A NORMALITY CRITERION FOR MEROMORPHIC FUNCTIONS

Shanpeng Zeng and Indrajit Lahiri

Abstract

In the paper we prove a normality criterion for a family of meromorphic functions which involves sharing of a non-zero finite value by certain differential polynomials generated by the members of the family.

1. Introduction and results

Let \mathfrak{D} be a domain in the open complex plane \mathbf{C} and \mathfrak{F} be a family of meromorphic functions defined in \mathfrak{D}. The family \mathfrak{F} is said to be normal in \mathfrak{D}, in the sense of Montel, if for any sequence $\left\{f_{n}\right\} \subset \mathfrak{F}$, there exists a subsequece $\left\{f_{n_{j}}\right\}$ converging spherically locally uniformly to a meromorphic function or ∞.

Let f and g be two meromorphic functions and $a \in \mathbf{C}$. If f and g have the same set of a-points, then we say that f and g share the value a IM (ignoring multiplicities).

In 1998 Y. F. Wang and M. L. Fang [9] proved the following result.

Theorem A [9]. Let $k, n(\geq k+1)$ be positive integers and f be a transcendental meromorphic function. Then $\left(f^{n}\right)^{(k)}$ assumes every finite non-zero value infinitely often.

Following normality criterion corresponds to Theorem A.
Theorem B [8]. Let \mathfrak{F} be a family of meromorphic functions defined in a domain \mathfrak{D} and $k, n(\geq k+3)$ be positive integers. If $\left(f^{n}\right)^{(k)} \neq 1$ for every $f \in \mathfrak{F}$, then \mathfrak{F} is normal.

In 2009 Y. T. Li and Y. X. Gu [4] improved Theorem B in the following manner.

[^0]Theorem C [4]. Let \mathfrak{F} be a family of meromorphic functions in a domain \mathfrak{D}, $k, n(\geq k+2)$ be positive integers and $a \in \mathbf{C} \backslash\{0\}$. If $\left(f^{n}\right)^{(k)}$ and $\left(g^{n}\right)^{(k)}$ share the value a IM in \mathfrak{D} for each pair of functions $f, g \in \mathfrak{F}$, then \mathfrak{F} is normal.

In [4] it is shown that Theorem C does not hold for $n=k+1$. So it is an interesting problem to investigate the situation under which the condition $n=$ $k+1$ can be accommodated. In this direction we prove the following theorem.

Theorem 1.1. Let \mathfrak{F} be a family of meromorphic functions defined in a domain $\mathfrak{D}, a \in \mathbf{C} \backslash\{0\}$ and k, n be positive integers such that $n \geq 1$ if $k=1$ and $n \geq 2$ if $k \geq 2$. If $f^{n}\left(f^{k+1}\right)^{(k)}$ and $g^{n}\left(g^{k+1}\right)^{(k)}$ share the value a IM in \mathfrak{D} for each pair of functions $f, g \in \mathfrak{F}$, then \mathfrak{F} is normal.

Following corollary immediately follows from Theorem 1.1.
Corollary 1.1. Let \mathfrak{F} be a family of meromorphic functions defined in a domain $\mathfrak{D}, a \in \mathbf{C} \backslash\{0\}$ and k, n be positive integers such that $n \geq 1$ if $k=1$ and $n \geq 2$ if $k \geq 2$. If $f^{n}\left(f^{k+1}\right)^{(k)} \neq a$ for every $f \in \mathfrak{F}$, then \mathfrak{F} is normal.

Remark 1.1. If the members of \mathfrak{F} have no simple zero, then Theorem 1.1 and Corollary 1.1 hold for $n=1$ and $k \geq 2$.

Remark 1.2. Considering the family $\mathfrak{F}=\left\{e^{m z}: m=1,2,3, \ldots\right\}$ and the domain $\mathfrak{D}=\{z:|z|<1\}$ we can verify that $a \neq 0$ is essential for Theorem 1.1 and Corollary 1.1.

