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MINIMAL REEB VECTOR FIELDS ON ALMOST COSYMPLECTIC
MANIFOLDS

DOMENICO PERRONE

Abstract

We show that the Reeb vector field of an almost cosymplectic three-manifold is
minimal if and only if it is an eigenvector of the Ricci operator. Then, we show that
Reeb vector field ¢ of an almost cosymplectic three-manifold M is minimal if and only
if M is (ic,p,v)-space on an open dense subset. After, using the notion of strongly
normal unit vector field introduced in [8], we study the minimality of ¢ for an almost
cosymplectic (2n + 1)-manifold. Finally, we classify a special class of almost cosym-
plectic three-manifold whose Reeb vector field is minimal.

1. Introduction

Let (M,g) be a Riemannian manifold and (7'M, gs) its unit tangent sphere
bundle equipped with the Sasaki metric gs induced by the Riemannian metric g.
A unit vector field ¥ on M determines an immersion V : M — (T'M,gs).
When M is compact, the volume of V is the volume of the corresponding sub-
manifold (M, V*gs) of (T'M,gs). This gives a functional defined on the set
X" (M) of all unit vector fields on (M,g). A unit vector field V' is said to be
a minimal vector field if it is a critical point for the volume functional
F:X'(M)—R. This functional has been studied in [4] where similar notion
is introduced when M is also non-compact. One remarkable fact is that V is a
minimal unit vector field if and only if the submanifold (M, V*gs) is minimal,
that is, the mean curvature vector field vanishes. The study of the minimal unit
vector fields is motivated from the work of Gluck-Ziller [6] where they considered
the problem of determining those unit vector fields ¥ which have minimal
volume. In particular, Gluck-Ziller [6] proved that on the unit sphere S* these
optimal unit vector fields are the Hopf vector fields (see also [13] for a different
proof). In in the last fifteen years, many papers have been published containing
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examples and general results on minimal unit vector fields in different geometrical
situations (see, for example, [4], [5], [8], [9], [12], [13], [14]).

An interesting geometrical situation, in which a distinguished vector field
appears in a natural way, is given by an almost contact metric manifold where
we have the Reeb vector field &, also called the characteristic vector field. It is a
unit field and plays a fundamental role in the study of the Riemannian geometry
of an almost contact metric manifold [1]. The purpose of this paper is to study,
mainly in dimension three, almost cosymplectic manifolds whose Reeb vector
field is minimal. In Section 2 we give some results on the geometry of an almost
cosymplectic manifold. In Section 3, we show that the Reeb vector field of an
almost cosymplectic three-manifold is minimal if and only if it is an eigenvector
of the Ricci operator. In particular the minimality condition for the Reeb vector
field of an almost cosymplectic three-manifold is invariant for a D-homothetic
deformation. In Section 4 we explicitly the Ricci tensor of an almost cosym-
plectic three-manifold M, then we show that Reeb vector field & of M is a
minimal if and only if M is (k, u, v)-space on an open dense subset. After, using
the notion of strongly normal unit vector field introduced in [8], we study the
minimality of & for an almost cosymplectic (2n+ 1)-manifold. Finally, we
classify a special class of almost cosymplectic three-manifolds whose Reeb vector
field is minimal.

2. Almost cosymplectic manifolds

An almost contact structure (&, $,n) on a differentiable manifold M consists
of a tensor field ¢ of type (1,1), a tangent vector field ¢ (called the Reeb vector
field or the characteristic vector field), and a differential 1-form # such that

P=—I+n®¢ nE) =1

As a consequence, the dimension of M is odd (=2n+1), ¢(¢) =0 and o ¢ = 0.
Given an almost contact structure (¢,&,7) on M, an associated metric is a
Riemannian metric ¢ on M such that

g(9X,9Y)=g(X,Y) —n(X)n(Y),

for any X, Y € X(M), and then #(X) = g(& X). Associated metrics are known
to exist (cf. [1], p. 34). The extended object (¢, &, #,g) is an almost contact metric
structure. The 2-form ® defined by

O(X,Y)=9g(X,9Y) for any X,Y € X(M)

is called the fundamental 2-form.

Note that an almost contact metric structure on an orientable (2n + 1)-
dimensional manifold M may be regarded as a reduction of the structure group
of M to U(n) x 1. If an almost contact metric structure satisfies in addition the
contact condition (dn)(X,Y)=®(X,Y), then (¢,&,7,9) is called a contact metric
structure.
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For a given Riemannian manifold (M,g), we denote by V the Levi-Civita
connection, by R the corresponding Riemann curvature tensor given by

Rxy = Vix,y) — [Vx, Vy],

by Ric the Ricci tensor and by Q the corresponding Ricci operator defined by
g(QX,Y) = Ric(X, ).

