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ON THE SCALAR CURVATURE ESTIMATES FOR GRADIENT

YAMABE SOLITONS*
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Abstract

Let ðMn; gÞ be a gradient Yamabe soliton RgþHess f ¼ lg with Ricf1 bK (see

(1.3) for f1) and l;K A R are constants. In this paper, it is showed that for gradient

shrinking Yamabe solitons, the scalar curvature R > 0 unless R1 0 and ðMn; gÞ is the

Gaussian soliton, and for gradient steady and expanding Yamabe solitons, R > l unless

R1 l and ðMn; gÞ is either trivial or a Riemannian product manifold. Replacing the

assumptions Ricf1 bK by Rb l, we also derive the corresponding scalar curvature

estimates. In particular, we show that any shrinking gradient Yamabe soliton with

Rb l must have constant scalar curvature R1 l. Moreover, the lower bounds of

scalar curvature for quasi gradient Yamabe solitons are obtained.

1. Introduction

In this paper, we mainly consider the scalar curvature estimates for gradient
Yamabe solitons. Recall that an n-dimensional complete Riemannian manifold
ðMn; gÞ is called a Yamabe soliton if there exists a smooth vector field X and a
constant l A R such that

RgþLXg ¼ lg;

where R is the scalar curvature of g, and LX the Lie derivative with respect
to X . For l > 0, l ¼ 0, or l < 0, ðMn; g;XÞ is called shrinking, steady, or
expanding, respectively.

If X ¼ ‘f , the equation above can also be written as

RgþHess f ¼ lg;ð1:1Þ
where Hess f is the Hessian of f . When the potential function f is a constant,
we say Mn is trivial. Obviously, Einstein manifolds are trivial gradient Yamabe
solitons. Another interesting example is the Gaussian soliton (see [6]). Namely,
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Euclidean space Rn with the standard flat metric gij ¼ dij and

f ¼ l

2
jxj2:

Yamabe solitons play an important role in the study of the Yamabe flow

q

qt
g ¼ �Rg;

which was introduced by Hamilton in [10] to construct Yamabe metrics on
compact Riemannian manifolds, and has been studied by many authors (see [1],
[2], [3], [5], [13], [15], [18], [22] and the references therein).

For gradient Yamabe solitons, it is proved that any compact gradient
Yamabe soliton has constant scalar curvature (see [7], [8], or [14]), Therefore, in
this paper, we only discuss the noncompact case. In 2011, Ma and Miquel [16]
showed that a complete noncompact non-expanding gradient Yamabe soliton has
nonnegative scalar curvature, provided that limx!y RðxÞb 0. Recently, Wu [21]
studied the lower bounds of scalar curvature for a class of complete noncompact
gradient Yamabe solitons and derived

Theorem A. Assume that ðMn; gÞ is a complete noncompact gradient
Yamabe soliton satisfying

lim
rðxÞ!y

1

rðxÞ

ð rðxÞ
1

Ricðg 0ðsÞ; g 0ðsÞÞ dsb 0;

where rðxÞ is the distance function from a fixed point p A Mn and g : ½0; rðxÞ� !
Mn is a unit speed minimal geodesic joining p to x.

(i) If the gradient Yamabe soliton is steady or shrinking, then Rb 0.
(ii) If the gradient Yamabe soliton is expanding, then Rb l.

Note that the curvature assumption of Theorem A exclude Einstein solitons
with negative constant curvature, as a question proposed in [21], it is hoped that
the curvature condition of Theorem A will be improved.

In this paper, from the smooth metric measure space point of view, we study
the lower bound estimates on the scalar curvature of gradient Yamabe solitons,
and obtain unform lower bounds of R under a natural condition. In order to
state our results, we recall the following terminologies and notations.