2. Lemmas

In this section we present some necessary lemmas.
Lemma 2.1 \{p. 101 [7], [6]\}. Let \mathfrak{F} be a family of meromorphic functions in a domain $\mathfrak{D} \subset \mathbf{C}$. If \mathfrak{F} is not normal in \mathfrak{D}, then there exist
(i) a number r with $0<r<1$,
(ii) points z_{j} satisfying $\left|z_{j}\right|<r$,
(iii) functions $f_{j} \in \mathfrak{F}$,
(iv) positive numbers $\rho_{j} \rightarrow 0$ as $j \rightarrow \infty$,
such that $f_{j}\left(z_{j}+\rho_{j} \zeta\right) \rightarrow g(\zeta)$ as $j \rightarrow \infty$ locally spherically uniformly, where g is a non-constant meromorphic function in \mathbf{C} with $g^{\#}(\zeta) \leq g^{\#}(0)=1$. In particular, g has order at most 2.

A differential polynomial P of a meromorphic function f is defined by $P(z)=\sum_{i=1}^{n} \phi_{i}(z)$, where $\phi_{i}(z)=\alpha_{i}(z) \prod_{j=0}^{p}\left(f^{(j)}(z)\right)^{S_{i j}}$, where $\alpha_{i}(z) \not \equiv 0$ are small functions of f and $S_{i j}$'s are non-negative integers. The numbers $\bar{d}(P)=$ $\max _{1 \leq i \leq n} \sum_{j=0}^{p} S_{i j}$ and $\underline{d}(P)=\min _{1 \leq i \leq n} \sum_{j=0}^{p} S_{i j}$ are respectively called the degree and the lower degree of the differential polynomial P.

Lemma 2.2 [3]. Let f be transcendental and meromorphic and P be a nonconstant differential polynomial of f such that $\underline{d}(P)>1$. Then

$$
T(r, f) \leq \frac{Q+1}{\underline{d}(P)-1} \bar{N}(r, 0 ; f)+\frac{1}{\underline{d}(P)-1} \bar{N}(r, a ; P)+S(r, f),
$$

where $Q=\max _{1 \leq i \leq n} \sum_{j=1}^{p} j S_{i j}$.
Lemma 2.3 [2, 5]. Let f be a transcendental meromorphic function and $a \in \mathbf{C} \backslash\{0\}$. Then $f^{n} f^{\prime}$ has infinitely many a-points, where $n(\geq 2)$ is an integer.

Lemma 2.4. Let f be a transcendental meromorphic function and k, n be positive integers such that $n \geq 1$ if $k=1$ and $n \geq 2$ if $k \geq 2$. Then $f^{n}\left(f^{k+1}\right)^{(k)}$ assumes every value $a \in \mathbf{C} \backslash\{0\}$ infinitly often.

Proof $f_{(\dot{k})}$ Without loss of generality we may choose $a=1$. Let $P=$ $f^{n}\left(f^{k+1}\right)^{(k)}$. If $k=1$, then $P=2 f^{n+1} f^{\prime}$ assumes the value 1 infinitely often by Lemma 2.3.

Let $k \geq 2$. Then $\underline{d}(P)=n+k+1$ and $Q=k$ in Lemma 2.2. So by Lemma 2.2 we get

$$
T(r, f) \leq \frac{k+1}{n+k} \bar{N}(r, 0 ; f)+\frac{1}{n+k} \bar{N}(r, 1 ; P)+S(r, f)
$$

and so

$$
\frac{n-1}{n+k} T(r, f) \leq \frac{1}{n+k} \bar{N}(r, 1 ; P)+S(r, f)
$$

which shows that P assumes the value 1 infinitely often. This proves the lemma.

Let $R=\frac{A}{B}$ be a rational function. We denote by $(R)_{\infty}$ the number $\operatorname{deg}(A)-\operatorname{deg}(B)$. Using the Laurent expansion around ∞ we can easily obtain the following lemma (or see the proof of Lemma 6 of [10]).

Lemma 2.5. If $(R)_{\infty}<0$, then $\left(R^{(k)}\right)_{\infty}=(R)_{\infty}-k$.
Lemma 2.6. Let $R=\frac{A}{B}$ be rational and B be non-constant. Then $\left(R^{(k)}\right)_{\infty} \leq$
$-k$. $(R)_{\infty}-k$.

Proof. We consider the following cases.
Case 1. Let $(R)_{\infty}<0$. Then the lemma follows from Lemma 2.5.
Case 2. Let $(R)_{\infty}=0$. Then we can write

$$
\begin{equation*}
R=c+\frac{p}{B}, \tag{2.1}
\end{equation*}
$$

where c is a non-zero constant and p is a polynomial with $\operatorname{deg}(p)<\operatorname{deg}(B)$.

