h(z,1),9(1,1))Vx(h(3,a)g(27a)) ® hup9c.p)
= ay,(h(,2)(ho,1) = D)y, i va(ham)his 1y — x(he 1) 9e.1)
it (h3,5119,2-1))75 (8,09 (4,0) © o, p)95.p)

= aya(h(l,a))(h(ll) - b)(h(3,1) - yoc(g(l,x))}((h(4 1) ) ®h 5.993,8)
=0aRhPIRg).
Clearly @ is bijective, ® '(a ® h) = Say,! (h1,01y) @ ha,up) a,be Ay, he Hyg,

since
W(a®h) = ®(ay,’ (h, 1) ® h,up)
= ap,  (h1,0) 7. (h,ap)1.2) ® hi,apy.p)
= ay, (a7 (@) ® hap)
=a®h.

(2) Straightforward.
(3) If (x,—) satisfies Eq. (2.2), then

(hay =" (g, =" (@)x™(h@a1),92,1))
= yoz(h(l,l)(l,u))(h(l.,l)(Z,l) - (71(9(1,1)(1,1)))(9(1,1)(2,1) —a)
1 (900 Ea )70 (hanE.an)7a(he na.9) (e ey = 729 00,2)
2(he e, 9e.ne )y (e e gene.a )
= 7,(h1,2) (heny = (1(90.0)) @) = 7,907, (ha.an)
(

Vyh )( *Va( )X(h )Vx (h(7,o«f])g(6,or1))
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= 1, () (1) = 7,900 () — (91) — @)
x(h@ 1y, 96.0) 750 (s, 09, 001)

= Valh1,)(hen) = 72(90,0))2(hi 0, 9en) (e ngen — )
e (s 2 1y9(a,5-1)

= 1"(ha, vy 90,1) (he,ng0,1) =" a).

Conversely, we get it from Lemma 3.1.
(4) If (x,—) satisfies Eq. (2.3) and Eq. (2.4), then for h,g,m e H,

(ha,ny =" 7 (9a,0:man))x " (he,1), 9@, nme,n)
= Va(h )(h(z 1) — (7.9 ( 92,1 — 7 (m(l,a))))X(g(S,l),m(2,l))
V{—l(g< )7 ( 1))V () (s, 1y = 7,(9(5,0M4,5)))
1l 1), 9 )V (h, a0 G3,01yM6 1))
= 7,(h, ))(h< = h(g< )))(h(s by — (@1 = 7.(ma.q)))

(hay = 2(g6,0me )2 s, 1, 9@ 1ymE 1) 7e (i, 195,011 4, 2-1))
= Vu(h1,0) (he, = 7.(90,9))(hia 1) — (9@,1) = 7.0m(1,4))))
x(ha 1) 96.0)x(his. 1) 9 m2,10) 75 (s, a9 (5,1 M, 1))
= 75 (h1,0) (he,y = 72(90,0)x(ha 192,10) (ha ) 96,1 = 72(m,2))
1(hs, 9,1, m(z,l)))’;—ll (h(6,a-119(5,4-1YM(4,4-1)
= Xy“(ha,l),9(1,1))X(h(2‘1)g(2,1)7m)~

Conversely, we get it from Lemma 3.1.
(5) Clearly. O

4. An example

In this section we will give applications of our theory. Recall that the
definition of H,. As a k-algebra, H, is generated by two symbols X and Y
which satisfies the relations X> =1, Y?> =0 and XY + YX =0. The coalgebra
structure on Hy is determined by

AX)=X®X, and A(Y)=1®@Y+YQX.
Consequently, H4 has the basis 1 (identity), X,Y,Z = XY, and A(Z) =

X®Z+Z®1. The antipode of H,; is given by S(X)=X, S(Y)=2Z2,
S(Z)=-Y.
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We now consider the dual Hy of H;. We have Hy = H; (as Hopf algebras)
via
l—=1"+X", X1"+X*, YY'+Z' Z—>Y*"-Z"

here {I*,X*, Y* Z*} denote the dual basis of {l,X,Y,Z}, then we let T =
I*+X*, PP=Y*+2Z* Q' =Y*— Z* we get another basis {1,7,P’, Q' = TP’}
of Hy.

