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CONTACT METRIC STRUCTURES ON S3

Michael Markellos and Charalambos Tsichlias

Abstract

In this paper, we construct a new family of contact metric structures on the unit

sphere S3. Especially, the above family has the property that ‘xt ¼ 2atf.

1. Introduction

Chern and Hamilton ([6]) introduced the torsion t ¼ Lxg, where Lx is the
Lie derivative of g with respect to the characteristic vector field x, in their study
of compact contact three-manifolds. G. Calvaruso and D. Perrone ([4]) proved
that a 3-dimensional contact metric manifold is locally homogeneous if and only
if it is ball homogeneous and, moreover, satisfies the condition

‘xt ¼ 2atf;ð1:1Þ
where a is a constant. Here, the composition tfðX ;YÞ has to be interpreted as
tðfX ;Y Þ. Especially, the condition (1.1) with a ¼ 0 is equivalent to the condi-
tion that at a given point, the sectional curvature of all planes perpendicular to
the contact subbundle, are equal ([14]). These manifolds are said to be 3� t
manifolds ([7]).

On the other hand, D. E. Blair ([1, pp. 133–137]) constructed examples of
conformally flat contact metric three-manifolds which do not have constant
sectional curvature. G. Calvaruso ([3]) pointed out that Blair’ s examples satisfy
the condition (1.1) with a smooth function which is constant along the geodesic
foliation generated by x. The same author proved that a conformally flat
contact metric 3-manifold satisfying condition (1.1) with a ¼ const:0 2, has
constant sectional curvature 0 or 1. More generally, the authors in ([8]) inves-
tigated conformally flat contact metric 3-manifolds satisfying the condition (1.1),
where a is a smooth function constant along the flow of x. A contact metric
manifold satisfying the condition (1.1), where a is an arbitrary smooth function, is
called 3� t� a manifold ([8]).

In contact metric geometry, there are few examples of compact contact
metric manifolds. These examples include the odd dimensional spheres, the
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unit tangent sphere bundle over a Riemannian manifold and some of the
3-dimensional unimodular Lie groups, endowed with a left-invariant metric,
listed in Table I of [2]. On the contrary, the previously mentioned Blair’s
examples are non compact conformally flat and 3� t� a manifolds. To this
direction, the authors in [8], proved that the solid torus S1 �D2 is a conformally
flat, semi-K contact, 3� t� a manifold. In this paper, we prove that the unit
sphere S3, equipped with a specific family of contact metric structures ðh; x; f; gf Þ,
is a 3� t� a manifold (see Theorem 3.1). More precisely, this family of con-
tact metric structures on S3 depends on a di¤erentiable function f of S3 which
satisfies a particular partial di¤erential equation. Furthermore, we give special
solutions of this di¤erential equation (see Examples 3.1 and 3.2). Also, we
clarify that this family of structures on S3 isn’t invariant for D-homothetic
deformations (see Remark 3.5). Additionally, we thoroughly investigate some
curvature properties of the contact metric manifold ½S3; ðh; x; f; gf Þ� (see Theorem
3.2 and Theorem 3.3). Finally, we point out that in the case which the func-
tion f is non-constant, ½S3; ðh; x; f; gf Þ� is not a generalized ðk; mÞ-contact metric
manifold (see Remark 3.3).

2. Contact metric manifolds

We start with some fundamental notions about contact Riemannian geo-
metry. We refer to [1] for further details.

A di¤erentiable ð2nþ 1Þ-dimensional manifold is called contact manifold if
it admits a global 1-form h such that h5ðdhÞn 0 0 everywhere on M. It is
well known that a contact manifold admits an almost contact metric structure
ðh; x; f; gÞ; i.e. a global vector field x, which is called the characteristic vector field
or the Reeb vector field, a tensor field f of type ð1; 1Þ and a Riemannian metric g
(associated metric) such that

hðxÞ ¼ 1; f2 ¼ �Id þ hn x; gðfX ; fY Þ ¼ gðX ;YÞ � hðXÞhðY Þ;ð2:1Þ
for all vector fields X , Y on M. Moreover, the structure ðh; x; f; gÞ can be
chosen so that

dhðX ;YÞ ¼ gðX ; fY Þ;ð2:2Þ
for all vector fields X , Y on M. The manifold M together with the structure
tensors ðh; x; f; gÞ is called a contact metric manifold (c.m.m., in short) and is
denoted by ½M; ðh; x; f; gÞ�. We denote by ‘ the Levi-Civita connection, and by
R the corresponding Riemann curvature tensor field given by