Since $\operatorname{deg}(A)=\operatorname{deg}(B)>\operatorname{deg}(p)$, we get

$$
\begin{equation*}
\left(\frac{p}{B}\right)_{\infty}<\left(\frac{A}{B}\right)_{\infty} . \tag{2.2}
\end{equation*}
$$

So from (2.1), (2.2) and Lemma 2.5 we obtain

$$
\left(R^{(k)}\right)_{\infty}=\left(\left(\frac{p}{B}\right)^{(k)}\right)_{\infty}=\left(\frac{p}{B}\right)_{\infty}-k<\left(\frac{A}{B}\right)_{\infty}-k=(R)_{\infty}-k .
$$

Case 3. Let $(R)_{\infty}>0$. Then we can express R as follows

$$
\begin{equation*}
R=a_{m} z^{m}+\cdots+a_{1} z+a_{0}+\frac{p}{B}, \tag{2.3}
\end{equation*}
$$

where $a_{0}, a_{1}, \ldots, a_{m-1}, a_{m}(\neq 0)$ are constants, m is a positive integer and p is a polynomial with $\operatorname{deg}(p)<\operatorname{deg}(B)$.

We now further consider the following subcases.
Subcase 3.1. Let $k>m$. Since $\left(\frac{p}{B}\right)_{\infty}<0$, by Lemma 2.5 we get from (2.3)

$$
\left(R^{(k)}\right)_{\infty}=\left(\left(\frac{p}{B}\right)^{(k)}\right)_{\infty}=\left(\frac{p}{B}\right)_{\infty}-k<(R)_{\infty}-k
$$

Subcase 3.2. Let $k=m$. Then $(R)_{\infty}=m=k$. By Lemma 2.5 we get

$$
\begin{equation*}
\left(\left(\frac{p}{B}\right)^{(k)}\right)_{\infty}=\left(\frac{p}{B}\right)_{\infty}-k<-k<0 \tag{2.4}
\end{equation*}
$$

We put $\left(\frac{p}{B}\right)^{(k)}=\frac{P}{Q}$, where P, Q are polynomials. From (2.4) we get $\operatorname{deg}(P)<\operatorname{deg}(Q)$ and so $\operatorname{deg}\left(a_{m} Q m!+P\right)=\operatorname{deg}(Q)$. Hence

$$
\begin{aligned}
\left(R^{(k)}\right)_{\infty} & =\left(a_{m} m!+\left(\frac{p}{B}\right)^{(k)}\right)_{\infty}=\left(a_{m} m!+\frac{P}{Q}\right)_{\infty}=\left(\frac{a_{m} Q m!+P}{Q}\right)_{\infty} \\
& =0=k-k=(R)_{\infty}-k .
\end{aligned}
$$

Subcase 3.3. Let $k<m$. Then $(R)_{\infty}=m$ and by Lemma 2.5 we get

$$
\begin{equation*}
\left(\left(\frac{p}{B}\right)^{(k)}\right)_{\infty}=\left(\frac{p}{B}\right)_{\infty}-k<-k<0 . \tag{2.5}
\end{equation*}
$$

We put $\left(\frac{p}{B}\right)^{(k)}=\frac{P}{Q}$, where P, Q are polynomials. From (2.5) we see that $\operatorname{deg}(P)<\operatorname{deg}(Q)$ and so

$$
\operatorname{deg}\left[\left(\frac{a_{m} m!}{(m-k)!} z^{m-k}+\cdots+k!\right) Q+P\right]=\operatorname{deg}\left[\left(\frac{a_{m} m!}{(m-k)!} z^{m-k}+\cdots+k!\right) Q\right]
$$

Therefore

$$
\begin{aligned}
\left(R^{(k)}\right)_{\infty} & =\left(\frac{a_{m} m!}{(m-k)!} z^{m-k}+\cdots+k!+\left(\frac{p}{B}\right)^{(k)}\right)_{\infty} \\
& =\left(\frac{\left(\frac{a_{m} m!}{(m-k)!} z^{m-k}+\cdots+k!\right) Q+P}{Q}\right)_{\infty} \\
& =m-k \\
& =(R)_{\infty}-k .
\end{aligned}
$$

This proves the lemma.
Lemma 2.7. Let f be a non-constant rational function, k, n be positive integers and $a \in \mathbf{C} \backslash\{0\}$. Then $f^{n}\left(f^{k+1}\right)^{(k)}$ has at least two distinct a-points.