Following S.I. Goldberg and K. Yano [7], an almost contact metric manifold
(M, ¢,&n,g) is said to be an almost cosymplectic manifold if both the funda-
mental 2-form ® and the 1-form # are closed, that is,

dd=0 and dy=0.

The identity dy = 0 shows that the distribution ker # = 0 is integrable and its
(maximal) integral submanifolds are hypersurfaces of M. The restrictions of ®
and # to the associated foliation are closed forms, so that any leave is an almost
Kaehler submanifold. An almost cosymplectic manifold M is cosymplectic if
the underlying almost contact metric structure is normal, that is, [¢, #] = 0, where
[#,#] is the Nijenhuis tensor of the tensor field ¢ defined by

(9. 91(X, Y) = $[X, Y] + [$X,4Y] - $l¢X, Y] — (X, Y]

for any X, Y € X(M). A cosymplectic manifolds has Kaehlerian leaves, however
there are almost cosymplectic manifolds with Kaehlerian leaves which are not
cosymplectic manifolds [11]. Besides, an almost contact metric manifold is
cosymplectic if and only if V¢ =0. Normality is known to imply that & is
parallel, that is, V& = 0 (as a consequence of ¢ =0 and V¢ = 0). In dimension
three an almost contact metric manifold is cosymplectic if and only if & is parallel
(cf. [10], p. 248).

A cosymplectic manifold is locally the product of a Kéhler manifold and
an interval in R. There are however examples of cosymplectic manifolds which
aren’t globally the product of a Kéhler manifold and a real 1-dimensional mani-
fold (cf. [1], p. 77). For an almost cosymplectic manifolds we have the following
properties (cf. [2], [15]):

(2.1) Vepg =0, VE=hg, where h=(1/2)%¢,
(2.2) h = —¢h, hé=0, trh=0, divéi=0 and
(2.3) Veh = ¢ + ¢t

where ¢ is the Jacobi operator associated to the Reeb vector field: 7 = R(-,¢)E.
From V¢ = h¢, we have that 7 =0 if and only if & is parallel. Moreover, from

(Leg)(X, Y) = g(Vxé, Y) +9(VyE, X) = g(hg X, Y) + g(X, hpY) = 2g(h¢ X, Y),

we get that # =0, i.e. V& =0, if and only if ¢ is Killing.

Next, let (M,n,g,&,0) be a three-dimensional almost cosymplectic manifold.
Let %; be the open subset of M where & # 0 and %, the open subset of points
p € M such that 2 =0 in a neighborhood of p. Then, %; U%, is an open dense
subset of M. For any point p € %; U%, there exists a local orthonormal basis
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{&,e1,e2 = ger } of smooth eigenvectors of / in a neighborhood of p. On %; we
put he; = Ae;, where A is a non-vanishing smooth function which we suppose
to be positive. From (2.2), we have he; = —Je;.  We note that the eigenvalue
function A is continuos on M and smooth on % U%,. Then we have

Lemma 2.1. On % we have
Véel = aey, erz = —aey, V()]é = 7ieza V(’zé = 7/1617

4y 4 Veer =g5{e0) tole)len Voo =5 (a(h) +ole)er

Ziz{ez(l) +a(e))}er, Vee =& — ZLA{QI(/I) + a(er) }e,

(2.5)  lep = —E(N)ex+ (A2 +2ak)er, ley = —E(A)er + (A7 — 2al)e,

Vel e = )»é —

(2.6) Veh = (@I + 2a¢> h,
where a is a smooth function and o is the 1-form given by Ric(&,-).

Proof. From (2.1) we obtain V, & = hge; = —le; and V,,& = hge, = —le.
Since V£ =0, we have Vee; =ae, and Vee, = —ae;, where a is a smooth
function. Moreover g(V,e;, &) = —g(Ve, &, e;) = g(dhei, e;) =0 gives

Veer =ae; and Ver = fley,
where o, f are smooth functions. Besides,
Veea =i —ae; and Ve = AE — fer.
Using these formulas, we get
R(e1,e2)¢ = =V Vel + Ve, Ve, &+ Vg, )€
= (e1(4) — 2B)e; — (e2(A) — 2ald)er

and hence
a(e1) = Ric(& e1) = g(R(er, e2)E, e2) = 204 — ex(4),
a(ex) = Ric(&,ex) = g(R(ea, e1)E, e1) = 24 — e1(4).
Then,
_ex(A) +a(er) _e1(4) +a(e)
a—izi and ﬂ_iu