In what follows, let =7 = C*.

For o €z, define two group homomorphisms ® : 7 — Aut(Hs) and ®* : 7 —
Aut(HJ) as

O,(1)=1, O,X)=X, D(Y)=0aY, ®Z)=o0Z,
(1) =1, O(T)=T, ®;(P)=o'P, ®;(Q)=0a"'Q"
Now, it follows from Wang [13] that, we have the Turaev J(z)-coalgebra
D(H47H:7 < ; >§ ®7®*) = {D(H4»H4*, < ) >;¢)a (D*a (aaﬂ))}(x,/i)e(i(n)ﬂ

which is denoted by 2(6). Then the Turaev J(x)-coalgebra structure on Z(6) is
given, for all o, f, 4,y € n, by the following (a)—(d):
(a) The multiplication relations:

X’=1, Y*=0, XY+YX=0 T?’=1, P?=0, TP +P'T=0,
XT=TX, XP' +P'X=0, TY+ YT =0, YP =P'Y.

(b) The J(n)-comultiplication and counit relations:

A (X) = X ® X, §(X) = 1;
HY)=Y®I+X®Y,  &Y)=0;
W2 =Ze®Xx+1®Z, e(Z) = 0;

A(oc/)’ ;/(T) T®T, e(T) = 1;

Avpyiy(P) =P @ T +1@aP', &(P')=0;

Awp), m(Q’) 0 @1+ T®aQ, &Q)=0

(c) The antipode relations:
Sap(X) =X, Sup(Y)=-Z, Sup(Z)=Y,
Sep(T) =T, Sup(P)=afQ', Sup(Q)=—apP

(d) The crossing relations:

o) =X, () =apY, (Z)=ap 'z,
o p(T) =T, gl (P)=a'p' P g(}(Q) = pO".
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Furthermore, 7 is a subgroup of é(z) and (o, f) "' = (f~'a~'8,57"), then,
for all X,Y,Z,T,P,Q€ Dy

A pp X)) =X®X, e(X) =1,
Aupyp (V=Y ®1+X®Y, &(Y) = 0;
Aw (2)=Z®X+1®2Z, &(Z) = 0;
A pap (T)=TOT, e(T) =1,
A@ (P) =P OT+1Q@aP, &(P)=0;
A(acﬁ ( N=p'10®1+T®uwQ', &Q)=0

We assume o = /?7 and P =aP’, then Q = aQ’.

Lemma 4.1.  Let V be any n-coalgebra and W an algebra, let f:V — W be
a convolution-invertible linear map. Assume that a € Py (V) = {a = (ay),., €
L ValAla) = g, ® ag + a, @ hg} where g,he G(V). Then f(g) and f(h) is
in UW), the set of units of W, and f~'(a)= ff(g)flf(a)f(h) here f~ 1

denotes the convolution-inverse of f.
Proof. Straightforward. ]

THEOREM 4.2. Let C < B be any n-2(0)-extension. Then B is a n-2(0)-
cleft if and only if there exist elements x, y, t, p in B where x> =1, xy + yx =0
with x,te U(B) such that

pPx)=x®X, p(y)=x@Y+y®I;
p(t)=t®T, pp)=pR®T+1QP.

If this is the case, we have
(1) The map ¢ : D, 3y — B defined by

¢(1>:17 ¢(X):X, ¢(Y):ya ¢(Z):Xy,

HT)=1t, ¢(P)=p, ¢(Q)=1p,
is a section. The inverse ¢~ is given by
gl X)) =x"" g =—xTy, ¢ (D)=,

Y) =
p' (1) =1, ¢-1<T>:fh ¢'(P)=—pt™", ¢7'(Q)=—p.

(2) B is a free left C-module with basis {1,x,y,z=xy,t,p,q = tp}.

