M. NISHIO, N. SUZUKI AND M. YAMADA KODAI MATH. J. 36 (2013), 38–49

POSITIVE TOEPLITZ OPERATORS OF FINITE RANK ON THE PARABOLIC BERGMAN SPACES

MASAHARU NISHIO, NORIAKI SUZUKI AND MASAHIRO YAMADA

Abstract

We define the Toeplitz operators on the parabolic Bergman spaces by using a positive bilinear form. In this setting we characterize finite rank Toeplitz operators. A relation with the Carleson inclusion is also discussed.

§1. Introduction

We consider the α -parabolic operator

$$L^{(\alpha)} := \frac{\partial}{\partial t} + (-\Delta_x)^{\alpha}$$

on the upper half space \mathbf{R}_{+}^{n+1} , where $\Delta_x := \partial_{x_1}^2 + \cdots + \partial_{x_n}^2$ is the Laplacian on the x-space \mathbf{R}^n and $0 < \alpha \le 1$. Here we denote by X = (x, t), Y = (y, s) and Z = (z, r) points in $\mathbf{R}_{+}^{n+1} = \mathbf{R}^n \times (0, \infty)$. We denote by $(\mathbf{b}_{\alpha}^2(\lambda), \langle \cdot, \cdot \rangle)$ the Hilbert space

$$\boldsymbol{b}_{\alpha}^{2}(\lambda) := \{ u \in L^{2}(\boldsymbol{R}_{+}^{n+1}, V^{\lambda}); L^{(\alpha)} \text{-harmonic on } \boldsymbol{R}_{+}^{n+1} \},\$$

where $\lambda > -1$ and V^{λ} is the (n + 1)-dimensional weighted Lebesgue measure $t^{\lambda} dx dt$ on \mathbf{R}^{n+1}_+ . Note that if $\lambda \leq -1$, then $\mathbf{b}^2_{\alpha}(\lambda) = \{0\}$. Since for $X \in \mathbf{R}^{n+1}_+$ the point evaluation $u \mapsto u(X) : \mathbf{b}^2_{\alpha}(\lambda) \to \mathbf{R}$ is bounded (see [5, Proposition 4.1]), the orthogonal projection from $L^2(V^{\lambda}) := L^2(\mathbf{R}^{n+1}_+, V^{\lambda})$ to $\mathbf{b}^2_{\alpha}(\lambda)$ is represented as an integral operator by a kernel $\mathbf{R}_{\alpha,\lambda}$, which is called the α -parabolic Bergman kernel.

For a positive Radon measure μ on \mathbf{R}^{n+1}_+ , put

$$\operatorname{Dom}(T^{\lambda}_{\mu}) := \left\{ u \in \boldsymbol{b}_{\alpha}^{2}(\lambda); \iint |R_{\alpha,\lambda}(\cdot, Y)u(Y)| \ d\mu(Y) \in L^{2}(\boldsymbol{R}^{n+1}_{+}, V^{\lambda}) \right\}$$

²⁰⁰⁰ Mathematics Subject Classification. Primary 35K05; Secondary 26D10, 31B10.

Key words and phrases. Toeplitz operator, finite rank operator, parabolic Bergman spaces. This work was supported in part by Grant-in-Aid for Scientific Researches (C) No. 23540220, No.

^{22540209.}

Received May 10, 2012.

and for $u \in \text{Dom}(T_{\mu}^{\lambda})$ we set

(1)
$$(T^{\lambda}_{\mu}u)(X) := \iint R_{\alpha,\lambda}(X,Y)u(Y) \ d\mu(Y).$$

We call T_{μ}^{λ} a positive Toeplitz operator with symbol μ and weight t^{λ} . For the case $\lambda = 0$, under the assumption on μ that

(2)
$$\iint \frac{1}{\left(1+t+|x|^{2\alpha}\right)^{\tau}} d\mu(x,t) < \infty$$

for some $\tau > 0$, we proved in [9] that $\text{Dom}(T_{\mu}^{\lambda}) = \boldsymbol{b}_{\alpha}^{2}(0)$ and $T_{\mu}^{\lambda} : \boldsymbol{b}_{\alpha}^{2}(0) \to \boldsymbol{b}_{\alpha}^{2}(0)$ is bounded if and only if μ is an α -parabolic Carleson measure. Furthermore, we have already discussed its compactness ([10]) and Schatten class ([12] and [14]).

In this note, we shall study the rank of positive Toeplitz operators on $b_{\alpha}^2(\lambda)$ for $\lambda > -1$. In order to discuss without the assumption (2), we give an alternative definition of Toeplitz operator. We recall the following general theory (see, for example, [3] or [4]): Let $(\mathcal{H}, \langle \cdot, \cdot \rangle)$ be a real Hilbert space and \mathscr{E} be a bilinear form defined on a subspace \mathscr{D} of \mathscr{H} . We denote by $\overline{\mathscr{D}}$ the closure of \mathscr{D} in \mathscr{H} . If \mathscr{E} is positive, i.e., $\mathscr{E}(u, u) \geq 0$ for all $u \in \mathscr{D}$, and if \mathscr{E} is closed, i.e., complete with respect to the inner product $\langle \cdot, \cdot \rangle + \mathscr{E}(\cdot, \cdot)$, then there exists a unique positive self-adjoint operator \tilde{T} on a dense subset $\text{Dom}(\tilde{T})$ in $\overline{\mathscr{D}}$ such that

$$\mathscr{E}(u,v) = \langle Tu,v \rangle$$

for every $u \in \text{Dom}(\tilde{T})$ and every $v \in \mathcal{D}$. Note that the domain of $\sqrt{\tilde{T}}$ coincides with \mathcal{D} , and $\mathscr{E}(u,v) = \langle \sqrt{\tilde{T}u}, \sqrt{\tilde{T}v} \rangle$ holds for $u, v \in \mathcal{D}$.