This completes the proof of (2.4). From
le) = R(el,f)é = 7V€1V§f + ngelf + V[gl’é]é
tey = R(es, &)¢ = =V, Vel + VeV, &+ V), 1€,
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using (2.4), we get (2.5). The formulas (2.6) follows from

(Veh)E =0 = (@1 + 2a¢> hé,

(Veh)ey = E(A)e; — 2ahe; = (@1 + 2a¢) hey,

(Veh)ey = —&(A)ey — 2ahde, = (f(j) I+ 2a¢) he,. O
From (2.5) we deduce that
(2.7) Ric(&,&) = —20% = —tr h?.

ProposITION 2.1.  Let (M,¢&,¢,n,9) be an almost cosymplectic manifold of
dimension 2n+ 1. Then, for any X e kern, | X|| =1, the vertical sectional cur-
vature satisfies the following properties:

(2.8) K(&X) = —[[hX|* - g((Veh) X, $X),
(2.9) K(& X) = K(&,9X) = =29((Veh) X, 9X).
In particular, Veh =0 implies
K(¢, X) =K(¢,¢X) <0,
and K(&,X)=K(&,¢X) =0 if and only if h=0.
Proof. From (2.3) we have
K(&X) =R(E X, X) = —g(/X, X) = g(§(Veh) X, §X) — g(* X, X)
and
K(&,¢X) = R(E,§X &.¢X) = g(Veh)p X, §°X) — g(h* X, X),
Then, since (V:h)¢p = —¢pV:h, we get (2.9). O

ProposITION 2.2, Let (M,¢, ¢,n,9) be an almost cosymplectic  three-
manifold.  Then,

(2.10) Ricle, ge) = g((Veh)e, o),
(2.11) Ric(e,e) = (r/2) + (tr 1?/2) — g((V:h)e, de),
(2.12) Ric(pe, pe) = (r/2) + (tr h?)2) + g((Vih)e, pe).

for any eekern, ||| =1

Proof. Since
Rlc(e7 e) = R(e7 ¢€7 e? ¢e) + R(i’ e? é? e)?
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from (2.9) we get
(2.13) Ric(ge, ge) — Ric(e,e) = 2g((Veh)e, ge).

Of course (2.13) holds for any e € ker . Then, for any e, e’ € ker 5, using (2.13)
and ¢Veh = —(Veh)g, we get

(2.14) Ric(ge, pe’) — Ric(e,e') = 2g((Veh)e, de').
If we put ¢ = ge, from (2.14) we obtain (2.10); (2.11) and (2.12) follow from
(2.13) and (2.7) because the scalar curvature r is given by

r = tr Ric = Ric(e, e) + Ric(¢e, pe) + Ric(, &)
= 2 Ric(e,e) + 2g((Vih)e, pe) — tr h>. O

3. Minimality of & in dimension three

Let (M,g) be a Riemannian manifold and (7'M, gs) its unit tangent sphere
bundle equipped with the Sasaki metric gs. A unit vector field V' on M deter-
mines an immersion V : (M,g) — (T'M,gs). When M is compact, the volume
of V, that we denote by F(V), is the volume of the Riemannian manifold
(M, V*gs). This gives a functional F : ¥' (M) — R defined on the set X' (M) of
all unit vector fields on (M,g). The metric V*ggs is related to the metric g by
the identity

(V7gs)(X,Y) =g(LyX,Y),
where Ly is the tensor of type (1,1) defined by
Ly + (V) o VV.

Then

F) = | ovgs = 100,

where f(V)=+/det Ly. Consider the I-form wy defined by
wy(X) =tr(Y — (VyKy)X),
where K is the tensor of type (1,1) defined by
Ky = f(M)IL/' (VV)'].

The unit vector field V is called a minimal vector field if it is critical for the
volume functional F defined on the set X¥'(M). The corresponding critical point
condition

wy(A)=0 for any A€ V™,

has been determined in [4], where similar notion is introduced when M is also
non-compact. One remarkable fact is that V is a minimal unit vector field if
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and only if V :(M,g) — (T'M,gs) is a minimal immersion, that is, the mean
curvature vector field is zero. Unit Killing vector fields on a manifold of
constant sectional curvature are minimal [4]. Hopf vector fields on S*"*! and
Reeb vector fields of K-contact manifolds are minimal with respect to the Sasaki
metric gs ([4], [8]) and, more in general, with respect to a class of g-natural metric
of Kaluza-Klein type [14].

