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Abstract

In this paper, we investigate some properties of planar harmonic mappings. First,

we generalize the main results in [2] and [10], and then discuss the relationship between

area integral means and harmonic Hardy spaces or harmonic weighted Bergman

spaces. At the end, coe‰cient estimates of mappings in weighted Bergman spaces

are obtained.

1. Introduction and main results

For each r A ð0; 1�, we denote by Dr the open disk fz A C : jzj < rg and by D,
the open unit disk D1. The harmonic Hardy space H

p
h ðDÞ with 0 < p < y

consists of all complex-valued functions f harmonic in D (i.e. fzz ¼ 0 in D) for
which

k f kp :¼ sup
0<r<1

ðIpðr; f ÞÞ1=p < y; Ipðr; f Þ ¼
1

2p

ð2p

0

j f ðreiyÞjp dy:

The classical analytic Hardy space over the unit disk D, denoted usually by
HpðDÞ, is obviously contained in H

p
h ðDÞ: We refer to [5, 7] for many basic

analytic and geometric properties of univalent harmonic mappings, in particular.
In this paper, we call a complex-valued harmonic function as a harmonic

mapping. For a harmonic mapping f in D and 0a r < 1, the generalized
harmonic area function AhðrÞ of f is defined by (cf. [2])

AhðrÞ ¼ Ahðr; f Þ ¼
ð
Dr

j b‘f‘f ðzÞj2 dAðzÞ;
where dA denotes the normalized Lebesgue measure on D,b‘f‘f ¼ ð fz; fzÞ and j b‘f‘f j ¼ ðj fzj2 þ j fzj2Þ1=2:
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In particular, if f is analytic in D, then we denote the analytic area function of f
by AðrÞ :¼ Aðr; f Þ ¼

Ð
Dr
j f 0ðzÞj2 dAðzÞ.

In [10, 16], the authors discussed the relationship between (analytic) Hardy
spaces and area functions. The main result in [10, Theorem 1] is as follows.

Theorem A. Let f be analytic in D. Then, if 1 < pa 2,

f A HpðDÞ )
ð1

0

Ap=2ðrÞ dr < y;ð1Þ

while if p > 2, ð1

0

Ap=2ðrÞ dr < y ) f A HpðDÞ:ð2Þ

We refer to [6, 8, 9, 10, 12, 13, 14, 15, 16] for results related to the theory of
analytic Hardy spaces, whereas for the harmonic Hardy spaces, the readers may
refer to [2, 4, 11]. In the context of recent investigation and interest on harmonic
mappings, it is natural to ask whether Theorem A continues to hold in the setting
of planar harmonic mappings over the unit disk. In this note we show that the
answer is yes.

Theorem 1. Let f be harmonic in D. Then, if 1 < pa 2,

f A H
p
h ðDÞ )

ð1

0

A
p=2
h ðr; f Þ dr < y;ð3Þ

while if p > 2, ð1

0

A
p=2
h ðr; f Þ dr < y ) f A H

p
h ðDÞ:ð4Þ

As an application of Theorem 1, we obtain the following result.

Theorem 2. Let f A H
p
h ðDÞ. If 1 < pa 2, then limr!1�ð1� rÞ2=pAhðr; f Þ

¼ 0:

Remark 1. Theorems 1 and 2 show that the factor ð1� rÞdð2�pÞ=2 in [2,
Theorem 3] and the one ð1� rÞdð2�pÞ=p in [2, Theorem 4] are redundant. Later, it
was brought to our attention that [2, Theorem 3] and [2, Theorem 4] were proved
by Stević in 2004 [19] in a slightly di¤erent method of proof.