Let $\mu \ge 0$ be a Radon measure on \mathbf{R}^{n+1}_+ and $\lambda > -1$. Applying the above general theory to $\mathscr{H} = \mathbf{b}^2_{\alpha}(\lambda)$, $\mathscr{D} = \mathbf{b}^2_{\alpha}(\lambda) \cap L^2(\mathbf{R}^{n+1}_+, \mu)$ and a bilinear form

$$\mathscr{E}(u,v) := \iint u(X)v(X) \ d\mu(X),$$

we have a positive self-adjoint operator $\tilde{T}^{\lambda}_{\mu}$ on $\text{Dom}(\tilde{T}^{\lambda}_{\mu}) \subset \overline{\mathscr{D}}$ such that

(3)
$$\iint (\tilde{T}^{\lambda}_{\mu}u)(X)v(X) \ dV^{\lambda}(X) = \iint u(X)v(X) \ d\mu(X)$$

for every $u \in \text{Dom}(\tilde{T}^{\lambda}_{\mu})$ and $v \in \mathscr{D}$. Then we also define the rank of $\tilde{T}^{\lambda}_{\mu}$ by $\text{rank}(\tilde{T}^{\lambda}_{\mu}) := \dim(\tilde{T}^{\lambda}_{\mu}(\text{Dom}(\tilde{T}^{\lambda}_{\mu}))).$

Now, we shall state our main theorem.

THEOREM 1. Let $\lambda > -1$ and μ be a positive Radon measure on \mathbf{R}^{n+1}_+ . If there exists a dense subspace \mathcal{D}_0 in $\mathbf{b}^2_{\alpha}(\lambda)$ such that $\mathcal{D}_0 \subset \text{Dom}(\tilde{T}^{\lambda}_{\mu})$ and $\dim(\tilde{T}^{\lambda}_{\mu}(\mathcal{D}_0)) < \infty$, then μ is a finite linear combination of point masses and

$$\operatorname{rank}(\hat{T}_{\mu}^{\lambda}) = \#\operatorname{supp}(\mu) = \dim(\hat{T}_{\mu}^{\lambda}(\mathscr{D}_{0}))$$

holds, where #A denotes the cardinal number of a set A.

We note that if μ satisfies (2), then $\tilde{T}_{\mu}^{\lambda}$ is a self-adjoint extension of T_{μ}^{λ} (see Remark 1 below). Moreover, if $\sup(\mu)$ is compact, then $\tilde{T}_{\mu}^{\lambda} = T_{\mu}^{\lambda}$ on $\boldsymbol{b}_{\alpha}^{2}(\lambda)$. Hence denoting $\operatorname{rank}(T_{\mu}^{\lambda}) := \dim(T_{\mu}^{\lambda}(\boldsymbol{b}_{\alpha}^{2}(\lambda)))$, we have the following

THEOREM 2. Let $\lambda > -1$, and let $\mu \ge 0$ be a Radon measure on \mathbf{R}^{n+1}_+ with compact support. If the corresponding Toeplitz operator T_{μ}^{λ} is of finite rank, then the support of μ is a finite set, and moreover we have rank $(T_{\mu}^{\lambda}) = \# \operatorname{supp}(\mu)$.

Theorem 1 implies Theorem 2, but we give a direct proof of Theorem 2 in section 4. Using Theorem 2 we give a proof of Theorem 1 in section 5. In section 6, we make a relation to Carleson inclusions.

In the theory of classical holomorphic Bergman space on the unit disc in the complex plane, Luecking [7] solved the finite rank problem for complex measures with compact support. A generalization to higher dimensions is given by Choe [1].

§2. Preliminaries

40

We recall some basic properties of a fundamental solution of $L^{(\alpha)}$, of fractional derivatives of Riemann-Liouville type and of the parabolic Bergman kernel, which we use later. For proofs and more information about them, see [8], [5] and [6].

Let $0 < \alpha \le 1$. A measurable function u on \mathbb{R}^{n+1}_+ is said to be $L^{(\alpha)}$ -harmonic, if u is continuous on \mathbb{R}^{n+1}_+ and if $L^{(\alpha)}u = 0$ in the sense of distribution, i.e.,

$$\iint u(X) \cdot ((L^{(\alpha)})^* \varphi(X)) \, dV(X) = 0$$

for every $\varphi \in C_c^{\infty}(\mathbf{R}^{n+1}_+)$, where

$$(L^{(\alpha)})^* \varphi(x,t) := -\frac{\partial}{\partial t} \varphi(x,t) - c_{n,\alpha} \lim_{\delta \downarrow 0} \int_{|y| > \delta} (\varphi(x+y,t) - \varphi(x,t)) |y|^{-n-2\alpha} dy,$$

$${}_{\alpha} = -4^{\alpha} \pi^{-n/2} \Gamma((n+2\alpha)/2) / \Gamma(-\alpha) > 0 \text{ and } |x| = (x_1^2 + \dots + x_n^2)^{1/2}.$$

We put

 $c_{n,\alpha} =$ We put

$$W^{(\alpha)}(x,t) := \begin{cases} (2\pi)^{-n} \int_{\mathbf{R}^n} \exp(-t|\xi|^{2\alpha} + \sqrt{-1}x \cdot \xi) \ d\xi & t > 0\\ 0 & t \le 0. \end{cases}$$

This is a fundamental solution of $L^{(\alpha)}u = 0$ so that

 $L^{(\alpha)}W^{(\alpha)} = \delta_{(0,0)}$ (in the sense of distributions)

holds, where $\delta_{(x,t)}$ denotes the point mass (Dirac measure) at $(x,t) \in \mathbb{R}^{n+1}$. Note also that $W^{(\alpha)}(x,t) \ge 0$ and for every 0 < s < t,