Now we use Lemma 2.1 to derive a minimality condition for the Reeb vector
field & of an almost cosymplectic three-manifold.

THEOREM 3.1. Let (M,&,¢,n,9) be an almost cosymplectic three-manifold.
Then, the 1-form e is given by
(3.1) we = Ric(é, ).
So, & is minimal if and only if & is an eigenvector of the Ricci operator.
Proof. We recal that %, U %, is an open dense subset of M. For any point
p €U U, there exists a local orthonormal basis {&, e, e; = ¢ge;} of smooth
eigenvectors of /4 in a neighborhood of p. On %; we put he; = Aej, where 4 is a

non-vanishing smooth function which we suppose to be positive, and he, = —41e;.
Now, on %; we determine 1-form we, which is defined by

w:(X) = tr(Y — (VyK:)X).
From (2.1), we get
Le =1+ (VO (VE) =T+ 1
and so
L€ =& Leey = (14 1%)e), Leey = (14 1%)e.

Now, we determine the tensor

Ke = f(OL:' (V) = f(OL:'hg, where f(&) = +/det Le = (1 +27).

Since

L'¢=¢, Lile=(1/(141))e (i=1,2),
we find

K:6 =0, Keej=—2¢; (i=1,2).
Moreover, using Lemma 2.1, we find
(VeKe)ey = 2aie; — E(A)er,  (VeKe)es = —E(A)er — 2aley,
(Vo K:)ey = —12E + (a(er) + ex(A))er — er(A)en,
(Ve Ke)er = —ei(A)er — (a(er) + ea(4))er,
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(Vo K)E = —0%er, (Vo K:)é = —7er,
(Ve,Ke)er = —(a(e2) + e1(4))er — e2(A)ea,
(Vo Ks)es = —27E — ex(A)er + (a(ea) + ei(2))ea
All these formulas imply that

we(er) = g((VeKe)er, &) + g((Ve, Ke)er, e1) + g((Ve, Ke)er, e2) = a(en),
wz(e2) = g((VeKe)er, &) + (Ve Ke)er, e1) + g((Ve, Ke)er, €2) = a(ea),
@e(&) = g((VeKe)E, &) + g((Ve Ke)E e1) + g((Ve, Kz)E, e2) = Ric(E, €),

Therefore, we = Ric(&,-) on 2. If the set %, is not empty, then the restriction
of the almost cosymplectic structure on %, is cosympletic, that is , Vé =0. In
such case, we get ws = 0 = Ric(¢,-). Then, ws = Ric(&,-) on % U, and so on
M because the open set % U%, is dense in M and the tensors wg and Ric(&,-)
are continuos on M. O

Remark 3.1. The minimality condition for the Reeb vector field of an
almost cosymplectic three-manifold is invariant for a D-homothetic deformation
of type

g =9 E=1/BE n'=pn ¢ =tg+ (B -y

where ¢ is a positive constant, ff is a smooth function with f(p) # 0 for any
peM and df Ay =0. In fact, in [16] we proved that for a such deformation &’
is an eigenvector of the Ricci operator Q' if and only if £ is an eigenvector of the
Ricci operator Q.

4. Almost cosymplectic (r, u#, v)-spaces and minimality

We start this section with the following

PropPoOSITION 4.1.  The Ricci tensor of an almost cosymplectic three-manifold
is given (locally) by
@1) Q= +p®E+¢Veh—a(p) @+ a(e)n®er +o(e)n ® e
where o= (r+tr h*)/2 and B = —(r+ 3 tr h?)/2.

Proof. Let {&,e;,e2 = ¢er} be a local orthonormal ¢-basis. We put
O1=0-aol —p®¢,
and
01 = ¢Veh—o(§*) @&+ a(e)n @ er + a(e)n ® e,

where o = (r +tr #?)/2 and f = —(r +3 tr h2)/2. Using (2.7) and (V:h)(&) =0,
we get
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018 =0¢ — (x+p)¢
= Ric(&,E)E +aler)er + a(er)ex + (tr h?)¢&
=oal(e))er + a(er)er
=0:¢
Moreover, using (2.10) and (2.11), we have
Oie1 = Qey —aey

= ag(e1)& + Ric(ey,er)e; + Ric(er,ex)er — aey
=o(e1)l — g((Veh)er, ger)er + g((Veh)er, er)er
=a(e1)E + g(¢(Veh)er, er)er + g(¢(Veh)er, ex)en
=o(e1) + ¢(Veh)er — g(p(Veh)er, £)E
=a(e1)¢ + #(Veh)ey
= Q1€1~
zanfa)logously, we get Qe = Qlez. Therefore, Q) = Ql and hence we obtain
1). 0