Let ðMn; g; e�f dvolgÞ be an n-dimensional smooth metric measure space,
where dvolg is the Riemannian volume form on Mn. The so-called f -Laplacian
Df on C2ðMnÞ (see [20]) is

Df ¼ e f divðe�f‘Þ :¼ D� ‘f � ‘;
which is self-adjoint in L2ðMn; g; e�f dvolgÞ. The corresponding Ricci tensor to
ðMn; g; e�f dvolgÞ is the Bakry-Émery Ricci tensor, which is defined by

Ricf ¼ RicþHess f :
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In [12], Huang and Li introduce the concept of quasi gradient Yamabe
soliton. Recall that an n-dimensional complete Riemannian manifold ðMn; g; f Þ
is called a quasi Yamabe soliton if it satisfies

RgþHess f � df n df

m
¼ lgð1:2Þ

for some constant l;m A R and m > 0. ðMn; gÞ is said to be shrinking, steady,
or expanding if l > 0, l ¼ 0, or l < 0, respectively. By taking M 2 ¼
fðx; yÞ A R2 : x > 0; y > 0gHR2, gij ¼ dij and f ¼ �logðxþ yÞ, we see easily
that R ¼ 0 ¼ l and Hess f ¼ df n df . So ðM 2; g; f Þ is an example of quasi
gradient steady Yamabe soliton with m ¼ 1.

Clearly, when m ! y, equations (1.2) become gradient Yamabe soliton
equations (1.1). Denoting

f1 ¼
f

2ðn� 1Þ and f2 ¼
mþ 4ðn� 1Þ
2mðn� 1Þ fð1:3Þ

from now on, we first give our main result for the scalar curvature estimates for
gradient Yamabe solitons.

Theorem 1.1. Let ðMn; gÞ be an n-dimensional complete noncompact gra-
dient Yamabe soliton with Ricf1 bK for some constant K A R and R� ¼ infMn R.

(1) If Mn is shrinking, then 0aR� a l and R > 0 unless R1 0 and Mn is
isometric to the Gaussian soliton.

(2) If Mn is steady, then R� ¼ 0 and R > 0 unless R1 0 and Mn is either
trivial or isometric to a Riemannian product mainfold.

(3) If Mn is expanding, then laR� a 0 and R > l unless R1 l and Mn is
either trivial or isometric to a warped product mainfold.

As for quasi gradient Yamabe solitons, it is proved by Huang and Li [12]
that any compact quasi gradient Yamabe soliton has constant scalar curvature.
In the noncompact case, we can get

Proposition 1.2. Let ðMn; gÞ be an n-dimensional complete noncompact
quasi gradient Yamabe soliton with Ricf2 bK for some constant K A R and
R� ¼ infMn R.

(1) If Mn is shrinking, then 0aR� a l and R > 0, i.e., R can not attain its
minimum 0.

(2) If Mn is steady, then R� ¼ 0 and R > 0 unless R1 0.
(3) If Mn is expanding, then laR� a 0 and R > l unless R1 l.

Remark 1.3. Theorem 1.1 and Theorem 1.2 include the Einstein solitons
with negative constant curvature.

By Theorem 1.1 and equation (1.1), we obtain
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Theorem 1.4. Let ðMn; gÞ be an n-dimensional complete noncompact gra-
dient Yamabe soliton with Ricf1 bK for some constant K A R. Then there exist
two constant c1 and c2, such that

(1) If Mn is shrinking or steady, then f ðxÞa l

2
r2 þ c1rðxÞ þ c2.

(2) If Mn is expanding, then f ðxÞa c1rðxÞ þ c2.

Without the assumptions that Ricfi bK , i ¼ 1; 2, we can derive the following
results by the minimum principle.

Theorem 1.5. Let ðMn; gÞ be an n-dimensional complete noncompact gra-
dient Yamabe soliton.

(1) If Rb l > 0, then R1 l and Mn is either trivial or isometric to a
Riemannian product manifold.

(2) If Rb l ¼ 0, then R > 0 and Mn is a warped product manifold, unless
R1 0 and Mn is either trivial or isometric to a Riemannian product soliton.

(3) If Rb 0 > l, then R > 0 and Mn is a warped product manifold, unless
R1 0 and Mn is isometric to the Gaussian soliton.