RðX ;YÞ ¼ ½‘X ;‘Y � � ‘½X ;Y �

for all vector fields X , Y on M. Moreover, we denote by S the Ricci tensor and
by r the scalar curvature.

We define on M the operators l, h and t by

lX ¼ RðX ; xÞx; hX ¼ 1

2
ðLxfÞX ; tðX ;Y Þ ¼ ðLxgÞðX ;Y Þ
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where Lx is the Lie di¤erentiation in the direction of x: The tensors h and t are
symmetric and satisfy ([9]):

hx ¼ 0; tr h ¼ tr hf ¼ 0; hf ¼ �fh;ð2:3Þ
t ¼ 2gðf�; h�Þ; ‘xt ¼ 2gðf�;‘xh�Þ

for all vector fields X on M.
The tensor l is symmetric and satisfies ([1, p. 111]):

flf� l ¼ 2ðf2 þ h2Þ; ‘xh ¼ f� fl � fh2:ð2:4Þ

Combining relations (2.4), we get

lf� fl ¼ 2‘xh:ð2:5Þ

A contact metric manifold for x being a Killing vector field is called a
K-contact manifold. It is well known that a contact metric manifold is K-contact
if and only if h ¼ 0: (or, equivalently, t ¼ 0).

A contact structure on M gives rise to an almost complex structure on the
product M � R: If this structure is integrable, then the contact metric manifold
is said to be Sasakian. Equivalently, a contact metric manifold is Sasakian if
and only if

RðX ;YÞx ¼ hðY ÞX � hðXÞY

for all vector fields X , Y on M.
Every Sasakian manifold is K-contact, but the converse is true only in the

three dimensional case.
The sectional curvature KðX ; xÞ of a plain section spanned by x and a vector

field X orthogonal to x is called x-sectional curvature. The sectional curvature
KðX ; fXÞ of a plain section spanned by the vector field X (orthogonal to x) and
fX is called f-sectional curvature.

A c.m.m. ½M; ðh; x; f; gÞ� is said to be h-Einstein if the Ricci tensor S is of the
form

S ¼ agþ bhn h;ð2:6Þ

where a and b are smooth functions on M. Every K-contact metric 3-manifold
is h-Einstein and the Ricci tensor is given by ([14])

S ¼ r

2
� 1

� �
gþ � r

2
þ 3

� �
hn h:

A connected c.m.m. ½M; ðh; x; f; gÞ� of which the Riemann curvature tensor
satisfies the relation

RðX ;Y Þx ¼ kðhðYÞX � hðX ÞYÞ þ mðhðYÞhX � hðX ÞhYÞ;ð2:7Þ

with k, m smooth functions on M and every vector fields X , Y on M, is called
generalized ðk; mÞ-c.m.m. ([11]). Especially. if the functions k, m are constants
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on M, the c.m.m. ½M; ðh; x; f; gÞ� is called ðk; mÞ-c.m.m. ([2]). Generalized ðk; mÞ-
c.m.m. not ðk; mÞ-c.m.m. appear only in dimension 3 ([11]).

We call 3� t� a manifold a 3-dimensional c.m.m. satisfying ‘xt ¼ 2atf,
where the composition tfðX ;Y Þ has to be interpreted as tðfX ;YÞ and a is an
arbitrary smooth function. We mention that every generalized ðk; mÞ-c.m.m. is a

3� t� a manifold with a ¼ m

2
([11]).