For a given real number a, we consider the weighted area measure
dA�

a ðzÞ ¼ ð1� jzj2Þa dAðzÞ on D (cf. [20]). For 0 < r < 1 and 0 < p < y, we
define

Mp;aðr; f Þ ¼
1

A�
a ðDrÞ

ð
Dr

j f ðzÞjp dA�
a ðzÞ

� �1=p
;
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where f is harmonic in D and

A�
a ðDrÞ ¼

ð
Dr

dA�
a ðzÞ:

We call Mp;aðr; f Þ, the area integral means of f on Dr.
It is well known that the measure A�

a is finite on D if and only if a > �1.
In the following, for a > �1, we normalize the measure dA�

a by letting

dAaðzÞ ¼ ð1þ aÞð1� jzj2Þa dAðzÞ:
For a harmonic mapping f in D, we denote

AaðDrÞ ¼
ð
Dr

dAaðzÞ;

where a > �1:
For a > �1 and 0 < pay, the weighted Bergman space A

p
h;aðDÞ consists of

all harmonic mappings f on D such that

k f kh
bp;a ¼

ð
D

j f ðzÞjp dAaðzÞ
� �1=p

< y if p A ð0;yÞ;

sup
z AD

j f ðzÞj < y if p ¼ y:

8>><>>:
Our next result provides the relationship between area integral means and

harmonic Hardy spaces or harmonic weighted Bergman spaces.

Theorem 3. Suppose 1 < p < y, a is real, and f is harmonic in D. Then,
we have the following:

(a) The function Mp;aðr; f Þ is strictly increasing in ½0; 1Þ unless f is constant.
(b) For a > �1, Mp;aðr; f Þ is bounded in ½0; 1Þ if and only if f A A

p
h;aðDÞ.

(c) For aa�1, Mp;aðr; f Þ is bounded in ½0; 1Þ if and only if f A H
p
h ðDÞ:

Our final result concerns the coe‰cient estimate on mappings in harmonic
weighted Bergman spaces.

Theorem 4. For 1a pay, let f A A
p
h;aðDÞ with

f ðzÞ ¼
Xy
m¼0

amz
m þ

Xy
m¼1

bmz
m:

Then ja0ja k f kh
bp;a, and for mb 1,

jamj þ jbmja
4k f kh

bp;a

p
inf

0<r<1

1

rm½1� raþ1ð2� rÞaþ1�1=p

( )
:

In particular, if a ¼ 0, then for mb 1,

jamj þ jbmja
4k f kh

bp;0

p

2

pm
þ 1

� �m

1þ pm

2

� �2=p

:
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Moreover, if a ¼ 0 and p ¼ y, then

jamj þ jbmja
4k f kh

by;0

p
:ð5Þ

The estimate (5) is sharp and the only extremal functions are

fmðzÞ ¼
2gk f kh

by;0

p
arg

1þ bzm

1� bzm

� �
;

where jgj ¼ jbj ¼ 1, and mb 1.

2. Proofs of the main results

We begin this section with the following two basic lemmas which are useful
in the proof of Theorem 1.

Lemma B. Let a; b A ½0;yÞ and p A ½1;yÞ. Then we have

ap þ bp
a ðaþ bÞp a 2p�1ðap þ bpÞ:

Lemma B is well-known (see for instance [18, Lemma 2.29]).

Lemma 1. Let f be a complex-valued continuously di¤erentiable function
defined on D and f ¼ uþ iv, where u and v are real-valued functions. Then for
z ¼ xþ iy A D,

j fzðzÞj þ j fzðzÞja j‘uðx; yÞj þ j‘vðx; yÞj;ð6Þ

where ‘u ¼ ðux; uyÞ and ‘v ¼ ðvx; vyÞ.

Proof. From the triangle inequality, it follows that

j fzj ¼
1

2
fux � iuy þ iðvx � ivyÞg

���� ����a 1

2
fjux � iuyj þ jvx � ivyjg ¼ 1

2
fj‘uj þ j‘vjg

and

j fzj ¼
1

2
fux þ iuy þ iðvx þ ivyÞg

���� ����a 1

2
fjux � iuyj þ jvx � ivyjg ¼ 1

2
fj‘uj þ j‘vjg

from which we easily obtain (6).
Finally, we remark that the equality sign in (6) does not always hold as the

function f ðzÞ ¼ z2 þ z shows. r

Proof of Theorem 1. We first prove the implication (3). Let 1 < pa 2 and
f ¼ uþ iv A H

p
h ðDÞ. Then u and v are real harmonic functions in D. By

Lemma B, we deduce that u; v A H
p
h ðDÞ. Let F1 and F2 be analytic functions
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defined on D such that Re F1 ¼ u and Re F2 ¼ v. Riesz’ theorem (cf. [6,
Theorem 4.1]) shows that

kFkkp a
p

p� 1

� �1=p
kRe Fkkp for k ¼ 1; 2;

which, in particular, implies that Fk A HpðDÞ for k ¼ 1; 2. By the implication
(1) in Theorem A, it follows thatð1