Remark 1.6. It is known for gradient shrinking Ricci solitons RicþHess f
¼ rg that the scalar curvature R1 nr provided that Rb nr > 0. Theorem 1.5
states that gradient Yamabe solitons also have the similar property. We would
like to thank the referee for bringing us the question that whether R1 l is true for
complete gradient Yamabe solitons with Rb l > 0 and for very helpful sugges-
tions which helped us with the proof of Theorem 1.5 and with the improvements
of our work.

Proposition 1.7. Let ðMn; gÞ be an n-dimensional complete noncompact
quasi gradient Yamabe soliton.

(1) If Rb l > 0, then R > l unless R1 l.
(2) If Rb l ¼ 0, then R > 0 unless R1 0.
(3) If Rb 0 > l, then R > 0, namely, R can not attain its minimum 0.

The paper is organized as follows: In section 2, we first compute the f2-
Laplacian of R of quasi gradient Yamabe solitons, then employing the weak
maximum principle at infinity in smooth metric measure space, we give the proof
of Theorem 1.1 and proposition 1.2. In section 3, we complete the proof of
Theorem 1.4. The last section is devoted to proving Theorem 1.5 and Prop-
osition 1.7.

2. Proofs of Theorem 1.1 and Proposition 1.2

To begin with, we compute the f2-Laplacian of R of quasi gradient Yamabe
solitons and get
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Lemma 2.1. Let ðMn; gÞ be an n-dimensional quasi gradient Yamabe soliton
satisfying (1.2). Then

‘R ¼ Ricð‘f Þ
n� 1

þ ðR� lÞ‘f
m

ð2:1Þ

and

Df2R ¼ � nðR� lÞ2

m
þ Rl� R2

n� 1
;ð2:2Þ

where Df2 ¼ D� ‘f2 � ‘ and f2 is defined by (1.3).

Proof. In local coordinates, we denote by g ¼ ðgijÞ the Riemannian metric
on Mn with coe‰cients gij, and denote the inverse matrix by ðgijÞ ¼ ðgijÞ�1.
Throughout this paper we adopt the Einstein summation convention. Taking the
trace of (1.2), we get

nðR� lÞ þ Df � 1

m
j‘f j2 ¼ 0:ð2:3Þ

By taking covariant derivatives of (1.2), we arrive at

0 ¼ ‘ iRgij þ ‘ i‘i‘j f �
‘ i‘i f‘j f

m
� ‘ i‘j f‘i f

m

¼ ‘jRþ ‘jDf þ Rij‘
if � Df‘j f

m
� ‘ i‘j f‘i f

m
;

which together with (1.2) and (2.3) yields

0 ¼ ð1� nÞ‘jRþ ‘j‘
if‘i f

m
þ Rij‘

if þ ‘j f

m
nðR� lÞ � 1

m
j‘f j2

� �

¼ ð1� nÞ‘jRþ ‘i f

m

‘j f‘
if

m
� ðR� lÞdij

� �
þ Rij‘

if þ ‘j f

m
nðR� lÞ � j‘f j2

m

 !

¼ ð1� nÞ‘jRþ ðn� 1ÞðR� lÞ‘j f

m
þ Rij‘

if :

Thus

‘jR ¼ Ricij ‘
if

n� 1
þ ðR� lÞ‘j f

m
:ð2:4Þ

Noting that ‘iR ¼ 2‘ jRij, we conclude from (1.2), (2.3) and (2.4) that
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DR ¼ 1

n� 1

1

2
‘iR � ‘ if þRicij ‘

j‘ if

� �
þ ðR� lÞDf

m
þ ‘ jR � ‘j f

m
ð2:5Þ

¼ ‘iR � ‘ if

2ðn� 1Þ þRicij ‘
j f‘ if

mðn� 1Þ � RðR� lÞ
n� 1

þ ðR� lÞj‘f j2

m2

� nðR� lÞ2

m
þ ‘ jR � ‘j f

m

¼ ‘iR � ‘ if

2ðn� 1Þ þ 2‘ jR � ‘j f

m
� RðR� lÞ

n� 1
� nðR� lÞ2

m

¼ mþ 4ðn� 1Þ
2mðn� 1Þ ‘iR � ‘ if � RðR� lÞ

n� 1
� nðR� lÞ2

m
;

where (2.4) is used in the third line of (2.5). So (2.2) follows from (2.5) by
setting f2 ¼ ½mþ 4ðn� 1Þ� f =2mðn� 1Þ. r