Proof. We consider the following cases.
Case 1. Suppose $f^{n}\left(f^{k+1}\right)^{(k)}$ has exactly one a-point.
First we suppose that f is a non-constant polynomial. We set $f^{n}\left(f^{k+1}\right)^{(k)}$ $-a=A\left(z-z_{0}\right)^{l}$, where A is a non-zero constant and l is a positive integer satisfying $l \geq n+(k+1-k)=n+1 \geq 2$. Then $\left[f^{n}\left(f^{k+1}\right)^{(k)}\right]^{\prime}=\operatorname{Al}\left(z-z_{0}\right)^{l-1}$. Since a zero of f is a zero of $f^{n}\left(f^{k+1}\right)^{(k)}$ of multiplicity at least 2 , it is also a zero of $\left[f^{n}\left(f^{k+1}\right)^{(k)}\right]^{\prime}$. Since $\left[f^{n}\left(f^{k+1}\right)^{(k)}\right]^{\prime}$ has exactly one zero at z_{0} and f is a non-constant polynomial, it follows that z_{0} is a zero of f and so is a zero of $f^{n}\left(f^{k+1}\right)^{(k)}$, which is a contradiction. Therefore f is a non-polynomial rational function. We set

$$
\begin{equation*}
f(z)=A \frac{\left(z-\alpha_{1}\right)^{m_{1}}\left(z-\alpha_{2}\right)^{m_{2}} \cdots\left(z-\alpha_{s}\right)^{m_{s}}}{\left(z-\beta_{1}\right)^{n_{1}}\left(z-\beta_{2}\right)^{n_{2}} \cdots\left(z-\beta_{t}\right)^{n_{t}}}, \tag{2.6}
\end{equation*}
$$

where $A(\neq 0)$ is a constant and $m_{1}, m_{2}, \ldots, m_{s}, n_{1}, n_{2}, \ldots, n_{t}$ are positive integers.
We put

$$
M=(k+1) \sum_{j=1}^{s} m_{j}, \quad M^{\prime}=n \sum_{j=1}^{s} m_{j}, \quad N=(k+1) \sum_{i=1}^{t} n_{i} \quad \text { and } \quad N^{\prime}=n \sum_{i=1}^{t} n_{i}
$$

From (2.6) we get

$$
\begin{equation*}
f^{k+1}(z)=A^{k+1} \frac{\left(z-\alpha_{1}\right)^{m_{1}(k+1)}\left(z-\alpha_{2}\right)^{m_{2}(k+1)} \cdots\left(z-\alpha_{s}\right)^{m_{s}(k+1)}}{\left(z-\beta_{1}\right)^{n_{1}(k+1)}\left(z-\beta_{2}\right)^{n_{2}(k+1)} \cdots\left(z-\beta_{t}\right)^{n_{t}(k+1)}} \tag{2.7}
\end{equation*}
$$

and so

$$
\begin{equation*}
\left(f^{k+1}\right)^{(k)}=\frac{\left(z-\alpha_{1}\right)^{m_{1}(k+1)-k}\left(z-\alpha_{2}\right)^{m_{2}(k+1)-k} \cdots\left(z-\alpha_{s}\right)^{m_{s}(k+1)-k}}{\left(z-\beta_{1}\right)^{n_{1}(k+1)+k}\left(z-\beta_{2}\right)^{n_{2}(k+1)+k} \cdots\left(z-\beta_{t}\right)^{n_{t}(k+1)+k}} g(z), \tag{2.8}
\end{equation*}
$$

where g is a polynomial.
From (2.6) and (2.8) we get

$$
\begin{align*}
& f^{n}\left(f^{k+1}\right)^{(k)} \tag{2.9}\\
&=A^{n} \frac{\left(z-\alpha_{1}\right)^{m_{1}(n+k+1)-k}\left(z-\alpha_{2}\right)^{m_{2}(n+k+1)-k} \cdots\left(z-\alpha_{s}\right)^{m_{s}(n+k+1)-k}}{\left(z-\beta_{1}\right)^{n_{1}(n+k+1)+k}\left(z-\beta_{2}\right)^{n_{2}(n+k+1)+k} \cdots\left(z-\beta_{t}\right)^{n_{t}(n+k+1)+k}} g(z) \\
&=\frac{p_{1}}{q_{1}}, \quad \text { say, }
\end{align*}
$$