(4)
$$W^{(\alpha)}(x,t) = \int_{\mathbf{R}^n} W^{(\alpha)}(x-y,t-s) W^{(\alpha)}(y,s) \, dy$$

holds. When $\alpha = 1$ or $\alpha = 1/2$, we see the explicit closed form: for t > 0,

$$W^{(1)}(x,t) = (4\pi t)^{-n/2} e^{-|x|^2/4t}$$
 and $W^{(1/2)}(x,t) = \frac{\Gamma((n+1)/2)}{\pi^{(n+1)/2}} \frac{t}{(t^2+|x|^2)^{(n+1)/2}}$

To describe the α -parabolic Bergman kernel with a weight, we use the fractional derivatives. For $\kappa \in \mathbf{R}$ and $\varphi \in C_c^{\infty}((0, \infty))$, we put

$$\partial_t^{-\kappa} \varphi(t) := \frac{1}{\Gamma(\kappa)} \int_0^t (t-\tau)^{\kappa-1} \varphi(\tau) \ d\tau$$

when $\kappa > 0$, and in general, taking $m \in N$ with $\kappa - m < 0$, we put

$$\partial_t^{\kappa}\varphi(t) := \partial_t^{\kappa-m}\partial_t^m\varphi(t)$$

We define \mathcal{D}_t and its fractional power \mathcal{D}_t^{κ} as the dual of ∂_t in the sense of distributions:

$$\mathscr{D}_t := (\partial_t)^* = -\partial_t \quad \text{and} \quad \mathscr{D}_t^{\kappa} := (\partial_t^{\kappa})^*.$$

Then for $\kappa > 0$ and $\kappa - m < 0$ with $m \in N$, if a function f on $(0, \infty)$ satisfies

$$\int_{1}^{\infty} |(\mathscr{D}_{t}^{m}f)(\tau)|\tau^{\kappa-m} d\tau < \infty,$$

then

$$\mathscr{D}_t^{\kappa} f(t) = \frac{1}{\Gamma(m-\kappa)} \int_t^{\infty} (\tau-t)^{m-\kappa-1} (\mathscr{D}_t^m f)(\tau) \ d\tau.$$

Now let $\lambda > -1$. The reproducing kernel $R_{\alpha,\lambda}$ of $b_{\alpha}^2(\lambda)$ is given by a fractional derivative of $W^{(\alpha)}$:

$$R_{\alpha,\lambda}(X,Y) = R_{\alpha,\lambda}(x,t,y,s) := \frac{2^{\lambda+1}}{\Gamma(\lambda+1)} \mathscr{D}_t^{\lambda+1} W^{(\alpha)}(x-y,t+s).$$

In fact, it is shown in [5, theorem 5.2] that $R_{\alpha,\lambda}$ has a reproducing property on $\boldsymbol{b}_{\alpha}^{p}(\lambda)$:

$$\boldsymbol{b}_{\alpha}^{p}(\lambda) := \{ u \in L^{p}(\boldsymbol{R}^{n+1}_{+}, V^{\lambda}); L^{(\alpha)} \text{-harmonic on } \boldsymbol{R}^{n+1}_{+} \},\$$

where $1 \le p < \infty$, i.e., for any $u \in \boldsymbol{b}_{\alpha}^{p}(\lambda)$,

(5)
$$u(X) = \iint R_{\alpha,\lambda}(X,Y)u(Y) \ dV^{\lambda}(Y) := R_{\alpha,\lambda}u(X)$$

holds true. Also, there exist constants $C_1, C_2 > 0$ such that

 $|R_{\alpha,\lambda}(X,Y)| \le C_1(t+s+|x-y|^{2\alpha})^{-(n/2\alpha+1)-\lambda} \text{ for every } X, Y \in \mathbf{R}^{n+1}_+$ and

(6)
$$\iint R_{\alpha,\lambda}(X,Y)^2 \, dV^{\lambda}(Y) = C_2 t^{-(n/2\alpha+1+\lambda)/2} \quad \text{for } X \in \mathbf{R}^{n+1}_+.$$

Moreover if we define

$$R^{\nu}_{\alpha,\lambda}(X,Y) := \frac{2^{\nu+\lambda+1}}{\Gamma(\nu+\lambda+1)} s^{\nu} \mathscr{D}_{t}^{\nu+\lambda+1} W^{(\alpha)}(x-y,t+s),$$

then for $v > -(\lambda + 1)(1 - 1/p)$,

(7)
$$D^{\nu}(\lambda) := \{ \boldsymbol{R}^{\nu}_{\boldsymbol{\alpha},\boldsymbol{\lambda}} f; f \in L^{p}(\boldsymbol{R}^{n+1}_{+}, V^{\lambda}), \operatorname{supp}(f) \text{ is compact} \}$$

is a dense subspace of $b^p_{\alpha}(\lambda)$, and for every $u \in D^{\nu}(\lambda)$, there exists a constant C > 0 such that

(8)
$$|u(x,t)| \le C(1+t+|x|^{2\alpha})^{-(n/2\alpha+1)-(\nu+\lambda)}$$

on R_{+}^{n+1} .

§3. Linear independence of the parabolic Bergman kernels

We begin with the following lemmas.

LEMMA 1. Let $t_0 > 0$. Then the bounded linear operator $P_{t_0}^{(\alpha)} : L^2(\mathbf{R}^n, dx) \to L^2(\mathbf{R}^n, dx)$, defined by

(9)
$$P_{t_0}^{(\alpha)}f(x) := \int_{\mathbf{R}^n} W^{(\alpha)}(x-y,t_0)f(y) \, dy,$$

is injective.