Let ½M; ðh; x; f; gÞ� be a 3-dimensional contact metric manifold. Let U
be the open subset of M where h0 0 and V the interior of U c. Then U UV
is an open and dense subset of M. For every p A U there exists an open
neighborhood W of p and a vector field e defined on W such that he ¼ le and
hfe ¼ �lfe, where l is a non-vanishing smooth function of U . We call the local
orthonormal frame field fe; fe; xg a h-basis.

Combining relations (2.3) and (2.5), we have the following Proposition:

Proposition 2.1. Let ½M; ðh; x; f; gÞ� be a 3-dimensional contact metric
manifold. Then, ½M; ðh; x; f; gÞ� is a 3� t� a manifold if and only if lf� fl
¼ 4ahf.

3. New contact metric structures on S3

We consider the unit sphere

S3 ¼ p ¼ ðx1; x2; x3; x4Þ A R4

�����
X4
i¼1

ðxiÞ2 ¼ 1

( )

embedded in R4. The orthonormal vectors

e1ððx1; x2; x3; x4ÞÞ ¼ ð�x2; x1;�x4; x3Þ
e2ððx1; x2; x3; x4ÞÞ ¼ ð�x3; x4; x1;�x2Þ;
e3ððx1; x2; x3; x4ÞÞ ¼ ð�x4;�x3; x2; x1Þ

are orthogonal to x ¼ ðx1; x2; x3; x4Þ A S3 with respect to the Euclidean metric
and linearly independent everywhere on S3. Hence, they define the tangent
space TxS

3 ([13, page 259]). We easily get

½e1; e2� ¼ 2e3; ½e2; e3� ¼ 2e1; ½e3; e1� ¼ 2e2:ð3:1Þ

Let f be an arbitrary smooth function of S3 non-vanishing everywhere on S3

which is a solution of the following partial di¤erential equation:

�x2
qf

qx1
þ x1

qf

qx2
� x4

qf

qx3
þ x3

qf

qx4
¼ 0;ð3:2Þ
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or, equivalently, e1ð f Þ ¼ 0. Let gf , f be the Riemannian metric and the tensor
field of type ð1; 1Þ given by

gf ¼

1 0 0

0
1

f 2
0

0 0 f 2

0
BBB@

1
CCCA; f ¼

0 0 0

0 0 �f 2

0
1

f 2
0

0
BBB@

1
CCCA;

with respect to the basis fe1; e2; e3g. We denote by h the 1-form defined by
hðWÞ ¼ gf ðW ; e1Þ for every W A XðS3Þ. Then h is a contact form since
h5dh0 0 everywhere on S3. Using the definition of h and the linearity of
f, dh and gf , we easily obtain that hðe1Þ ¼ 1, dhðZ;WÞ ¼ gðfZ;WÞ and
gf ðfZ; fWÞ ¼ gf ðZ;WÞ � hðZÞhðWÞ for every vector fields Z, W on S3. Hence
½S3; ðh; e1; f; gf Þ� is a c.m.m.

Since gf ðe1; e1Þ ¼ 1, gf ðe2; e2Þ ¼
1

f 2
, gf ðe3; e3Þ ¼ f 2 and gf ðei; ejÞ ¼ 0 for all

i0 j, we easily get that the set w1 ¼ e1;w2 ¼ fe2;w3 ¼
1

f
e3

� �
is an orthonormal

frame field globally defined on S3. Using relations (3.1) and (3.2), we easily
obtain that their Lie brackets are given by:

½w1;w2� ¼ 2f 2w3; ½w1;w3� ¼ � 2

f 2
w2;ð3:3Þ

½w2;w3� ¼ 2w1 �
e3ð f Þ
f 2

w2 � e2ð f Þw3:

Let ‘ be the Levi-Civita connection corresponding to gf . By using the Koszul’s
formula

2gð‘YZ;WÞ ¼ YgðZ;WÞ þ ZgðW ;Y Þ �WgðY ;ZÞ � gðY ; ½Z;W �Þ
� gðZ; ½Y ;W �Þ þ gðW ; ½Y ;Z�Þ;

and (3.3), we calculate

‘w1
w1 ¼ 0; ‘w2

w1 ¼ �1� f 2 þ 1

f 2

� �
w3; ‘w3

w1 ¼ 1� f 2 þ 1

f 2

� �
w2;