0

A
p=2
h ðr;FkÞ dr < y for k ¼ 1; 2:ð7Þ

By calculations, we see that for r A ð0; 1Þ,

Ahðr;F1Þ ¼
ð
Dr

jF 0
1ðzÞj

2
dAðzÞ ¼

ð
Dr

j‘uðx; yÞj2 dAðzÞ ¼ Ahðr; uÞð8Þ

and similarly,

Ahðr;F2Þ ¼
ð
Dr

jF 0
2ðzÞj

2
dAðzÞ ¼

ð
Dr

j‘vðx; yÞj2 dAðzÞ ¼ Ahðr; vÞ:ð9Þ

The inequalities (7), (8), (9) and Lemmas B and 1 yield thatð1

0

A
p=2
h ðr; f Þ dr ¼

ð1

0

ð
Dr

ðj fzðzÞj2 þ j fzðzÞj2Þ dAðzÞ
� �p=2

dr

a

ð1

0

ð
Dr

ðj fzðzÞj þ j fzðzÞjÞ2 dAðzÞ
� �p=2

dr

a

ð1

0

ð
Dr

ðj‘uðx; yÞj þ j‘vðx; yÞjÞ2 dAðzÞ
� �p=2

dr

a

ð1

0

ð
Dr

2ðj‘uðx; yÞj2 þ j‘vðx; yÞj2Þ dAðzÞ
� �p=2

dr

a 2ð2p�1Þ=2
ð 1

0

" ð
Dr

j‘uðx; yÞj2 dAðzÞ
� �p=2

þ
ð
Dr

j‘vðx; yÞj2 dAðzÞ
� �p=2

#
dr

¼ 2ð2p�1Þ=2
ð1

0

½Ap=2
h ðr;F1Þ þ A

p=2
h ðr;F2Þ� dr

< y

which proves the implication (3).
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We next prove the implication (4). Let p > 2 and f be harmonic in D.
Then f admits the canonical decomposition f ¼ fþ c, where f and c are
analytic in D with cð0Þ ¼ 0. Thenð

Dr

ðjf 0ðzÞj2 þ jc 0ðzÞj2Þ dAðzÞ ¼ Ahðr; f Þ;

which implies ð1

0

Ap=2ðr; fÞ dr < y and

ð1

0

Ap=2ðr;cÞ dr < y:ð10Þ

By the implication (2) in Theorem A and (10), we conclude that f;c A HpðDÞ.
But then by the Minkowski inequality, we deduce that

ðIpðr; f ÞÞ1=p a
1

2p

ð2p

0

ðjfðreiyÞj þ jcðreiyÞjÞp dy
� �1=p

a ðIpðr; fÞÞ1=p þ ðIpðr;cÞÞ1=p;
which yields that k f kp < y: r

Proof of Theorem 2. It is not di‰cult to see that

ð1� rÞAp=2
h ðr; f Þa

ð1

r

A
p=2
h ðr; f Þ dr; i:e: ð1� rÞ2=pAhðr; f Þa

ð1

r

A
p=2
h ðr; f Þ dr

� �2=p
:

By the implication (3) in Theorem 1, we concludeð1

0

A
p=2
h ðr; f Þ dr < y

from which we obtain that limr!1�ð1� rÞ2=pAhðr; f Þ ¼ 0. r

Lemma 2. Suppose that f is harmonic on D and is constant in an open
neighborhood of the origin. Then f is constant throughout the unit disk D.