Proof. Using the spectral decomposition of the Laplacian on $L^2(\mathbf{R}^n, dx)$,

$$-\Delta = \int_0^\infty \lambda \ dE(\lambda),$$

we have

$$P_{t_0}^{(\alpha)} = \int_0^\infty e^{-t_0\lambda} dE(\lambda),$$

because the fundamental solution $W^{(\alpha)}$ we use here is defined by the Fourier transform, which is equivalent to the spectral decomposition. Hence, if $f \in L^2(\mathbf{R}^n, dx)$ satisfies $P_{t_0}^{(\alpha)} f = 0$, then we have

$$\int_0^\infty e^{-t_0\lambda} d\|E(\lambda)f\|^2 = 0.$$

Since $d \| E(\lambda) f \|^2$ is a positive measure on $[0, \infty)$, we see

$$||f||^{2} = \int_{0}^{\infty} d||E(\lambda)f||^{2} = 0,$$

which implies f = 0.

LEMMA 2. Let μ be a signed measure on $\mathbf{R}^{n+1}_{-} := \{(x,t) \in \mathbf{R}^n \times \mathbf{R} \mid t < 0\}$. Suppose that μ is a finite linear combination of point masses. If $W^{(\alpha)} * \mu = 0$ on \mathbf{R}^{n+1}_{+} , then $\mu = 0$, where

$$W^{(\alpha)} * \mu(X) := \int_{\boldsymbol{R}^{n+1}} W^{(\alpha)}(X - Y) \ d\mu(Y).$$

Proof. Suppose that $\mu \neq 0$ and write $\mu = \sum_{k=1}^{N} c_k \delta_{(x_k, -t_k)}$ with $c_k \neq 0$ (k = 1, ..., N). Let $t_0 := \min\{t_k; 1 \le k \le N\} > 0$ and put

$$u_t(x) := W^{(\alpha)} * \mu(x, t - t_0) = \sum_{k=1}^N c_k W^{(\alpha)}(x - x_k, t + t_k - t_0).$$

Then u_t belongs to $L^2(\mathbf{R}^n, dx)$ for all t > 0 and by (4) and our assumption $W^{(\alpha)} * \mu = 0$, we have

$$P_{t_0}u_t(x) = \int W^{(\alpha)}(x-y,t_0)(W^{(\alpha)}*\mu(y,t-t_0)) \, dy = W^{(\alpha)}*\mu(x,t) = 0.$$

Hence Lemma 1 shows $u_t = u(\cdot, t) = 0$ for all t > 0. However this contradicts the fact that

$$\lim_{t\to 0}|u(x_j,t)|=|c_j|\,\lim_{t\to 0}\,W^{(\alpha)}(0,t)=\infty,$$

where we take j such that $t_j = t_0$. This implies $\mu = 0$.

Now, we shall show the linear independence of some families related with the fundamental solution, which is a key in the proof of our main theorems.

PROPOSITION 1. Let $\lambda > -1$. Then the family $(R_{\alpha,\lambda}^X)_{X \in \mathbb{R}^{n+1}_+}$ is linearly independent, where $R_{\alpha,\lambda}^X(Y) = R_{\alpha,\lambda}(X,Y)$.

Proof. In the proof, we write $W_{\alpha}^{X}(Y) = W^{(\alpha)}(x - y, t + s)$. Then for every $X \in \mathbf{R}_{+}^{n+1}$, $W_{\alpha}^{X} \in \mathbf{b}_{\alpha}^{p}(\lambda)$ if $p > 2\alpha(\lambda + 1)/n + 1$ (see [5, Theorem 1 (2)]). Hence by (5), we have

$$\iint R^Y_{\alpha,\lambda}(Z) W^X_{\alpha}(Z) \ dV^{\lambda}(Z) = W^X_{\alpha}(Y) = W^Y_{\alpha}(X)$$

for every $X, Y \in \mathbb{R}^{n+1}_+$, so that any finite linear relation $\sum_{k=1}^N c_k R^{X_k}_{\alpha,\lambda}(X) \equiv 0$ implies the relation $\sum_{k=1}^N c_k W^{X_k}_{\alpha}(X) \equiv 0$. Writing $\mu := \sum_{k=1}^N c_k \delta_{(x_k, -t_k)}$, where $X_k = (x_k, t_k)$, we have

$$W^{(\alpha)} * \mu(X) = \sum_{k=1}^{N} c_k W^{X_k}_{\alpha}(X) = 0 \text{ on } \mathbf{R}^{n+1}_+,$$

and hence Lemma 2 gives us $\mu = 0$, which implies $c_1 = c_2 = \cdots = c_N = 0$.

§4. Proof of Theorem 2

Let $\mu \ge 0$ be a measure on \mathbf{R}^{n+1}_+ with compact support. Then as in the case that $\lambda = 0$, the Toeplitz operator T^{λ}_{μ} is bounded on $b^2_{\alpha}(\lambda)$ (in fact, it is compact, see [10]). Moreover for every $u, v \in b^2_{\alpha}(\lambda)$

(10)
$$\langle T^{\lambda}_{\mu}u,v\rangle = \iint (T^{\lambda}_{\mu}u)(X)v(X) \ dV^{\lambda}(X) = \iint u(X)v(X) \ d\mu(X).$$