‘w1
w2 ¼ f 2 þ 1

f 2
� 1

� �
w3; ‘w2

w2 ¼
e3ð f Þ
f 2

w3;

‘w3
w2 ¼ f 2 � 1� 1

f 2

� �
w1 þ e2ð f Þw3;ð3:4Þ

‘w1
w3 ¼ 1� f 2 � 1

f 2

� �
w2; ‘w2

w3 ¼ 1þ f 2 � 1

f 2

� �
w1 �

e3ð f Þ
f 2

w2;

‘w3
w3 ¼ �e2ð f Þw2:
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From the definition of the tensor field h and relations (3.3), we get that hw1 ¼ 0
and

hw2 ¼
1

2
ðLw1

fÞw2 ¼
1

2
f½w1;w3� � f½w1;w2�g ¼ f 2 � 1

f 2

� �
w2:ð3:5Þ

Similarly, we obtain that

hw3 ¼
1

f 2
� f 2

� �
w3:ð3:6Þ

As a consequence, fw1;w2;w3g is a globally defined h-basis. Furthermore,
combining relations (3.2), (3.4), (3.5) and (3.6), we obtain

ð‘w1
hÞw1 ¼ 0;

ð‘w1
hÞw2 ¼ 2 f 2 � 1

f 2

� �
f 2 þ 1

f 2
� 1

� �
w3;

ð‘w1
hÞw3 ¼ 2 f 2 � 1

f 2

� �
f 2 þ 1

f 2
� 1

� �
w2:

ð3:7Þ

In the sequel, we compute the tensor field tf of S3 with respect to the contact
metric structure ðh; x; f; gÞ. We remind that the tensor field tf is given by
tfðX ;Y Þ ¼ tðfX ;Y Þ, for all X ;Y A XðS3Þ. Indeed, by using relations (2.3),
(3.5) and (3.6), we have

tfðw1;w1Þ ¼ 0; tfðw1;w2Þ ¼ 0; tfðw1;w3Þ ¼ 0;

tfðw2;w1Þ ¼ 0; tfðw2;w2Þ ¼ �2 f 2 � 1

f 2

� �
; tfðw2;w3Þ ¼ 0;ð3:8Þ

tfðw3;w1Þ ¼ 0; tfðw3;w2Þ ¼ 0; tfðw3;w3Þ ¼ 2 f 2 � 1

f 2

� �
:

Now, combining relations (2.3), (3.7) and (3.8), we have

‘w1
t ¼ 2atf;ð3:9Þ

where a ¼ 1� f 2 � 1

f 2
. As a consequence, we yield the following Theorem:

Theorem 3.1. Let S3 be the 3-unit sphere and f be an arbitrary smooth
function of S3, non-vanishing everywhere on S3 which is a solution of the following
partial di¤erential equation:

�x2
qf

qx1
þ x1

qf

qx2
� x4

qf

qx3
þ x3

qf

qx4
¼ 0:
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We consider the quadruple ðh; x; f; gf Þ given by

gf ¼

1 0 0

0
1

f 2
0

0 0 f 2

0
BBB@

1
CCCA; f ¼

0 0 0

0 0 �f 2

0
1

f 2
0

0
BBB@

1
CCCA; x ¼ e1; hðWÞ ¼ gf ðW ; e1Þ;

with respect to the basis fe1; e2; e3g and for all W A XðS3Þ. Then ½S3; ðh; x; f; gf Þ�

is a 3� t� a manifold with a ¼ 1� f 2 � 1

f 2
.

Remark 3.1. We choose f 1 1 on S3. In this case, relations (3.5) and (3.6)
give h ¼ 0 i.e. ½S3; ðh; x; f; gf Þ� is a K-contact metric manifold or, equivalently, a
Sasakian manifold. Furthermore, if we choose f 1�1 on S3, then we get again
a Sasakian structure on S3. We mention that these two Sasakian structures are
the only Sasakian structures of Theorem 3.1.