Proof. As every harmonic function f in D admits the representation

f ðzÞ ¼ a0 þ
Xy
n¼1

anz
n þ

Xy
n¼1

bnz
n;

we may assume that f ðzÞ ¼ a0 in Dr, for some r A ð0; 1Þ. But then the Parseval
relation, for 0 < r < r, gives

ja0j2 ¼
1

2p

ð2p

0

j f ðreiyÞj2 dy ¼ ja0j2 þ
Xy
n¼1

ðjanj2 þ jbnj2Þr2n;

which obviously implies an ¼ bn ¼ 0 for all nb 1. Thus, f ðzÞ1 a0 for z A D.
r
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Green’s theorem (cf. [2, 4, 17]) states that if g A C 2ðDÞ, i.e., twice con-
tinuously di¤erentiable on D, then

1

2p

ð2p

0

gðreiyÞ dy ¼ gð0Þ þ 1

2

ð
Dr

DgðzÞ log r

jzj dAðzÞ; r A ð0; 1Þ:ð11Þ

Lemma 3. Let f be harmonic in D. Then, for p > 1, Ipðr; f Þ is a strictly
increasing function of r on ð0; 1Þ unless f is constant.

Proof. By (11), we have

r
d

dr
Ipðr; f Þ ¼

1

2

ð
Dr

Dðj f ðzÞjpÞ dAðzÞ

¼ p

ð
Dr

�
p

2
� 1

� �
j f ðzÞjp�4j fzðzÞ f ðzÞ þ f ðzÞ fzðzÞj2

þ j f ðzÞjp�2j b‘f‘f ðzÞj2� dAðzÞ

b p

ð
Dr

ðj fzðzÞj þ j fzðzÞjÞ2j f ðzÞjp�2
dAðzÞ

b 0;

which implies Ipðr; f Þ is increasing on r in ð0; 1Þ. Moreover, the last inequality

implies that
d

dr
Ipðr; f Þ ¼ 0 if and only if f is constant in Dr. But then, in this

case, Lemma 2 shows that f is constant on D. r

Proof of Theorem 3. We first prove (a). Sinceð
Dr

j f ðzÞjp dA�
a ðzÞ ¼

ð r

0

2rð1� r2ÞaIpðr; f Þ dr;ð12Þ

we see that

d

dr

ð
Dr

j f ðzÞjp dA�
a ðzÞ ¼ 2rð1� r2ÞaIpðr; f Þ:ð13Þ

Simple calculations gives

d

dr
A�

a ðDrÞ ¼ 2rð1� r2Þa:ð14Þ

By (12), (14) and Lemma 3, we have

Ipðr; f Þ �Mp
p;aðr; f Þ ¼

1

A�
a ðDrÞ

ð r

0

d

dt
Ipðt; f Þ

� �
A�

a ðDtÞ dtb 0;
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which implies ð
Dr

j f ðzÞjp dA�
a ðzÞaA�

a ðDrÞIpðr; f Þ:ð15Þ

By Lemma 3, we know that the equality holds in (15) for some r only when f is
constant. By (13), (15) and computations, we conclude that

d

dr
Mp

p;aðr; f Þ ¼
A�

a ðDrÞ
d

dr

Ð
Dr
j f ðzÞjp dA�

a ðzÞ �
Ð
Dr
j f ðzÞjp dA�

a ðzÞ
d

dr
A�

a ðDrÞ
A�2

a ðDrÞ

¼
2rð1� r2Þa½A�

a ðDrÞIpðr; f Þ �
Ð
Dr
j f ðzÞjp dA�

a ðzÞ�
A�2

a ðDrÞ
b 0:

Hence, the function Mp;aðr; f Þ is strictly increasing on r A ½0; 1Þ unless f is
constant.

Next we prove (b). We assume that a > �1 and Mp;aðr; f Þ is bounded.
Then by (a), we have

lim
r!1�

1

AaðDrÞ

ð
Dr

j f ðzÞjp dAaðzÞ
� �

¼
ð
D

j f ðzÞjp dAaðzÞ;ð16Þ

which implies f A A
p
h;aðDÞ: On the other hand, if f A A

p
h;aðDÞ; then the bound-

edness of Mp;aðr; f Þ follows from (16).
In order to prove (c), we need some additional care.

Claim 1. Suppose that aa�1, 1a p < y, and that f is harmonic in D.
Then ð

D

j f ðzÞjp dA�
a ðzÞ ¼ sup

r A ð0;1Þ

ð
Dr

j f ðzÞjp dA�
a ðzÞ

� �
< y , f 1 0

Proof. Fix r A ð0; 1Þ so that r < r < 1. Then (a) yields that

Mp
p;aðR; f Þa

Ð
Dr
j f ðzÞjp dA�

a ðzÞ
A�

a ðDrÞ
:

It is not a di‰cult task to see that A�
a ðDrÞ ! y andð

Dr

j f ðzÞjp dA�
a ðzÞ !