Note that $\operatorname{Dom}(\tilde{T}_{\mu}^{\lambda}) = \operatorname{Dom}(T_{\mu}^{\lambda}) = \boldsymbol{b}_{\alpha}^{2}(\lambda)$ and $\tilde{T}_{\mu}^{\lambda} = T_{\mu}^{\lambda}$. Now we return to a proof of Theorem 2. Let $\mathscr{R}_{\mu}^{\lambda} := T_{\mu}^{\lambda}(\boldsymbol{b}_{\alpha}^{2}(\lambda))$ be the range of T_{μ}^{λ} and assume that $\dim(\mathscr{R}_{\mu}^{\lambda}) < \infty$. Put

$$M := \{ X \in \boldsymbol{R}^{n+1}_+; u(X) = 0 \text{ for every } u \in (\mathscr{R}^{\lambda}_{\mu})^{\perp} \},\$$

where \mathscr{R}^{\perp} is the orthogonal complement of a subset \mathscr{R} in $\boldsymbol{b}_{\alpha}^{2}(\lambda)$. If $X \in M$ and $u \in (\mathscr{R}_{\mu}^{\lambda})^{\perp}$ then by (5),

$$\langle R_{\alpha,\lambda}^X, u \rangle = \iint R_{\alpha,\lambda}(X,Y)u(Y) \ dV^{\lambda}(Y) = u(X) = 0.$$

This implies that $\{R_{\alpha,\lambda}^X; X \in M\} \subset ((\mathscr{R}_{\mu}^{\lambda})^{\perp})^{\perp} = \mathscr{R}_{\mu}^{\lambda}$, and hence Proposition 1 shows $\#M \leq \dim(\mathscr{R}_{\mu}^{\lambda}) < \infty$. Moreover, for each $u \in (\mathscr{R}_{\mu}^{\lambda})^{\perp}$, we have

$$0 \leq \iint u^2(X) \ d\mu(X) = \langle T_u^{\lambda} u, u \rangle = 0,$$

by (10). This implies $\mu(\{X \in \mathbf{R}^{n+1}_+; u(X) \neq 0\}) = 0$, i.e., $supp(\mu) \subset \{X \in \mathbf{R}^{n+1}_+; u(X) \neq 0\}$ u(X) = 0. Hence

$$\operatorname{supp}(\mu) \subset \bigcap_{u \in (\mathscr{R}_{u}^{\lambda})^{\perp}} \{ X \in \mathbf{R}_{+}^{n+1}; u(X) = 0 \} = M,$$

which shows $\#\operatorname{supp}(\mu) \leq \#M \leq \dim(\mathscr{R}_{\mu}^{\lambda}) = \operatorname{rank}(T_{\mu}^{\lambda}) < \infty$. Since $\operatorname{rank}(T_{\mu}^{\lambda}) \leq \#\operatorname{supp}(\mu)$ is trivially true, we complete the proof of Theorem 2.

§5. Proof of Theorem 1

Let K be an arbitrary compact set in \mathbf{R}^{n+1}_+ , and consider the restricted measure $\mu|_K$ and the corresponding Toeplitz operator $T^{\lambda}_{\mu|_K}$. Then $T^{\lambda}_{\mu|_K}$ is a bounded operator on $\boldsymbol{b}^2_{\alpha}(\lambda)$ and

(11)
$$\langle \tilde{T}^{\lambda}_{\mu} u, u \rangle = \int_{\mathbf{R}^n} u(X)^2 d\mu(X) \ge \int_{\mathbf{R}^n} u(X)^2 d\mu|_K = \langle T^{\lambda}_{\mu|_K} u, u \rangle \ge 0$$

for every $u \in \text{Dom}(\tilde{T}^{\lambda}_{\mu})$. Since $\dim(\tilde{T}^{\lambda}_{\mu}(\mathscr{D}_0)) < \infty$, $T^{\lambda}_{\mu|_K}$ is of finite rank and $\operatorname{rank}(T_{\mu|_{\mathcal{H}}}^{\lambda}) \leq \dim(\tilde{T}_{\mu}^{\lambda}(\mathscr{D}_{0}))$

holds true. To show this, let u_1, \ldots, u_m be any finite elements in $\boldsymbol{b}_{\alpha}^2(\lambda)$ such that their images $T_{\mu|_K}^{\lambda} u_1, \ldots, T_{\mu|_K}^{\lambda} u_m$ are linearly independent. Denote by \mathscr{H} the linear hull of $\{u_1, \ldots, u_m, T_{\mu|_K}^{\lambda} u_1, \ldots, T_{\mu|_K}^{\lambda} u_m\}$. Let $1_{\mathscr{H}}$ be the projection map from $\boldsymbol{b}_{\alpha}^2(\lambda)$ onto \mathscr{H} . Then $1_{\mathscr{H}} \circ T_{\mu|_K}^{\lambda}$ gives a symmetric linear map on a finite dimensional Hilbert space \mathscr{H} , so that there exist an orthonormal system $w_1, \ldots, w_m \in \mathscr{H}$ and real numbers $\lambda_1 \geq \cdots \geq \lambda_m > 0$ such that

$$\langle T_{\mu|\nu}^{\lambda} w_i, w_j \rangle = \lambda_j \delta_{ij},$$

where δ_{ij} stands for the Kronecker delta. Take $0 < \varepsilon < 1/(2m)$ with

$$\varepsilon < rac{4}{27} rac{\lambda_m}{\|T^{\lambda}_{\mu|_K}\|},$$

where $||T_{\mu|_{\kappa}}^{\lambda}||$ is the operator norm of $T_{\mu|_{\kappa}}^{\lambda}: \boldsymbol{b}_{\alpha}^{2}(\lambda) \to \boldsymbol{b}_{\alpha}^{2}(\lambda)$. Since \mathscr{D}_{0} is a dense subspace of $\boldsymbol{b}_{\alpha}^{2}(\lambda)$, we can choose $\tilde{w}_{1}, \ldots, \tilde{w}_{m} \in \mathscr{D}_{0}$ such that