In the sequel, we thoroughly investigate some curvature properties of
½S3; ðh; x; f; gf Þ�. More precisely, we have

Theorem 3.2. Let S3 be the 3-unit sphere and f be an arbitrary smooth
function of S3, non-vanishing everywhere on S3 which is a solution of the partial
di¤erential equation (3.2). Then, ½S3; ðh; x; f; gf Þ� is a ðk; mÞ-c.m.m. if and only
if f ¼ c ¼ const:0 0. Especially, if f ¼G1, then we get the standard Sasakian

structure on S3. If f ¼ c ¼ const:0G1; 0, then k ¼ 3� c4 � 1

c4
and m ¼

2 1� c2 � 1

c2

� �
.

Proof. We assume that ½S3; ðh; x; f; gf Þ� is a ðk; mÞ-c.m.m. or, equivalently,
relation (2.7) holds for the real constants k and m. Furthermore, the Jacobi
operator l of a ðk; mÞ-contact metric manifold is given by ([2])

l ¼ �kf2 þ mh:ð3:10Þ

Combining relations (3.5) and (3.10), we have

lðw2Þ ¼ kþ m f 2 � 1

f 2

� �� �
w2:ð3:11Þ

On the other hand, by using relations (3.2), (3.3) and (3.4), we straightforward
calculate

lðw2Þ ¼ Rðw2;w1Þw1 ¼ ‘w2
‘w1

w1 � ‘w1
‘w2

w1 � ‘½w2;w1�w1ð3:12Þ

¼ 3� 3f 4 þ 2f 2 � 2

f 2
þ 1

f 4

� �
w2:
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Comparing relations (3.11) and (3.12), we easily conclude that f ¼ c ¼ const:0
0. Conversely, we assume that f ¼ c ¼ const:0 0. In the case which f ¼G1,
we get the standard Sasakian structure on S3 (see Remark 3.1). In the follow-

ing, we deal with the case f ¼ c ¼ const:0G1; 0. Setting now, k ¼ 3� c4 � 1

c4
,

m ¼ 2 1� c2 � 1

c2

� �
and using the relations (3.3), (3.4), (3.5) and (3.6), we easily

deduce that

Rðw2;w1Þw1 ¼ 3� 3c4 þ 2c2 � 2

c2
þ 1

c4

� �
w2

¼ kðhðw1Þw2 � hðw2Þw1Þ þ mðhðw1Þhw2 � hðw2Þhw1Þ;

Rðw3;w1Þw1 ¼ c4 � 3

c4
þ 3þ 2

c2
� 2c2

� �
w3;

¼ kðhðw1Þw3 � hðw3Þw1Þ þ mðhðw1Þhw3 � hðw3Þhw1Þ;

Rðw2;w3Þw1 ¼ 0

¼ kðhðw3Þw2 � hðw2Þw3Þ þ mðhðw3Þhw2 � hðw2Þhw3Þ:

By direct calculation, these relations yield:

RðZ;WÞx ¼ k½hðWÞZ � hðZÞW � þ m½hðWÞhZ � hðZÞhW �;
for all vector fields Z, W on S3: Hence, it has been shown that ½S3; ðh; x; f; gcÞ�
is a ðk; mÞ-c.m.m. r

Remark 3.2. The ðk; mÞ-structures on S3 (which is di¤eomorphic with the
Lie group SUð2Þ), described in Theorem 3.2, coincide with the ones given in
the main Theorem of [2]. Moreover, we explicitly exhibit the structure tensors
ðh; x; f; gcÞ on these structures.