Now, we recall the following

DEFINITION 4.1.  An almost cosymplectic (2n + 1)-manifold (M, <, ¢,7,9) is
said to be a (i, u, v)-space if the curvature tensor satisfies the following condition

(4.2) R(X,Y)¢=x(n(X)Y —n(Y)X) + un(X)hY — n(Y)hX)
+v(n(X)ghY —n(Y)phX),

where x, u, v are smooth functions. Such definition was introduced in [2] with
the additional condition that x, u,v e %#,(M), where #,(M) is the subring of the
smooth functions f on M for which df Ay =0, or equivalently df = &(f)y.

THEOREM 4.1. Let (M,&,¢,n,9) be an almost cosymplectic three-manifold.
If M is a (ic,u,v)-space, then £ is a minimal unit vector field. Conversely, if £ is
minimal, then M is a (k,u,v)-space on an open dense subset of M.

Proof. Let us suppose that M is a (x,u,v)-space. From (4.2) we have
R(X,Y)¢ =0 for any X, Y € ker # and hence Ric(X,£) =0 for any X, Y € ker #.
Then Q¢ = Ric(&,&)¢ and by (2.7) we get QF = —(tr h?)é. So, by Theorem
3.1, ¢ is minimal. Vice versa, we suppose that ¢ is minimal, that is, ¢ is an
eigenvector of the Ricci operator Q. From now, we use the notations introduced
in Lemma 2.1. If the open set %, is non-empthy, then it inherits the almost
cosymplectic structure of M. In particular such structure is cosympletic, and
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since

R(X,Y)E = (VyVOX — (VxVO) Y,
we get R(X,Y)¢=0. Then M is a (x,u,v)-space with k = u=v=0. Next,
let % be a non-empthy set and let {& ej,e;} be the local ¢-basis described in

Lemma 2.1. Since ¢ is minimal, the 1-form ¢ =0 and by Proposition 4.1 we
have

Q=aol +pn@C+ ¢Veh
from which using (2.6) we obtain
<)
A

On the other hand, for a tree-dimensional Riemannian manifold the curvature
tensor is completely determined by the Ricci operator. In our case, we have

RX, Y)E=n(X)QY —n(Y)0X —g(QY, &)X +g(0X,0)Y

— 5 ((0)Y = 7(¥)X).

(4.3) O=ad+pn®@E+ oh — 2ah.

So, using (4.3) we get
R(X,Y)¢= (=2 (n(X)Y —n(Y)X) = 2a(n(X)hY — n(Y)hX)

E(A
+ S8 gy —n(rhx)
which is the formulas (4.2) with x = —1% u = —2a and v = &(1)// on the open
set %,. Therefore, the almost cosymplectic structure defines a (i, u, v)-space on

U U U;. O

Remark 4.1. Let (M,&¢ ¢,n,9) be a (x,u,v)-almost cosymplectic three-
manifold. Then, from the proof of Theorem 4.1 we get

Q¢ =—(trh?)é, k=-3><0, p=-2a and Iv=E(A).

We recall that a unit vector field is said to be a harmonic vector field
if it satisfies the critical point condition for the energy functional E(V) =
(1/2) [, |dV[|? = (m/2) vol(M) + (1/2) Jus |IVV||*v, restricted to the space of
all unit vector fields, where m = dim M. We refer to the recent monograph
[3] for more information about harmonic vector fields. In [16] we study the
harmonicity of the Reeb vector field for locally conformal almost cosymplectic
manifolds. In particular, we have the following (which is also implicit in
Goldberg and Yano’s work [7]).

ProposiTION 4.2. Let (M,$,¢,m,9) be an almost cosymplectic  three-
manifold. Then, & is a harmonic vector field if and only if it is an eigenvector
of the Ricci operator.
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Then, Theorem 3.1 and Proposition 4.2 give the following

THEOREM 4.2. Let (M,&, ¢,n,9) be an almost cosymplectic three-manifold.
Then, ¢ is a minimal unit vector field if and only if & is a harmonic unit vector field.

In [8], the authors introduced the notion of strongly normal unit vector field.

A unit vector field V' on a Riemannian manifold is called strongly normal if
g(VxVV)Y,Z)=0 for any X,Y,Z L V.