$$\|\tilde{w}_j - w_j\| < \varepsilon, \quad j = 1, \dots, m$$

Then the family $(\tilde{w}_j)_{j=1}^m$ is also linearly independent, if $\varepsilon > 0$ is small enough (which is easily seen by considering their Grammians). Denoting by H and \tilde{H} the linear hull of $\{w_1, \ldots, w_m\}$ and $\{\tilde{w}_1, \ldots, \tilde{w}_m\}$, respectively, and considering a natural correspondence of $\tilde{w} = \alpha_1 \tilde{w}_1 + \cdots + \alpha_m \tilde{w}_m$ with $w = \alpha_1 w_1 + \cdots + \alpha_m w_m$ between \tilde{H} and H, we have for any $\tilde{w} \in \tilde{H}$ with $\|\tilde{w}\| = 1$,

$$\frac{2}{3} \le \frac{1}{1+m\varepsilon} \le ||w|| \le \frac{1}{1-m\varepsilon} \le 2,$$

because $||w - \tilde{w}|| \le m ||w|| \varepsilon$. Then we also have

$$|\langle T_{\mu|_{K}}^{\lambda}\tilde{w},\tilde{w}\rangle-\langle T_{\mu|_{K}}^{\lambda}w,w\rangle|\leq\varepsilon\|T_{\mu|_{K}}^{\lambda}\|(\|\tilde{w}\|+\|w\|)\leq3\varepsilon\|T_{\mu|_{K}}^{\lambda}\|,$$

and hence by (11),

$$\begin{split} \langle \tilde{T}^{\lambda}_{\mu}\tilde{w}, \tilde{w} \rangle &\geq \langle T^{\lambda}_{\mu|_{K}}\tilde{w}, \tilde{w} \rangle \geq \langle T^{\lambda}_{\mu|_{K}}w, w \rangle - 3\varepsilon \|T^{\lambda}_{\mu|_{K}}\| \\ &= \sum_{j=1}^{m} \alpha_{j}^{2}\lambda_{j} - 3\varepsilon \|T^{\lambda}_{\mu|_{K}}\| \geq \frac{2^{2}}{3^{2}}\lambda_{m} - 3\varepsilon \|T^{\lambda}_{\mu|_{K}}\| > 0. \end{split}$$

This implies $\dim(\tilde{T}^{\lambda}_{\mu}(\mathscr{D}_0)) \ge m$, because $\dim \tilde{H} = m$, and hence $\dim(\tilde{T}^{\lambda}_{\mu}(\mathscr{D}_0)) \ge \operatorname{rank}(T^{\lambda}_{\mu|_{K}})$ follows. Since K is arbitrary, Theorem 2 shows that μ is a finite linear combination of point masses and

$$\operatorname{rank}(\hat{T}_{\mu}^{\lambda}) \geq \dim(\hat{T}_{\mu}^{\lambda}(\mathscr{D}_{0})) \geq \#\operatorname{supp}(\mu)$$

holds. Since $\#\operatorname{supp}(\mu) \ge \operatorname{rank}(\tilde{T}_{\mu}^{\lambda})$ is trivially true, we have $\operatorname{rank}(\tilde{T}_{\mu}^{\lambda}) = \operatorname{dim}(\tilde{T}_{\mu}^{\lambda}(\mathscr{D}_0)) = \#\operatorname{supp}(\mu)$. This completes the proof of Theorem 1.

We close this section by making the following remark.

Remark 1. Let $\lambda > -1$ and $\mu \ge 0$ be a Radon measure on \mathbf{R}_{\pm}^{n+1} . If μ satisfies a growth condition (2) with some constant $\tau > 0$, then $\text{Dom}(\tilde{T}_{\mu}^{\lambda})$ is dense in $\boldsymbol{b}_{\alpha}^{2}(\lambda)$ and $\tilde{T}_{\mu}^{\lambda}$ is a self-adjoint extension of T_{μ}^{λ} . In particular, $\tilde{T}_{\mu}^{\lambda} = T_{\mu}^{\lambda}$ on $\boldsymbol{b}_{\alpha}^{2}(\lambda)$ if T_{μ}^{λ} is bounded.

In fact, by (2), (7) and (8), if $v > -(\lambda + 1)/2$, then $D^{\nu}(\lambda)$ is included in $L^2(\mathbf{R}^{n+1}_+,\mu)$ and dense in $\mathbf{b}^2_{\alpha}(\lambda)$, and hence $\mathcal{D} := \mathbf{b}^2_{\alpha}(\lambda) \cap L^2(\mathbf{R}^{n+1}_+,\mu)$ is dense in $\mathbf{b}^2_{\alpha}(\lambda)$. This shows that the domain $\text{Dom}(\tilde{T}^{\lambda}_{\mu})$ is also dense in $\mathbf{b}^2_{\alpha}(\lambda)$. Next, take $u \in \text{Dom}(T^{\lambda}_{\mu})$ arbitrarily. Then by the Fubini theorem, we see that for every $v \in \mathbf{b}^2_{\alpha}(\lambda)$,

$$\langle T_{\mu}^{\lambda} u, v \rangle = \iint (T_{\mu}^{\lambda} u)(X)v(X) \ dV^{\lambda}(X)$$

$$= \iint \left(\iint R_{\alpha,\lambda}(X,Y)u(Y) \ d\mu(Y) \right)v(X) \ dV^{\lambda}(X)$$

$$= \iint \left(\iint R_{\alpha,\lambda}(X,Y)v(X) \ dV^{\lambda}(X) \right)u(Y) \ d\mu(Y) = \iint u(Y)v(Y) \ d\mu(Y).$$

This shows that $u \in L^2(\mathbb{R}^{n+1}_+, \mu)$, and hence $u \in \mathcal{D}$. Thus, for every $v \in \text{Dom}(\tilde{T}^{\lambda}_{\mu})$, we have

(12)
$$\langle u, \tilde{T}^{\lambda}_{\mu} v \rangle = \mathscr{E}(u, v) = \iint uv \ d\mu = \langle T^{\lambda}_{\mu} u, v \rangle,$$

which shows $u \in \text{Dom}((\tilde{T}_{\mu}^{\lambda})^*)$ and $T_{\mu}^{\lambda}u = (\tilde{T}_{\mu}^{\lambda})^*u$. Since $\tilde{T}_{\mu}^{\lambda}$ is self-adjoint, $u \in \text{Dom}(\tilde{T}_{\mu}^{\lambda})$ and $\tilde{T}_{\mu}^{\lambda}u = T_{\mu}^{\lambda}u$ follows.