(3) If we let s=y*, w=1>, u=p?, v=tp+ pt, then we U(C), s,u,ve C.
(4) The m-crossed system corresponding to ¢ as in the part (1) is given by the
Jollowing: X, Y,Z,T,P,Q¢e D
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Z—c=xy,cJx ' =—FD(c), T —c=tet™" =G(c),

{XA c=xex'=F(e), Y —c=x[x"'y ] =D(c),
P—c=[pct' =E(), Q—c=tp,c = GE()w,

x(L1) =x(1,X) = 7(X, 1) = 2(X, X) = 1,
(L Y)=2(1,2) = 2(X,Y) = (X, Z) =0,
2(Y, 1) =x(Y,X)=x(Z,1) =x(Z,X) =0,
X(Ya Y):S:_X(Z,Z)a X( ,Y) F(S):—)((Y,Z)
and
x(L1) =x(L,T) = (T, 1) =1, x(T,T)=
21, P) = x(1,0) = (T, P) = x(T, Q) = 0,
(P 1) =x(0,1)=0, x(P,T)=v, 2(0,T)=G(v),
20, P) = G(u) = —(P,Q), x(P,P)=u, x(Q,0)=—wu.

Proof. (1) Assume C < B be any 7n-2(0)-extension. Choose a section
YD1y — B Set x=y(X), t=y(T), y=y(Y) and p=y(P). Then
clearly x,te U(B) and p(x)=x®X, p(»)=x®Y+y®1, p(t)=t®T,
p(P)=p®T+1®P. Conversely, from such elements x, y, p, ¢ in B, define

anew map ¢: D, 5 — Bby ¢(1) =1, ¢(X) = x, ¢(Y) = y, §(Z) = xy, §(T) = 1,
#(P) = p, ¢(Q) = tp, Then ¢ is also a section, since we have

pP(Z) = p(xy) =p(X)p(y) = (xR X)(y®1+x®Y)
—xRX+1®Z=(pQ1AZ).

The inverse ¢~ ' is immediately obtained from Lemma 4.1.

(2) Follows from the normal bas1s property for n-cleft extensions.

(3) Since p(w) =p() = (1@ T)* =2 ®1=w® 1, we have w e C, The fact
that w is in U(C) follows from x € U(B) and p(t72) = 2 ® 1, Now we compute

P =®1+x@ Y=Y’ +(y+ )@Y+’ ®1=)"®1,
PP )=(1®P+pRT)’=1QP +p@(TP+PT)+p’ QT =p*® 1,
pltp+pt) =(t@T)(1®P+p®T)+(1@P+p®T)(t®T)
=t1QTP+tp@T*+tQPT +pt®T?
=t@(TP+PT)+ (tp+pt) ® T?

=(p+p)®1L

This proves s,u,ve C.
(4) We compute the weak action: for X, Y,Z, T,P,Q € D ),

X —c=¢(X)e™ (X) = xex,
Y —c=¢(Y)ep (1) + p(X)ep ™ (Y) = ye — xex7'y,
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Jep~ (X) + g(1)eg™ (Z) = xpex™" + ey,
T)ep ' (T) = tet™!

0 —c=d(T)eh™(Q) + ¢(Q)ep™" (1) = te(—p) + tpe.

The trace map tr: B— C is as follows:

r(l)=tr(x)=w(t)=1, wr(y)=1tr(z) =1tr(p)=1tr(q) =0.
For example,

20, T) = x(TP,T) = tr(¢(TP)§(T)) = tr(1pt)

2

= tr(tv) — tr(t°p)

This completes the proof. ]

THEOREM 4.3. Let C be an algebra. Given F,D,G,E € Endi(C) and
we U(C), s,u,veC. Define A;@()Mﬁ@CHC and  y:2(0) 1) ®
@(0)(1,1) — C by

X—=c¢=F(), Y—c=D(), Z—c=—-FD(c),
l—c¢c=¢, T—c=0G(), P—c=E(), Z—c=GE(c)w.

and y as in 4.2(4), Then (—,y) is n-crossed system for 2(0) over C if and only if
the following conditions hold:
(1) F and G are algebra maps;
( "Y=D(c)c' + F(c)D(c"), E(cc’) = cE(c') 4+ E(c)G(c") (¢,¢' € O);
2(¢) =¢, G*(c)w=wc (ce C);
F(c) = —FD( ), (GE( ) + EG(c))w =ve — G(c)v (ce C);
2(c )+cs—sc E*w =[u,c] (ceC);
v

(S)=_ E(u) = 0;
(5) =5, E(v) = u— G(u).