Most of the results obtained in [8] are based on this notion because a strongly

normal unit vector field is minimal. Now, we show the following

THEOREM 4.3. Let (M,& ¢,n,9) be an almost cosymplectic (2n+ 1)-
manifold.  If M is a (i, u,v)-space, then & is strongly normal and hence minimal,
with X (tr h?) =0 for any X € ker 7.

Proof. Let %, be the open subset of M where & # 0 and %, the open subset
of points p € M such that 7 =0 in a neighborhood of p. Then, % U%, is an
open dense subset of M. If %, is not empty, then the restriction of the almost
contact metric structure to %, is cosymplectic and in this case V& =0 and
h=20. So, on %,, ¢ is strongly normal and z = 0. Next, let %; be non-empty.
On %, from (4.2) we get

(X =R(X,EE=x(n(X)E—X) — uhX —vophX,
(X = R(pX,&)E = —kpX — ph¢X — vhX,
and hence
X+ (PX = —2KxpX.
Moreover, from (3.2) of [15] we have ¢/X + /¢pX = 2h*¢X. Then,
(4.4) h? = k¢*, where x < 0.

For an arbitrary almost cosymplectic manifold, the following curvature identity is
well known [10]

R(X,Y,$Z.Q) = R(pX,$Y ,$Z.C) — R(pX, Y, Z,{) — R(X,9Y,Z,Q)
= -2(Vuz®)(X,Y)

On the other hand, R(X,Y)¢ =0 for any X,Y e kern and hence
(Vonz®)(X,Y) =0 for any X,Y ekery.

Replacing Z by ¢hZ in this formula, and taking into account of (4.4), we get
(Vz®)(X,Y)=0 for any X,Y €kery,

that is
g((Vz9)Y,X) =0 for any X, Y ekerp,
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which is equivalent to

(Vz9)Y =g(Vz9)Y,E)E = —g(Vz9)E, Y)E,

that is

(4.5) (Vz§)Y = g(hZ, Y)<,

for Z arbitrary and Y € kery. From (4.4) and (4.5), we have
(4.6) (VZzhY = kg(hZ,pY)E.

Since k <0 on %, from (4.5) and (4.6) we get that (Vyxh)Y and (Vy¢)Y are
proportional to ¢ for any X, Y € kery. Then, since V& = h¢g, we get

(VxVE)Y = (Vxh)pY + h(Vx¢)Y for any X,Y ekery

which shows that ¢ is strongly normal (and hence minimal) on %,;. Since
¢ is strongly normal on % U%,, we get that g((Vx(VE)Y,Z) =0 for any
X,Y,Zekery. Therefore ¢ is strongly normal on M. Now, let E be a
unit eigenvector of i: hE = AE and hgE = —AgE, A =+/—k. Since (VgVEE
= (Vgh)¢E + h(Ve¢)E is proportional to &, we get E(A) =0. Similarly we find
(PE)(A) =0, and so X(tr h*) =0 for any X € ker . O

In dimension three, we get

ProrosiTiON 4.3, Let (M, &, ¢,n,9) be an almost cosymplectic  three-
manifold. Then, the following statements are equivalent.

a) & is a strongly normal unit vector field,

b) & is minimal and X (tr h*) = 0 for any X € ker ;

¢) M is an almost cosymplectic (i, u,v)-space on an open dense subset of M.

Proof. a)=-Db). If ¢ is strongly normal, from [8] we have that & is
minimal. Moreover, if {£ ej,ex = ge;} is a local orthonormal ¢-basis of eigen-
vector of &, using Lemma 2.1 we find

(Vel Vf)el = —/125_,: + 6’2(1)6] — e (;»)62,
(4.7) (Ve,VE)er = (Ve,VE)er = —er(A)er — ex(A)er,

(Ve,VE)es = —(V,,VE)ey — 207,
and so ¢ strongly normal implies e;(4) = e(4) =0, that is, X(tr #*) =0 for
any X ekery. b)=c). Follows from Theorem 4.1. c¢)=-a). If M is an
almost cosymplectic (i, u, v)-space on an open dense subset % of M, then ¢ is
strongly normal on the open dense subset %, that is g((VxV&)Y,Z) =0 for any
X,Y,Zekerny on % and hence on M. O

Using the invariant p := ||V:h| — V2||h||%, we get the following

THEOREM 4.4. Let (M,& ¢,n,9) be an almost cosymplectic three-manifold.
Then, the following statements are equivalent.
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a) & is a strongly normal unit vector field with ||V:h|| and ||h|| constant along
the integral curves of &

b) & is minimal with ||V¢h| and ||h| constant;

c) M is cosymplectic or is locally isometric to a simply connected unimodular
Lie group G equipped with a left invariant almost cosymplectic structure.
More precisely:

—if p>0, G is the group E(2), universal covering of the group of rigid
motions of the Euclidean 2-space;

— if p=0, G is the Heisenberg group H?;

— if p<0, G is the group E(1,1) of the rigid motions of the Minkowski
2-space.