where p_{1}, q_{1} are polynomials.
Since $f^{n}\left(f^{k+1}\right)^{(k)}$ has exactly one a-point at z_{0}, say, we get from (2.9)
(2.10) $\quad f^{n}\left(f^{k+1}\right)^{(k)}$

$$
\begin{aligned}
& =a+\frac{B\left(z-z_{0}\right)^{l}}{\left(z-\beta_{1}\right)^{n_{1}(n+k+1)+k}\left(z-\beta_{2}\right)^{n_{2}(n+k+1)+k} \cdots\left(z-\beta_{t}\right)^{n_{t}(n+k+1)+k}} \\
& =\frac{p_{1}}{q_{1}}
\end{aligned}
$$

where B is a non-zero constant and l is a positive integer.
From (2.9) and (2.10) we obtain respectively

$$
\begin{align*}
& {\left[f^{n}\left(f^{k+1}\right)^{(k)}\right]^{\prime}} \tag{2.11}\\
& \quad=\frac{\left(z-\alpha_{1}\right)^{m_{1}(n+k+1)-k-1}\left(z-\alpha_{2}\right)^{m_{2}(n+k+1)-k-1} \cdots\left(z-\alpha_{s}\right)^{m_{s}(n+k+1)-k-1}}{\left(z-\beta_{1}\right)^{n_{1}(n+k+1)+k+1}\left(z-\beta_{2}\right)^{n_{2}(n+k+1)+k+1} \cdots\left(z-\beta_{t}\right)^{n_{t}(n+k+1)+k+1}} \\
& \quad \times g_{1}(z)
\end{align*}
$$

and

$$
\begin{align*}
& {\left[f^{n}\left(f^{k+1}\right)^{(k)}\right]^{\prime}} \tag{2.12}\\
& \quad=\frac{\left(z-z_{0}\right)^{l-1} g_{2}(z)}{\left(z-\beta_{1}\right)^{n_{1}(n+k+1)+k+1}\left(z-\beta_{2}\right)^{n_{2}(n+k+1)+k+1} \cdots\left(z-\beta_{t}\right)^{n_{t}(n+k+1)+k+1}}
\end{align*}
$$

where g_{1}, g_{2} are polynomials.
From (2.7) and (2.8) we get

$$
\left(f^{k+1}\right)_{\infty}=M-N \quad \text { and } \quad\left(\left(f^{k+1}\right)^{(k)}\right)_{\infty}=M-N-(s+t) k+\operatorname{deg}(g) .
$$

Since by Lemms $2.6\left(\left(f^{k+1}\right)^{(k)}\right)_{\infty} \leq\left(f^{k+1}\right)_{\infty}-k$, we get

$$
\begin{equation*}
\operatorname{deg}(g) \leq k(s+t-1) \tag{2.13}
\end{equation*}
$$

From (2.9) and (2.11) we obtain

$$
\begin{equation*}
\left(f^{n}\left(f^{k+1}\right)^{(k)}\right)_{\infty}=M+M^{\prime}-k s+\operatorname{deg}(g)-\left(N+N^{\prime}+k t\right) \tag{2.14}
\end{equation*}
$$

and
(2.15) $\left(f^{n}\left(f^{k+1}\right)^{(k)}\right)_{\infty}^{\prime}=M+M^{\prime}-(k+1) s+\operatorname{deg}\left(g_{1}\right)-\left\{N+N^{\prime}+(k+1) t\right\}$.

By Lemma 2.6 we see that

$$
\begin{equation*}
\left(f^{n}\left(f^{k+1}\right)^{(k)}\right)_{\infty}^{\prime} \leq\left(f^{n}\left(f^{k+1}\right)^{(k)}\right)_{\infty}-1 \tag{2.16}
\end{equation*}
$$

Hence from (2.13)-(2.16) we get

$$
\begin{align*}
\operatorname{deg}\left(g_{1}\right) & \leq \operatorname{deg}(g)+t+s-1 \leq k(s+t-1)+s+t-1 \tag{2.17}\\
& =(k+1)(s+t-1)
\end{align*}
$$