Above argument explains that the assumption (2) for symbol measures of Toeplitz operators is very natural in a sense.

§6. Relation to the Carleson inclusion

If a measure $\mu \ge 0$ on \mathbb{R}^{n+1}_+ satisfies the growth condition (2) for some $\tau > 0$, then the corresponding Carleson inclusion

$$\iota_{\mu}^{\lambda}: \boldsymbol{b}_{\alpha}^{2}(\lambda) \to L^{2}(\boldsymbol{R}^{n+1}_{+},\mu): u \mapsto u,$$

whose domain is $\text{Dom}(\iota_{\mu}^{\lambda}) := \boldsymbol{b}_{\alpha}^{2}(\lambda) \cap L^{2}(\boldsymbol{R}_{+}^{n+1},\mu) = \mathcal{D}$, is densely defined and is a closed operator (see Remark 1). In this section, we discuss some relations between operators $\tilde{T}_{\mu}^{\lambda}$ and ι_{μ}^{λ} .

Hereafter, for two linear operators T and S on a Hilbert space, we write $T \subset S$ if $Dom(T) \subset Dom(S)$ and T = S on Dom(T) hold. Then we have

PROPOSITION 2. Let $\lambda > -1$. If a measure $\mu \ge 0$ satisfies (2) for some $\tau > 0$, then $\tilde{T}^{\lambda}_{\mu} = (\iota^{\lambda}_{\mu})^* \iota^{\lambda}_{\mu}$ holds.

Proof. We remark that $\text{Dom}((\iota_{\mu}^{\lambda})^*\iota_{\mu}^{\lambda}) = \{u \in \boldsymbol{b}_{\alpha}^2(\lambda); u \in \text{Dom}(\iota_{\mu}^{\lambda}), \iota_{\mu}^{\lambda}u \in \text{Dom}((\iota_{\mu}^{\lambda})^*)\}$. Now we take $u \in \text{Dom}(\tilde{T}_{\mu}^{\lambda})$ arbitrarily. Then by (12), for every $v \in \text{Dom}(\iota_{\mu}^{\lambda})$, we have

(13)
$$\langle \tilde{T}^{\lambda}_{\mu} u, v \rangle = \langle \iota^{\lambda}_{\mu} u, \iota^{\lambda}_{\mu} v \rangle_{L^{2}(\boldsymbol{R}^{n+1}_{+},\mu)} \bigg(= \iint u(X)v(X) \ d\mu(X) \bigg),$$

which implies $\iota_{\mu}^{\lambda} u \in \text{Dom}((\iota_{\mu}^{\lambda})^*)$ and $(\iota_{\mu}^{\lambda})^* \iota_{\mu}^{\lambda} u = \tilde{T}_{\mu}^{\lambda} u$, i.e., $\tilde{T}_{\mu}^{\lambda} \subset (\iota_{\mu}^{\lambda})^* \iota_{\mu}^{\lambda}$ holds. Next, since $(\iota_{\mu}^{\lambda})^* \iota_{\mu}^{\lambda}$ is clearly symmetric and $\tilde{T}_{\mu}^{\lambda}$ is self-adjoint, we have

$$ilde{T}^{\lambda}_{\mu} = (ilde{T}^{\lambda}_{\mu})^* \supset ((\iota^{\lambda}_{\mu})^* \iota^{\lambda}_{\mu})^* \supset (\iota^{\lambda}_{\mu})^* \iota^{\lambda}_{\mu};$$

which shows the proposition.

If the Carleson inclusion ι_{μ}^{λ} is bounded on $b_{\alpha}^{2}(\lambda)$, then the corresponding Toeplitz operator is bounded. More precisely, we have

PROPOSITION 3. Let $\lambda > -1$ and μ be a positive Radon measure on \mathbb{R}^{n+1}_+ . If ι^{λ}_{μ} is bounded, then the measure $\mu \ge 0$ satisfies the growth condition (2) with $\tau > (n/2\alpha + 1) + \lambda$ and $\tilde{T}^{\lambda}_{\mu}$ is bounded. Moreover, $\|\tilde{T}^{\lambda}_{\mu}\| \le \|\iota^{\lambda}_{\mu}\|^2$ and $\tilde{T}^{\lambda}_{\mu} = T^{\lambda}_{\mu}$ holds on $\mathbf{b}^{2}_{\alpha}(\lambda)$.

Proof. We assume that ι_{μ}^{λ} is bounded. Then as in the proof of Proposition 1 in [9], we see $\mu(Q^{\alpha}(X)) \leq CV^{\lambda}(Q^{\alpha}(X))$ for all $X \in \mathbb{R}^{n+1}_+$ with some constant C > 0 (use also [5, Proposition 3.2]), where $Q^{\alpha}(X)$ is the α -parabolic Carleson box centered at $X \in \mathbb{R}^{n+1}_+$. By a similar argument to [9, Proposition 2], we have

$$\iint \frac{1}{(1+t+|x|^{2\alpha})^{\tau}} \ d\mu(X) \le C \iint \frac{t^{\lambda}}{(1+t+|x|^{2\alpha})^{\tau}} \ dxdt.$$

Hence if we take $\tau > (n/2\alpha + 1) + \lambda$, then μ satisfies (2). Thus we can use Proposition 2, which gives $\|\tilde{T}_{\mu}^{\lambda}\| \le \|\iota_{\mu}^{\lambda}\|^2$. Moreover, by (13), we have

$$\tilde{T}^{\lambda}_{\mu}u(X) = \langle \tilde{T}^{\lambda}_{\mu}u, R^{X}_{\alpha,\lambda} \rangle = \iint R_{\alpha,\lambda}(X,Y)u(Y) \ d\mu(Y) = T^{\lambda}_{\mu}u(X).$$

This completes the proof.