For quasi gradient Yamabe solitons, equation (2.2) implies

Df2Ra
Rl� R2

n� 1
:ð2:6Þ

Since f1 ¼ limm!y f2, for gradient Yamabe solitons, we can get from
(2.5)

Df1R ¼ Rl� R2

n� 1
:ð2:7Þ

Recall that if ðMn; g; e�f dvolgÞ is a smooth metric measure space, we say
that the weak maximum principle at infinity for f -Laplacian holds if given
a function h A C2ðMnÞ satisfying supMn h ¼ h� < þy, there exists a sequence
fxngHMn along which

ðiÞ hðxnÞb h� � 1

n
and ðiiÞ Df hðxnÞa

1

n
:

In [20], Wei and Wylie established the following volume comparison theorem
for any smooth metric measure space ðMn; g; e�f dvolgÞ.

Lemma 2.2 ([20]). Let ðMn; g; e�f dvolgÞ be an n-dimensional complete
smooth metric measure space with Ricf bK for some constant K A R. Then
for any r0 > 0, there are constants A;B;C > 0 such that for every rb r0,

volf ðBrÞaAþ B

ð r
r0

e�Kt2þCt dt:

It follows from Lemma 2.2 and Theorem 9 in [19] that
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Lemma 2.3. Let ðMn; g; e�f dvolgÞ be an n-dimensional complete smooth
metric measure space with Ricf bK for some constant K A R. Then the weak
maximum principle at infinity for the f -Laplacian always holds on Mn.

The following Lemma is also needed in the proof of Theorem 1.1.

Lemma 2.4 ([19], Theorem 1). Let ðMn; gÞ be a complete manifold. Sup-
pose that there exists a smooth function f : Mn ! R satisfying Hess f ¼ lg for
some constant l0 0. Then Mn is isometric to Rn.

Proof of Theorem 1.1. Let f1 ¼ f =2ðn� 1Þ, we see from the assumption
Ricf1 bK in Theorem 1.1 and Lemma 2.3 that the weak maximum principle at
infinity for the f1-Laplacian holds. Set R�ðxÞ ¼ maxf�RðxÞ; 0g, equality (2.7)
implies

Df1R� ¼ lR� þ R2
�

n� 1
:

Therefore, by Corollary 13 in [19], we obtain that R� is bounded from above, or
equivalently, R� ¼ infMn R > �y, which together with Lemma 2.3 and equation
(2.7) produces a sequence fxpgHMn, 0 < p A Z such that

RðxpÞ ! R� ðp ! yÞ
and

� 1

p
aDf1RðxpÞ ¼

lRðxpÞ � RðxpÞ2

n� 1
:ð2:8Þ

Taking the limit in (2.8) as p ! y gives

R�ðl� R�Þb 0:ð2:9Þ
Now we divide our proof into the following three cases:

Case (i) l > 0. Obviously, inequality (2.9) implies 0aR� a l and conse-
quently Rb 0. Assume that R attains its minimum, namely, there exists a point
x0 A Mn such that Rðx0Þ ¼ 0, then the non-negative function R satisfies

Df1R� lR

n� 1
¼ �R2

n� 1

a 0:

and attains its minimum at Rðx0Þ ¼ 0. Since
l

n� 1
> 0, it may be concluded

from the minimum principle for elliptic equations (see [9], p. 35) that R is a
constant on Mn, so Mn is scalar flat. Combing R1 0 with equation (1.1) gives

Hess f ¼ lg;

which together with Lemma 2.4 yields (1) in Theorem 1.2.
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Case (ii) l ¼ 0. In this case, inequality (2.9) leads to R� ¼ 0, thus Rb 0.
Assume that there exists a minimum point x0 A Mn such that Rðx0Þ ¼ 0, using
the same argument as in case (i), we obtain that R is a constant and Mn is scalar
flat, which produce the equation:

Hess f ¼ 0:

Thus either f is a constant or ‘f 0 0 and the manifold splits along the gradient
of f , the results of Cao-Sun-Zhang [4] and He [11] yield that ðMn; gÞ is isometric
to the Riemannian product.