Proof. From Proposition 4.3, we get that £ is a strongly normal unit vector
field with &(||Veh||) = &(JJA]]) = 0 if and only if ¢ is minimal with ||A]] constant
and &(||Veh||) = 0. Now, we show that ||V:4| is constant. We use notations of
Lemma 2.1. If %, is not empty, then the restriction of the almost contact metric
structure to %, is cosymplectic and in this case ||V:h| = ||k|| = const. = 0. Next,
let U; be non-empty and let (&, e1,e2) be a local ¢-basis on % as in Lemma
2.1. In this case ||V:h|® = 84%a% Since ¢ is minimal and A is constant, from
(4.1), using (2.6), we get

Q¢ = -2)%¢,
Qe = (g +22 - 2ai> ey,

Qey = <§ +22+ 2ai> e,

from which we easily get

(V:0)¢ =0,

(Ve Q)er = (61 G
(Ve,Q)er = (62 G

Then, using the formula

- 2/131 (a)> er,

(a)>e2.
1

3X() = Z_:g((VE,-Q)EhX)

N~
+
[\
~
)
S}

where {E;} is an local orthonormal basis, we get

el G) — e (%) ~ 2der(a),
e (g) = e (%) +2)es(a).
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So, ej(a) =ex(a) =0 and hence, since &(||Veh|) =0 gives &(a) =0, we obtain
that a is locally constant on %;. Since A is continuous, it follows that M = %,
and hence 1 and a are globally constant. Now, we show b) =-¢). If M is not
cosymplectic, as before we get that 1 and a are globally constant on M, and
Lemma 2.1 gives

(& el] = e, [E e =cier and  [er,er] =0,

where ¢y =1 —a and ¢, = 1+ a are constant. From this we obtain that M is
locally isometric to a unimodular Lie group with a left-invariant almost cosym-
plectic structure (see [[17], p. 10] and Theorem 4.1 of [15]). In [15] (see Theorem
4.1) we classify the simply connected homogeneous almost cosymplectic three-
manifolds wusing, in the unimodular case, the sign of the invariant p =
| Z:h|| — 2||h]|>. On the other hand, by Lemma 2.1, we find

1 Zehl|* — 4lall* = | Veh]* = 211A)*.

Then, we can replace the invariant p by the invariant j:= ||V:h| — v2||h||%,
and the classification of c) follows from Theorem 4.1 of [15]. Of course, if M
is cosymplectic or a Lie group listed in c), Theorem 4.1 of [15] gives that & is
an eigenvector of the Ricci operator, and so it is minimal, with |Ve4| and ||/
constant.

COROLLARY 4.1. Let M be an almost cosymplecyic three-manifold with &
minimal. If M has constant vertical sectional curvature, then it is cosymplectic or
is locally isometric to the Lie group E(1,1) equipped with a left invariant almost
cosymplectic structure of negative vertical sectional curvature.

Proof. We consider the notations of Lemma 2.1. If %; is empty, the
structure is cosymplectic and in this case the vertical sectional curvature vanishes.
Now, we suppose that the open set %, is not empty. Since the vertical sectional
curvature is constant, and the 1-form ¢ =0, from (2.5) we have

—22 = 2ak = K(&, 1) = const. = K(&,e5) = —A% + 2al

from which we get ¢ =0 and 4 = const. on %;. Since A is continuos, it follows
that M = %, and thus « and A are globally constant. In particular, the functions
|Veh|| and ||A| are constant and the invariant p:= ||V:h| — v2||k]|* = —v/2||h|?
< 0. Then, Theorem 4.4 gives that M is locally isometric to the Lie group
E(1,1), of the rigid motions of the Minkowski 2-space, equipped with a left
invariant almost cosymplectic structure. In such case, for any unit vector field
X ekerp, the vertical sectional curvature K(&,X) = const. = —4*> < 0. Indeed,
if X =aje; +aye;, from (2.5) one gets

K(&,X) =a{K(é e1) + a3K (&, e2) — 2ararg(Zer, e2)
= —alzg(/el,el) — a%g(/ez,ez) = -2 <0. O
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Remark 4.2. The Lie groups listed in ¢) of Theorem 4.4 are examples
of (i, u,v)-spaces with x, u constant and v =0. Moreover, since by Theorem
4.2 the minimality condition of ¢ is equivalent (for almost cosymplectic three-
manifolds) to the harmonicity condition, Theorem 4.4 and Corollary 4.1 give a
partial answer to a question posed in [16].