Now we consider the following sub-cases.
Subcase 1.1. Let $l<N+N^{\prime}+k t$. From (2.10) we see that $\operatorname{deg}\left(p_{1}\right)=\operatorname{deg}\left(q_{1}\right)$. From (2.9) and (2.13) we get

$$
\begin{aligned}
\operatorname{deg}\left(q_{1}\right) & =N+N^{\prime}+k t=\operatorname{deg}\left(p_{1}\right)=M+M^{\prime}-k s+\operatorname{deg}(g) \\
& \leq M+M^{\prime}-k s+k(s+t-1)=M+M^{\prime}+k t-k .
\end{aligned}
$$

Hence $\quad\left(M+M^{\prime}\right)-\left(N+N^{\prime}\right) \geq k$ and so $(n+k+1)\left[\left(m_{1}+m_{2}+\cdots+m_{s}\right)-\right.$ $\left.\left(n_{1}+n_{2}+\cdots+n_{t}\right)\right] \geq k$. This implies $\left(m_{1}+m_{2}+\cdots+m_{s}\right)-\left(n_{1}+n_{2}+\cdots+n_{t}\right)$ ≥ 1. So $(f)_{\infty} \geq 1$ and hence $\left(f^{k+1}\right)_{\infty} \geq k+1$. Therefore we can express f^{k+1} as follows

$$
f^{k+1}=a_{m} z^{m}+\cdots+a_{1} z+a_{0}+\frac{p}{B}
$$

where $a_{0}, a_{1}, \ldots, a_{m-1}, a_{m}(\neq 0)$ are constants, $m(\geq k+1)$ is an integer, p and B are polynomials with $\operatorname{deg}(p)<\operatorname{deg}(B)$. Since $m>k$, by Subcase 3.3 of the proof of Lemma 2.6 we get

$$
\begin{equation*}
\left(\left(f^{k+1}\right)^{(k)}\right)_{\infty}=\left(f^{k+1}\right)_{\infty}-k \geq k+1-k=1 . \tag{2.18}
\end{equation*}
$$

Since $(f)_{\infty} \geq 1$, from (2.18) we see that $\left(f^{n}\left(f^{k+1}\right)^{(k)}\right)_{\infty} \geq n+1$, which by (2.9) contradicts the fact that $\operatorname{deg}\left(p_{1}\right)=\operatorname{deg}\left(q_{1}\right)$.

Subcase 1.2. Let $l>N+N^{\prime}+k t$. Then from (2.10) we see that $\left(f^{n}\left(f^{k+1}\right)^{(k)}\right)_{\infty}>0$. We now verify that $m_{1}+m_{2}+\cdots+m_{s}>n_{1}+n_{2}+\cdots+n_{t}$ and so

$$
\begin{equation*}
M>N \quad \text { and } \quad M^{\prime}>N^{\prime} \tag{2.19}
\end{equation*}
$$

If $m_{1}+m_{2}+\cdots+m_{s} \leq n_{1}+n_{2}+\cdots+n_{t}$, then $(f)_{\infty} \leq 0,\left(f^{n}\right)_{\infty} \leq 0$ and $\left(f^{k+1}\right)_{\infty} \leq 0$.

Hence by Lemma 2.6 we get

$$
\left(f^{n}\left(f^{k+1}\right)^{(k)}\right)_{\infty}=\left(f^{n}\right)_{\infty}+\left(\left(f^{k+1}\right)^{(k)}\right)_{\infty} \leq 0+\left(f^{k+1}\right)_{\infty}-k=-k<0,
$$

a contradiction.

From (2.10) and (2.12) we respectively get

$$
\begin{gathered}
\left(f^{n}\left(f^{k+1}\right)^{(k)}\right)_{\infty}=l-\left(N+N^{\prime}+k t\right) \quad \text { and } \\
\left(f^{n}\left(f^{k+1}\right)^{(k)}\right)_{\infty}^{\prime}=l-1+\operatorname{deg}\left(g_{2}\right)-\left(N+N^{\prime}+k t\right)-t .
\end{gathered}
$$

So by Lemma 2.6 we obtain $l-1+\operatorname{deg}\left(g_{2}\right)-\left(N+N^{\prime}+k t\right)-t \leq$ $l-\left(N+N^{\prime}+k t\right)-1$ and so $\operatorname{deg}\left(g_{2}\right) \leq t$.