1

Proof. =) it is easy to see that y is invertible and y~' is given by

{Xl(XvX) =1, Zﬁl(Xv Y) :Xil(XaZ) :Xil(YaX) :Xil(ZaX) =0,
Xﬁl(Yv Y) =—85= _X71(272)7 Xﬁl(YvZ) :F(S) = _Xil(Za Y)v
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and
T, T)=w!, yNT.P)=y(T.Q)=0,
NP, T)=—ow !, HQ,T) = —w ' G(v),
2P Py =uwt N0, 0) =u, xTN(P,Q) = Gu) = —271(Q. P).
Condition (1) comes from a measuring condition for X — and T — (resp.
Y — and P—). (3), (4) and (5) come from Eq. (2.3) for (h,g) = (X,X) and
(T,7T), (Y,X) and (P,T), (Y,Y) and (P,P). (6), (7), (8 ) and (9) come from
Eq. (2.4) for (h,g,m)=(X,X,X) and (7,7,7), (Y,Y,Y) and (P,P,P),
(Y,X.X) and (P,T,T), (Y,Y,X) and (P,P,T).
<) It is enough to check the conditions Eq. (2.3) and Eq. (2.4) for k-basis
X, Y Z T, P, Q, but it follows by simple and long calculation. O

We consider the algebra:
A(S,W,Ll,l)) = k<x1yat7p‘x2 = 17)/2 :S,Xy+ yx = Ovtz = W7p2 = ”atp‘f'Pl: U>-
DerFINITION 4.4. Let C be an algebra. A 8-tuple (F,D,G,E,s,w,u,v)
where F,D,G,E € End,(C) and we U(C), s,u,ve C, is called a n-Z(0)-cleft

datum over C, if the above (1)—(9) are satisfied. We obtain the n-crossed
product

A(F,D, G, E,s,w,u,v| C) = C#;%(0).

Observe that if we let x=1Q@ X, y=1®Y, t=17T, p=1® Pe
A(F,D,G,E,s,w,u,v|C), then {l,x,y,z=xy,1,p,q=tp} forms a left C-basis
and the following relations hold:

=(1X1®X) =X —-1)X, X)X’ =1®1=1,
yi=s xy+yx=0,
=(1TN)IRT)=(T—)y(T,T)@T*=w®1 =w,
p2 u, Ip+pt=uv,
F(c)x, yc=F(c)y+D(c), zc=cz—FD(c) (ceC),
te=G(c)x, yc=cy+E(c)x, zc=G(c)z+ GE(c)w (ceC).
By Theorem 4.2 and Theorem 4.3, we have

CoRrOLLARY 4.5. Any n-2(0)-cleft extension C < B is isomorphic with
A(F,D,G,E,s,w,u,v|C) for some n-2(0)-cleft datum over C.

We next consider when two Z(6) n-cleft extensions over C are isomorphic.
Let (—,y) and (—',%’) be group crossed systems of m-coalgebra 2(0) over C,
and C#79(0), C#; QZ( ) be the corresponding n-crossed products, and when they
are isomorphism as 2(0) extension satisfying
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1 (hyg) = i, py (1) (ha = () (91)X (h3792)V(”, 1(hag3)
h—"a=yq, p(h)(h — ) ﬁ 1(h3)

for h,ge D), aeC, where y, 5 € Hom(D, ), C) are convolution-invertible
linear maps.

THEOREM 4.6. Let (F,D,G,E,s,w,u,v) and (F',D',G' E' s' w' u',v') be

-9(0)-cleft data over an arbitrary algebra C. Then one has that A(F,D, G, E,
s,w,u,v| C) = A(F', D', G', E",s',w' u',v"| C) as n-2(0)-extension if and only if
there exist elements m, m', n, n’ in C with m,ne U(C) such that for all ce C
1) F'(c) = mF(c)m™", G'(¢) =nG(c)n™';
2) D'(¢) + F'(¢)m’' = D(c)ec + mD(c), G'(c) = {(n'G+ E)(c) — cn'In~;
3) mF(m) =1, w =nGn)w
4) 5" =m"” +mD(c) + mF(m)s, u' =u+n"v+ (n'G+ E)(n")w
5) —mF(m') =m'm+mD(m), v' =nv+{(n'G+ E)(n) + nG(n')}w.

Proof.  Straightforward. O
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