Case (iii) l < 0. Similarly, we arrive at laR� a 0 from (2.9) and con-
sequently Rb l. Suppose that R can attain its minimum at point x0 A Mn such
that Rðx0Þ ¼ l, then the non-negative function uðxÞ ¼ RðxÞ � l satisfies

Df1uþ
lu

n� 1
¼ � u2

n� 1

a 0

and attains its minimum uðx0Þ ¼ 0. Since
l

n� 1
< 0, we conclude from the

minimum principle that u vanishes identically. Hence R ¼ l is a constant, this
together with equations (1.1) yields

Hess f ¼ 0:

Thus either f is a constant or the manifold splits along the gradient of f .
r

Proof of Proposition 1.2. Under the assumption that Ricf2 bK for some
constant K A R, using a similar argument as in the proof of Theorem 1.1, we can
deduce equation (2.9) by (2.5), Lemma 2.3 and the weak maximum principle
at infinity for Df2 . So the conclusions that 0aR� a l for lb 0 and laR� a 0
for la 0 are still true for quasi gradient Yamabe solitons. In the following, the
proof will be divided into two cases:

Case (i) l > 0. If there exists a point x0 A Mn, such that Rðx0Þ ¼ 0, then
the minimum principle and equation (2.6) tell us that the non-negative function R
must be a constant, namely, R1 0 on Mn, contrary to (2.2).

Case (ii) la 0. Since the non-negative function uðxÞ ¼ RðxÞ � l satisfies

Df2uþ
lu

n� 1
¼ �ðnðn� 1Þ þmÞu2

mðn� 1Þ
a 0:

The same proof as in Case (iii) of Theorem 1.1 still goes when R attained its
minimum, which gives (2) and (3) in Proposition 1.2. r
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3. Proof of Theorem 1.4

In this section, we are going to prove Theorem 1.4.

Proof of Theorem 1.4. Let rðxÞ ¼ dðx; x0Þ be a distance function from a
fixed point x0 A Mn and gðsÞ : ½0; rðxÞ� ! Mn be a minimizing normal geodesic
starting from x0 ¼ gð0Þ to x. Then

d

ds

����
r

f ðgðsÞÞ ¼ h‘f ;‘gðrÞi ¼
ð r
0

d

ds
h‘f ;‘gðsÞi dsþ h‘f ;‘gð0Þi

¼
ð r
0

Hess f ð‘g;‘gÞ dsþ h‘f ;‘gð0Þi:

While Theorem 1.1 says that Rb 0 for lb 0 and Rb l for l < 0, which
together with the soliton equation (1.1) gives

fij ¼ ðl� RÞgij a
lgij ; if lb 0;

0; if l < 0:

�
Therefore,

d

ds

����
r

f ðgðsÞÞa lrþ h‘f ;‘gð0Þi; if lb 0;

h‘f ;‘gð0Þi; if l < 0:

�

Integrating the above inequalities along gðsÞ yields Theorem 1.4. r

4. Proofs of Theorem 1.5 and Proposition 1.7

In order to prove Theorem 1.5 and Proposition 1.7, we need the following
classical result of Riemannian geometry (see [17]).

Lemma 4.1 ([17], Theorem 3.2). Let ðMn; gÞ be a complete manifold with
smooth functions f , n satisfying

Hess f ¼ ng;

then the Riemannian structure is a warped product around any point where ‘f 0 0.