Remark 3.3. Let f be a non-constant smooth function of S3 non-vanishing
everywhere on S3 which additionally satisfies the partial di¤erential equation
(3.2). Then, ½S3; ðh; x; f; gf Þ� is a 3� t� a c.m.m. which is not a generalized
ðk; mÞ-c.m.m. Indeed, if it were a generalized ðk; mÞ-c.m.m., then using relation

(13) of [12] with l ¼ f 2 � 1

f 2
(in the case which l > 0), we would get

½w2;w3� ¼ �
1þ 1

f 4

� �
e3ð f Þ

f 2 � 1

f 2

w2 þ
f 2 þ 1

f 2

� �
e2ð f Þ

f 2 � 1

f 2

w3 þ 2w1:ð3:13Þ

Comparing relations (3.3) and (3.13), we obtain that e2ð f Þ ¼ 0. Since e1ð f Þ ¼ 0,
using relations (3.3), we have that e3ð f Þ ¼ 0 i.e. f is a constant which is a
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contradiction. We mention that every generalized ðk; mÞ-contact metric manifold
is a 3� t� a manifold ([10], [11]). Analogously, we work in the case which
l < 0.

Theorem 3.3. Let S3 be the 3-unit sphere and f be an arbitrary smooth
function of S3, non-vanishing everywhere on S3 which is a solution of the partial
di¤erential equation (3.2). Then, the following conditions are equivalent:

(i) ½S3; ðh; x; f; gf Þ� has constant x-sectional curvature.
(ii) ½S3; ðh; x; f; gf Þ� is h-Einstein.
(iii) f ¼G1 and ½S3; ðh; x; f; gf Þ� is a Sasakian manifold.

Proof. ðiÞ 7! ðiiiÞ We assume that ½S3; ðh; x; f; gf Þ� has constant x-sectional
curvature equals to c. This implies that

gf ðRðx;w2Þw2; xÞ ¼ c and gf ðRðx;w3Þw3; xÞ ¼ cð3:14Þ

We will prove that l ¼ f 2 � 1

f 2
1 0 on S3. On the contrary, we assume that

there exists a point p A S3 such that lðpÞ0 0. Hence, we have either lðpÞ > 0
or lðpÞ < 0. We deal with the case lðpÞ > 0. Since the function l is con-
tinuous, there exists an open neighborhood W of p such that lðqÞ > 0 for all
q A W . Combining relations (2-15) of [9] (see also [5]), (3.4) and (3.14), we get

�2 f 2 þ 1

f 2
� 1

� �
l� l2 þ 1 ¼ c;ð3:15Þ

2 f 2 þ 1

f 2
� 1

� �
l� l2 þ 1 ¼ c;ð3:16Þ

on W . Subtracting the relations (3.15) and (3.16), we get f 2 þ 1

f 2
� 1

� �
�

f 2 � 1

f 2

� �
¼ 0. Since f 2ðzÞ þ 1

f 2ðzÞ � 10 0 for every z A S3, we deduce that

f 2 � 1

f 2
¼ 0 on W , which is a contradiction. As a consequence, l ¼ f 2 � 1

f 2
1

0 on S3 or, equivalently, f ¼G1. Applying Theorem 3.2, ½S3; ðh; x; f; gf Þ� is a
Sasakian manifold. Similarly, we deal with the case lðpÞ < 0.

ðiiÞ 7! ðiiiÞ We assume that ½S3; ðh; x; f; gf Þ� is h-Einstein. We will prove

that l ¼ f 2 � 1

f 2
1 0 on S3. On the contrary, we assume that there exists a

point p A S3 such that lðpÞ0 0. Hence, we have either lðpÞ > 0 or lðpÞ < 0.
We deal with the case lðpÞ > 0. Since the function l is continuous, there exists
an open neighborhood W of p such that lðqÞ > 0 for all q A W . By using the
h-basis fw1;w2;w3g and combining relations (2-18) of [9] (see also [5]), (2.6) and
(3.4), we obtain

r

2
� 1þ l2 � 2 f 2 þ 1

f 2
� 1

� �
l ¼ r

2
� 1þ l2 þ 2 f 2 þ 1

f 2
� 1

� �
l;
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on W . Equivalently, f 2 þ 1

f 2
� 1

� �
f 2 � 1

f 2

� �
¼ 0. Since f 2ðzÞ þ 1

f 2ðzÞ � 1

0 0 for every z A S3, we deduce that f 2 � 1

f 2
¼ 0 on W , which is a contradiction.