ð
D

j f ðzÞjp dA�
a ðzÞ as r ! 1�;

which gives Mp;aðr; f Þ1 0 for each r A ð0; 1Þ. Therefore, f 1 0 and the proof of
the claim is finished. r
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Finally, we prove (c). We assume that aa�1, 1 < p < y and f is not
identically zero. Then A�

a ðDrÞ ! y as r ! 1� and so Claim 1 implies

lim
r!1�

ð
Dr

j f ðzÞjp dA�
a ðzÞ ¼

ð
D

j f ðzÞjp dA�
a ðzÞ ¼ y:

By (a) and calculations, we get

sup
0<r<1

Mp
p;aðr; f Þ ¼ lim

r!1�
Mp

p;aðr; f Þ

¼ lim
r!1�

Ð
Dr
j f ðzÞjpð1� jzj2Þa dAðzÞÐ
Dr
ð1� jzj2Þa dAðzÞ

¼ lim
r!1�

2rð1� r2Þa 1

2p

Ð 2p
0 j f ðreiyÞj dy

2rð1� r2Þa

¼ lim
r!1�

Ipðr; f Þ ¼ k f kp
p

and the proof of the theorem is complete. r

Proof of Theorem 4. It is not di‰cult to show that for p A ½1;yÞ, j f jp is
subharmonic in D. Then for z A D and r A ½0; 1� jzjÞ, we have

j f ðzÞjp a 1

2p

ð2p

0

j f ðreiy þ zÞjp dy:

Integration gives

½1� jzjaþ1ð2� jzjÞaþ1�j f ðzÞjp a 1þ a

p

ð 2p

0

ð1�jzj

0

rð1� r2Þaj f ðzþ reiyÞjp drdy

a

ð
D

j f ðzÞjp dAaðzÞ ¼ ðk f kh
bp;aÞ

p;

which implies

j f ðzÞja
k f kh

bp;a

½1� jzjaþ1ð2� jzjÞaþ1�1=p
:ð17Þ

For z A D and r A ð0; 1Þ, let FðzÞ ¼ f ðrzÞ=r. Then

F ðzÞ ¼ a0

r
þ
Xy
m¼1

Amz
m þ

Xy
m¼1

Bmz
m
;
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where Am ¼ amr
m�1 and Bm ¼ bmr

m�1. Hence for z A D,

jFðzÞja
k f kh

bp;a

r½1� raþ1ð2� rÞaþ1�1=p
¼ MðrÞ:

By (17), we see that ja0ja k f kh
bp;a: It follows from [1, Lemma 1] that for

mb 1,

jAmj þ jBmja
4MðrÞ

p

which yields

jamj þ jbmja
4k f kh

bp;a

p
inf

0<r<1

1

rm½1� raþ1ð2� rÞaþ1�1=p

( )
:

If a ¼ 0, then

jamj þ jbmja
4k f kh

bp;0

p
inf

0<r<1

1

rmð1� rÞ2=p

" #
¼

4k f kh
bp;0

p

2

pm
þ 1

� �m

1þ pm

2

� �2=p

:

Since

lim
p!y

2

pm
þ 1

� �m

1þ pm

2

� �2=p

¼ 1;

we conclude that

jamj þ jbmja
4k f kh

by;0

p
:ð18Þ

Thus, for p ¼ y, the estimate (18) is sharp. By the subordination in the proof
of [3, Theorem 1], we know that the only extreme functions are

fmðzÞ ¼
2gk f kh

by;0

p
Im log

1þ bzm

1� bzm

� �
ðjgj ¼ jbj ¼ 1Þ;

whose values are confined to Dk f k h
by ; 0

¼ fz : jzj < k f kh
by;0g. r
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[15] M. Mateljević and M. Pavlović, Multipliers of Hp and BMOA, Pacific J. Math.

146 (1990), 71–84.

[16] J. W. Noonan and D. K. Thomas, The integral means of regular functions, J. London Math.

Soc. 9 (1975), 557–560.
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