Since $\alpha_{i} \neq z_{0}$ for $i=1,2, \ldots, s$, from (2.11) and (2.12) we see that

$$
\left(z-\alpha_{1}\right)^{m_{1}(n+k+1)-k-1}\left(z-\alpha_{2}\right)^{m_{2}(n+k+1)-k-1} \cdots\left(z-\alpha_{s}\right)^{m_{s}(n+k+1)-k-1}
$$

is a factor of g_{2}. Therefore

$$
\begin{equation*}
M+M^{\prime}-(k+1) s \leq \operatorname{deg}\left(g_{2}\right) \leq t \tag{2.20}
\end{equation*}
$$

From (2.19) and (2.20) we get

$$
\begin{aligned}
M+M^{\prime} & \leq t+(k+1) s \\
& \leq\left(n_{1}+n_{2}+\cdots+n_{t}\right)+(k+1)\left(m_{1}+m_{2}+\cdots+m_{s}\right) \\
& =\frac{N^{\prime}}{n}+M \\
& <M+\frac{M^{\prime}}{n} \\
& \leq M+M^{\prime},
\end{aligned}
$$

a contradiction.
Subcase 1.3. Let $l=N+N^{\prime}+k t$. Then from (2.10) we see that $\left(f^{n}\left(f^{k+1}\right)^{(k)}\right)_{\infty} \leq 0$. We now show that $m_{1}+m_{2}+\cdots+m_{s} \leq n_{1}+n_{2}+\cdots+n_{t}$. If $m_{1}+m_{2}+\cdots+m_{s}>n_{1}+n_{2}+\cdots+n_{t}$, then $\left(f^{n}\right)_{\infty}=M^{\prime}-N^{\prime} \geq n \quad$ and $\left(f^{k+1}\right)_{\infty}=M-N \geq k+1$. So following the reasoning of Subcase 1.1 and using the proof of Subcase 3.3 of Lemma 2.6 we get $\left(\left(f^{k+1}\right)^{(k)}\right)_{\infty}=\left(f^{k+1}\right)_{\infty}-k \geq$ $k+1-k=1$ and so $\left(f^{n}\left(f^{k+1}\right)^{(k)}\right)_{\infty} \geq n+1$, which is a contradiction.

Since $\alpha_{j} \neq z_{0}$ for $j=1,2, \ldots, s$, from (2.11) and (2.12) we see that $\left(z-z_{0}\right)^{l-1}$ is a factor of g_{1}. So by (2.17) we get $l-1 \leq \operatorname{deg}\left(g_{1}\right) \leq(k+1)(s+t-1)$. Now

$$
\begin{aligned}
N+N^{\prime} & =l-k t \\
& \leq(k+1)(s+t-1)+1-k t \\
& =(k+1) s+t-k \\
& \leq(k+1)\left(m_{1}+m_{2}+\cdots+m_{s}\right)+\left(n_{1}+n_{2}+\cdots+n_{t}\right)-k \\
& =M+\frac{N^{\prime}}{n}-k \\
& \leq N+N^{\prime}-k,
\end{aligned}
$$

which is a contradiction.

CASE 2. Suppose $f^{n}\left(f^{k+1}\right)^{(k)}$ has no a-point. Then f cannot be a polynomial because in this case $f^{n}\left(f^{k+1}\right)^{(k)}$ becomes a polynomial of degree at least $n+1$. Hence f is a non-polynomial rational function. Now putting $l=0$ in (2.10) and proceeding as Subcase 1.1 we arrive at a contradiction. This proves the lemma.

Lemma 2.8 [1]. Let f be an entire function. If the spherical derivative $f^{\#}$ is bounded in \mathbf{C}, then the order of f is at most 1 .

3. Proof of Theorem 1.1

Proof. We suppose that \mathfrak{F} is not normal in \mathfrak{D}. Then by Lemma 2.1 there exist
(i) a number r with $0<r<1$,
(ii) points z_{j} satisfying $\left|z_{j}\right|<r$,
(iii) functions $f_{j} \in \mathfrak{F}$,
(iv) positive numbers $\rho_{j} \rightarrow 0$ as $j \rightarrow \infty$,
such that $f_{j}\left(z_{j}+\rho_{j} \zeta\right) \rightarrow g(\zeta)$ as $j \rightarrow \infty$ locally spherically uniformly, where g is a non-constant meromorphic function in \mathbf{C} with $g^{\#}(\zeta) \leq g^{\#}(0)=1$. In particular, g has order at most 2 .