Proof of Theorem 1.5. Let ðMn; gÞ be an n-dimensional complete non-
compact gradient Yamabe soliton. Now we divide our proof into the following
three cases:

Case (1) Rb l > 0. Suppose that f is not a constant. By Cao-Sun-
Zhang’s result (see Theorem 1.2 in [4]), we know that ðMn; gÞ is isometric to a
warped product ðI ; dr2Þ �j‘f j ðN; gÞ for some interval I and ðN; gÞ with constant
scalar curvature R > 0. Fix ðr0; xÞ A I �N with ‘f ðr0; xÞ0 0, and consider a
curve ½r0;yÞ C r 7! ðr; xÞ A Mn ¼ I �N. It follows from Rb l > 0 and equa-
tion (1.1) that the function f is concave, i.e., Hess f a 0, and

f 0ðrÞa f 0ðr0Þ < 0 for any r A ½r0;yÞ
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along this curve. Since

R ¼ ð f 0Þ2Rþ ðn� 1Þ½ðn� 2Þð f 00Þ2 þ 2f 0f 000�b lð f 0Þ2 þ 2ðn� 1Þ f 0f 000;

e.g. (2.20) in [4], we have

f 000ðrÞb 1

2ðn� 1Þ ½R=f
0ðrÞ � lf 0ðrÞ�b �l

2ðn� 1Þ ½ f
0ðrÞ � R=lf 0ðr0Þ�:

Let fðrÞ, rb r0 be the solution to

f 00ðrÞ ¼ �l

2ðn� 1Þ fðrÞ; fðr0Þ ¼ f 0ðr0Þ � R=lf 0ðr0Þ; f 0ðr0Þ ¼ f 00ðr0Þ:

Then, f 0ðrÞ � R=lf 0ðr0Þb fðrÞ for any rb r0. Since fðrÞ is a periodic
function, there exists r1 > r0 such that fðr1Þ ¼ fðr0Þ. Then, f 0ðr1Þ � R=lf 0ðr0Þ
b fðr1Þ ¼ fðr0Þ. This means f 0ðr0Þ ¼ f 0ðr1Þ. Since r0 was chosen arbitrarily,
f 0ðrÞ is a constant and hence ðMn; gÞ is isometric to R�N and R1 l.

Case (2) Rb l ¼ 0. By (2.7), we get

Df1R ¼ �R2

n� 1
a 0:ð4:1Þ

Assume that R attains its minimum, namely, there exists a point x0 A Mn such
that Rðx0Þ ¼ l, then inequality (4.1) and the minimum principle imply that
R1 l. Therefore, equation (1.1) becomes

Hess f ¼ 0:

Thus either f is a constant or ðMn; gÞ is isometric to the Riemannian product
manifold.

If R > l on ðMn; gÞ, ðMn; gÞ is a warped product has been already proved
by Cao-Sun-Zhang [4]. In fact, by setting n :¼ l� R < 0, we conclude from
Lemma 4.1 and equation (1.1) that Mn is a warped product manifold.

Case (3) Rb 0 > l. It is easy to see from (2.7) that

Df1R ¼ Rðl� RÞ
n� 1

a 0:

If there exists a point x0 A Mn such that Rðx0Þ ¼ 0, then R1 0 and Hess f ¼
lg0 0, which together with Lemma 2.4 gives that Mn is isometric to the
Gaussian soliton. If R > 0, then the result Cao-Sun-Zhang [4] implies that Mn

is a warped product manifold, and (3) is proved. r

Proof of Proposition 1.7. Let ðMn; gÞ be an n-dimensional complete non-
compact quasi gradient Yamabe soliton. For (1) and (2) in Theorem 1.7, we see
from (2.6) and Rb lb 0 that

Df2Ra
Rðl� RÞ
n� 1

a 0:ð4:2Þ
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If R attains its minimum, namely, there exists a point x0 A Mn such that
Rðx0Þ ¼ l, then inequality (4.2) and the minimum principle imply that R1 l.
For Rb 0 > l, using the same approach, we can see that R > 0 or R1 0, but the
later case contradicts to equation (2.2), which gives (3), and the proof is complete.

r
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to the referee for careful reading and very helpful and valuable suggestions to
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