Conversely, we have

PROPOSITION 4. Let $\lambda > -1$ and $\mu \ge 0$ satisfy the growth condition (2) for some $\tau > 0$. If $\tilde{T}^{\lambda}_{\mu}$ is bounded, then ι^{λ}_{μ} is bounded and $\|\iota^{\lambda}_{\mu}\| \le \sqrt{\|\tilde{T}^{\lambda}_{\mu}\|}$.

MASAHARU NISHIO, NORIAKI SUZUKI AND MASAHIRO YAMADA

Proof. We assume that $\tilde{T}^{\lambda}_{\mu}$ is bounded. Then $\text{Dom}(\tilde{T}^{\lambda}_{\mu}) = \boldsymbol{b}^{2}_{\alpha}(\lambda)$ so that $L^{2}(\boldsymbol{R}^{n+1}_{+},\mu) \subset \boldsymbol{b}^{2}_{\alpha}(\lambda)$. Hence by (12), $\|\boldsymbol{u}\|^{2}_{L^{2}(\boldsymbol{R}^{n+1}_{+},\mu)} = \langle \tilde{T}^{\lambda}_{\mu}\boldsymbol{u},\boldsymbol{u} \rangle \leq \|\tilde{T}^{\lambda}_{\mu}\boldsymbol{u}\|_{\boldsymbol{b}^{2}_{\alpha}(\lambda)} \cdot \|\boldsymbol{u}\|_{\boldsymbol{b}^{2}_{\alpha}(\lambda)} \leq \|\tilde{T}^{\lambda}_{\mu}\| \cdot \|\boldsymbol{u}\|^{2}_{\boldsymbol{b}^{2}_{\alpha}(\lambda)}.$

This shows the proposition.

Acknowledgements. The first author acknowledges Professor Alano Ancona for inviting him to Université de Paris-sud XI and for useful discussions.

 \square

REFERENCES

- [1] B. R. CHOE, On higher dimensional Luecking's theorem, J. Math. Soc. Japan 61 (2009), 213–224.
- [2] B. R. CHOE, H. KOO AND Y. J. LEE, Positive Schatten(-Herz) class Toeplitz operators on the half space, Potential Analysis 27 (2007), 73–100.
- [3] E. B. DAVIES, Spectral theory and differential operators, Cambridge Univ. Press, 1995.
- [4] M. FUKUSHIMA, Y. OSHIMA AND M. TAKEDA, Dirichlet forms and symmetric Markov processes, Walter de Gruyter, 1994.
- [5] Y. HISHIKAWA, Fractional calculus on parabolic Bergman spaces, Hiroshima Math. J. 38 (2008), 471–488.
- [6] Y. HISHIKAWA, M. NISHIO AND M. YAMADA, A conjugate system and tangential derivative norms on parabolic Bergman spaces, Hokkaido Math. J. 39 (2010), 85–114.
- [7] D. H. LUECKING, Finite rank Toeplitz operators on the Bergman space, Proc. Amer. Math. Soc. 136 (2008), 1717–1723.
- [8] M. NISHIO, K. SHIMOMURA AND N. SUZUKI, α-parabolic Bergman spaces, Osaka J. Math. 42 (2005), 133–162.
- [9] M. NISHIO, N. SUZUKI AND M. YAMADA, Toeplitz operators and Carleson measures on parabolic Bergman spaces, Hokkaido Math. J. 36 (2007), 563–583.
- [10] M. NISHIO, N. SUZUKI AND M. YAMADA, Compact Toeplitz operators on parabolic Bergman spaces, Hiroshima Math. J. 38 (2008), 177–192.
- [11] M. NISHIO, N. SUZUKI AND M. YAMADA, Interpolating sequences of parabolic Bergman spaces, Potential Analysis 28 (2008), 353–378.
- [12] M. NISHIO, N. SUZUKI AND M. YAMADA, Weighted Berezin transformations with application to the Schatten class Toeplitz operators on parabolic Bergman spaces, Kodai Math. J. 32 (2009), 501–520.
- [13] M. NISHIO, N. SUZUKI AND M. YAMADA, Carleson inequalities on parabolic Bergman spaces, Tohoku Math. J. 62 (2010), 269–286.
- [14] M. NISHIO, N. SUZUKI AND M. YAMADA, Schatten class Toeplitz operators on the parabolic Bergman space II, Kodai Math. J. 35 (2012), 52–77.
- [15] M. NISHIO AND M. YAMADA, Carleson type measures on parabolic Bergman spaces, J. Math. Soc. Japan 58 (2006), 83–96.

Masaharu Nishio Department of Mathematics Osaka City University Sugimoto, Sumiyoshi Osaka 558-8585 Japan E-mail: nishio@sci.osaka-cu.ac.jp

Noriaki Suzuki Department of Mathematics Meijo University Tenpaku-ku, Nagoya 468-8502 Japan E-mail: suzukin@meijo-u.ac.jp

Masahiro Yamada Department of Mathematics Faculty of Education Gifu University Yanagido 1-1, Gifu 501-1193 Japan E-mail: yamada33@gifu-u.ac.jp