The following is an example of non-homogeneous almost cosymplectic three-
manifold whose Reeb vector field is minimal.

Example 4.1. Let M =R® with the cartesian coordinates (x,y,z). We
consider the Riemannian metric

(4.8) g =dx+d% — 20(/i(2)/f3(2)) dxdz — 2x(f2(2)/f3(2)) dydz + f(2) d’z,
and the vector fields
e a e AE) L hE) S A

X
where fi(z), fa(z), f3(z) are arbitray smooth functions of the variable z, with

f3(z) #0 for any zeR, and f(z) = ((»*f2(z) + X212 (z) + 1)/f2(2)). We get
that the vector fields e, e, e3 are orthonormal with respect to the metric g in
each point, and satisfy

(4.9) le1,e2] =0, [er,e3] = fr(z)er,  [e2, €3] = fi(z)en.
We define the vector field &, the 1-form # and the tensor ¢ of type (1,1) by

ey =

g = e3, n= g(éa ')7 ¢€3 = 07 ¢€1 = €, ¢82 = —e1.
Then, (g,&,7,¢) is an almost contac metric structure on M. Moreover, we easily
get that the 1-form # and the 2-form ®(X,Y) = g(X,¢Y) are closed. So, the

structure is almost cosymplectic. Using (4.8), (4.9) and the Levi-Civita equation,
we find

o Aith, A1k,
(4.10) (Vae) = | /1 72Lf2 o 0 fi J2rfze1
U P

Then, using (4.10), by a direct calculation we find
(4.11) Ric(¢,&) = —(fi + )°/2, Ric(¢,e1) = Ric(&, ) = 0.

From (4.11) and Theorem 3.1, we get that ¢ is a minimal unit vector field.
From (4.10) we have that trh> = (fi + f2)?/2 is not constant, and so the
structure is not homogeneous. Moreover, e(tr %) = e;(tr h?) =0 and thus,
by Proposition 4.3, £ is strongly normal. Moreover, the three-manifold is a
(rc, u, v)-space where k, u, v are not constant.
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Remark 4.3. Let (M,g,n,¢,&) be an almost cosymplectic three-manifold.
In [15] (see Theorem 4.2) we proved that ¢: (M,g) — (T'M,gs) is a harmonic
map if and only if & is a harmonic vector field and &(tr #2) = 0. Then, Theorem
4.2 gives that ¢:(M,g) — (T'M,gs) is a harmonic map if and only if
E:(M,E%gs) — (T'M,gs) is a minimal immersion and &(tr h?) =0. So, in
all the examples listed in Theorem 4.4 the Reeb vector field ¢ determines a
minimal immersion and a harmonic map. Recall that, in general, an isometric
immersion f : (My,g1) — (M>,g>) is minimal if and only if it is a harmonic
map. Moreover, a unit vector field ¥ determines an isometric immersion
V:(M,q) — (T'M,gs), that is V*gs =g, if and only if VIV =0 (see, for
example, [3]). Therefore, only in the cosymplectic case the Reeb vector field
of an almost cosymplectic three-manifold determines an isometric immersion.

Remark 4.4. A submanifold N of a contact metric manifold (M 9,7, ¢5, E)
is said to be an invariant submanifold it ¢(T,N) c T,N for every pe N. The
invariance implies that & is tangent to N at each of its points, and an invariant
submanifold inherits a contact metric structure from the ambient manifold.
Moreover, we have that an invariant submanifold of a contact metric manifold
is minimal ([1], p. 122). Now, let (M,g,n,¢,£) be an almost cosymplectic
manifold and let (g,7,¢,&) the standard contact metric structure on the unit
tangent sphere bundle 7'M, where Epou) =2u'l is the geodesic flow and
g=(1/4)gs. If £(M) is an invariant submanifold, then £ is minimal. However,
from Theorem 4.1 of [14] we get that &(M) is an invariant submanifold of
(T'M,§,7,$,&) if and only if (VE)> = —I on kery. Since (V&) = (hg)* = h?
on kern, we conclude that (M) can not be an invariant submanifold of
(T'M,§,7,¢,&). This remark corrects the result of Theorem 4.2 in [12].
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