As a consequence, l ¼ f 2 � 1

f 2
1 0 on S3 or, equivalently, f ¼G1. Applying

Theorem 3.2, ½S3; ðh; x; f; gf Þ� is a Sasakian manifold. Similarly, we deal with
the case lðpÞ < 0.

ðiiiÞ 7! ðiÞ, (ii) We assume that f ¼G1. By using relations (3.4), we deduce
that ½S3; ðh; x; f; gG1Þ� is a space of constant sectional curvature equals 1. Hence,
c ¼ 1 and S ¼ 2g. r

Remark 3.4. By using relations (3.4), the f-sectional curvature of
½S3; ðh; x; f; gf Þ� is given by

Kðw2; fw2Þ ¼ gf ðRðw2;w3Þw3;w2Þ

¼ �fe2ðe2ð f ÞÞ þ
1

f
e3

e3ð f Þ
f 2

� �
� e3ð f Þ

f 2

� �2
� ðe2ð f ÞÞ2

� 1þ f 2 � 1

f 2

� �
1� f 2 þ 1

f 2

� �
þ 2 1� f 2 � 1

f 2

� �� �
:

Let ½M; ðh; x; f; gÞ� be a contact metric 3-manifold. A D-homothetic trans-
formation ([2], [11]) is the transformation:

h ¼ th; x ¼ 1

t
x; f ¼ f; g ¼ tgþ tðt� 1Þhn hð3:17Þ

at the structure tensors where t is a positive constant. It is well known [11] that
½M; ðh; x; f; gÞ� is also a contact metric manifold. Moreover, the curvature tensor
R and the tensor h transform in the following manner ([2], [11]):

h ¼ 1

t
hð3:18Þ

and

tRðX ;Y Þx ¼ RðX ;YÞxþ ðt� 1Þ2½hðY ÞX � hðXÞY �
� ðt� 1Þ½ð‘XfÞY � ð‘YfÞX þ hðXÞðY þ hY Þ � hðY ÞðX þ hXÞ�:

Moreover, it is well known [1, p. 94] that every 3-dimensional contact metric
manifold is a contact strongly pseudo-convex integrable CR manifold, or, equiv-
alently, satisfies the condition

ð‘XfÞY ¼ gðX þ hX ;Y Þx� hðY ÞðX þ hXÞ:

Using the above relations we finally obtain that
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RðX ;YÞx ¼ 1

t
RðX ;Y Þxþ t2 � 1

t
½hðY ÞX � hðXÞY �

þ 2ðt� 1Þ
t

½hðY ÞhX � hðXÞhY �:

Hence, by using relations (2.1), we get

lðXÞ ¼ 1

t2
lðX Þ � t2 � 1

t2
f2X þ 2ðt� 1Þ

t2
hX :ð3:19Þ

Proposition 3.1. Let S3 be the 3-unit sphere and f be an arbitrary smooth
function of S3, nonvanishing everywhere on S3, which is a solution of the
partial di¤erential equation (3.2). For any positive parameter t, the corresponding
D-homothetic transformation of ðh; x; f; gf Þ yields a 3� t� a contact metric
structure on S3.

Proof. Let S3 be the 3-unit sphere and f be an arbitrary smooth function
of S3; non-vanishing everywhere on S3 which is a solution of the partial dif-
ferential equation (3.2). Applying Theorem 3.1, we have that ½S3; ðh; x; f; gf Þ� is

a 3� t� a manifold with a ¼ 1� f 2 � 1

f 2
. Furthermore, applying Proposition

2.1 we deduce that

lf� fl ¼ 4ahf:ð3:20Þ

Applying a D-homothetic transformation on ½S3; ðh; x; f; gf Þ�, we obtain a new

contact metric structure on S3 which is denoted by ½S3; ðh; x; f; gf Þ�. Combining
(3.17), (3.18), (3.19), (3.20) and the fact that h anticommutes with f, we get

lf� f l ¼ lf� fl ¼ 4
aþ t� 1

t
hf:

Therefore, by Proposition 2.1, we easily conclude that ½S3; ðh; x; f; gf Þ� is a

3� t� a manifold with a ¼ aþ t� 1

t
. r

Remark 3.5. The family of contact metric structures on S3 described in
Theorem 3.1 isn’t invariant for D-homothetic transformations because the Reeb
vector field x isn’t the same with the initial Reeb vector field x. We remind that

x ¼ 1

t
x. On the contrary, ½S3; ðh; x; f; gf Þ� remains a 3� t� a manifold.

Example 3.1. We consider the smooth function f on S3 given by:

f ðx1; x2; x3; x4Þ ¼
e�1=ðx2

1
þx2

2
�x2

3
�x2

4
Þ; x2

1 þ x2
2 > x2

3 þ x2
4 ;

1; x2
1 þ x2

2 e x2
3 þ x2

4

(
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Obviously, the function f satisfies the di¤erential equation (3.2). Hence,
applying Theorem 3.1, we get that ½S3; ðh; x; f; gf Þ� is a 3� t� a manifold.
Furthermore, the set C ¼ fðx1; x2; x3; x4Þ A S3 : x2

1 þ x2
2 < x2

3 þ x2
4g equipped with

the structures tensors ðh; x; f; gf Þ is a Sasakian manifold and the set S3 � C ¼
fðx1; x2; x3; x4Þ A S3 : x2

1 þ x2
2 > x2

3 þ x2
4g equipped with the structures tensors

ðh; x; f; gf Þ is not a Sasakian manifold.

Example 3.2. Let p be a positive real constant. We consider the di¤er-
entiable function fp on S3 given by:

fpðx1; x2; x3; x4Þ ¼
e�1=ðx2

1
þx2

2
�x2

3
�x2

4
Þ þ p; x2

1 þ x2
2 > x2

3 þ x2
4 ;

1þ p; x2
1 þ x2

2 e x2
3 þ x2

4

(

Obviously, the function fp satisfies the partial di¤erential equation (3.2). Hence,
applying Theorem 3.1, we get that ½S3; ðh; x; f; gfpÞ� is a 3� t� a manifold.
Furthermore, by using Example 3.2, the quadruple ½C; ðh; x; f; gf Þ� (mentioned in

Example 3.3) is a non-Sasakian ðk; mÞ-c.m.m. with k ¼ 3� ð1þ pÞ4 � 1

ð1þ pÞ4
and m ¼ 2 1� ð1þ pÞ2 � 1

ð1þ pÞ2

 !
and the quadruple ½S3 � C; ðh; x; f; gf Þ� is

not a ðk; mÞ-c.m.m.

Remark 3.6. Examples 3.1 and 3.2 are never 3� t since their function a
cannot vanish. Additionally, applying Theorem 3.3, the x-sectional curvature of
these Examples is never constant.

Remark 3.7. Let f be a di¤erentiable function of S3 which satisfies the
partial di¤erential equation (3.2). We suppose that the closed set A ¼ fp A S3 :
f ðpÞ ¼ 0g is non-empty. Using the notations of Theorem 3.1, the quadruple
½Ac; ðh; x; f; gf Þ� is a 3� t� a c.m.m. However, this structure ðh; x; f; gf Þ cannot
be extended to an open set W of S3 such that Ac HW and W V qA0j. On
the contrary, we assume that the quadruple ½Ac; ðh; x; f; gf Þ� is extended to the
quadruple ½W ; ðh; x; f; gÞ�. Let p A W V qA. Then, there exists a sequence

an A Ac such that lim an ¼ p. Then, gf janðe2; e2Þ ¼
1

f 2ðanÞ
. Using the fact that

the g is a tensor field and the quadruple ðh; x; f; gÞ is an extension of the
quadruple ðh; x; f; gf Þ, we have gpðe2; e2Þ ¼ lim ganðe2; e2Þ ¼ lim gf janðe2; e2Þ ¼

lim
1

f 2ðanÞ
¼ þy. As a consequence, the quadruple ðh; x; f; gf Þ cannot be

extended in the previous meaning.
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