We put $g_{j}(\zeta)=f_{j}\left(z_{j}+\rho_{j} \zeta\right)$. Then $g_{j}^{n}(\zeta)\left(g_{j}^{k+1}(\zeta)\right)^{(k)} \rightarrow g^{n}(\zeta)\left(g^{k+1}(\zeta)\right)^{(k)}$ as $j \rightarrow \infty$ locally spherically uniformly.

Let

$$
\begin{equation*}
g^{n}(\zeta)\left(g^{k+1}(\zeta)\right)^{(k)} \equiv a \tag{3.1}
\end{equation*}
$$

Then g is entire having no zero. So in view of Lemma 2.8 we put $g(\zeta)=$ $\exp (c \zeta+d)$, where $c(\neq 0)$ and d are constants. Therefore from (3.1) we get

$$
(k+1)^{k} c^{k} \exp \{(n+k+1) c \zeta+(n+k+1) d\} \equiv a
$$

which is impossible unless $(n+k+1) c=0, \quad$ a contradiction. Hence $g^{n}(\zeta)\left(g^{k+1}(\zeta)\right)^{(k)} \not \equiv a$.

So by Lemma 2.4 and Lemma 2.7 the function $g^{n}(\zeta)\left(g^{k+1}(\zeta)\right)^{(k)}$ has at least two distinct a-points ζ_{0} and ζ_{0}^{*}, say. We now choose two circular neighbourhoods D_{1} and D_{2} of ζ_{0} and ζ_{0}^{*} respectively such that $D_{1} \cap D_{2}=\emptyset$ and $D_{1} \cup D_{2}$ does not contain any a-point of $g^{n}(\zeta)\left(g^{k+1}(\zeta)\right)^{(k)}$ other than ζ_{0} and ζ_{0}^{*}.

Now by Hurwitz's theorem there exist two sequences of points $\left\{\zeta_{j}\right\} \subset D_{1}$ and $\left\{\zeta_{j}^{*}\right\} \subset D_{2}$ converging to ζ_{0} and ζ_{0}^{*} respectively such that $g_{j}^{n}\left(\zeta_{j}\right)\left(g_{j}^{k+1}\left(\zeta_{j}\right)\right)^{(k)}$ $=a$ and $g_{j}^{n}\left(\zeta_{j}^{*}\right)\left(g_{j}^{k+1}\left(\zeta_{j}^{*}\right)\right)^{(k)}=a$.

By the given condition for any integer m and for all j we get $g_{m}^{n}\left(\zeta_{j}\right)\left(g_{m}^{k+1}\left(\zeta_{j}\right)\right)^{(k)}=a$ and $g_{m}^{n}\left(\zeta_{j}^{*}\right)\left(g_{m}^{k+1}\left(\zeta_{j}^{*}\right)\right)^{(k)}=a . \quad$ By (ii) and (iv), if necessary considering a subsequence, we see that there exists a point $\xi,|\xi| \leq r$, such that $z_{j}+\rho_{j} \zeta_{j} \rightarrow \xi$ and $z_{j}+\rho_{j} \zeta_{j}^{*} \rightarrow \xi$ as $j \rightarrow \infty$. So $f_{m}^{n}(\xi)\left(f_{m}^{k+1}(\xi)\right)^{(k)}=a$ and since a-points are isolated, for sufficiently large j we get $z_{j}+\rho_{j} \zeta_{j}=\xi$ and $z_{j}+\rho_{j} \zeta_{j}^{*}=\xi$.

Hence $\zeta_{j}=\frac{\xi-z_{j}}{\rho_{j}}=\zeta_{j}^{*}$, which is impossible as $D_{1} \cap D_{2}=\emptyset$. This proves the
theorem.

References

[1] J. Clunie and W. K. Hayman, The spherical derivative of integral and meromorphic functions, Comment. Math. Helv. 40 (1966), 117-148.
[2] W. K. Hayman, Picard values of meromorphic functions and their derivatives, Ann. of Math. 70 (1959), 9-42.
[3] J. D. Hinchliffe, On a result of Chuang related to Hayman's alternative, Computational Methods and Function Theory 2 (2002), 293-297.
[4] Y. T. Li and Y. X. Gu, On normal families of meromorphic functions, J. Math. Anal. Appl. 354 (2009), 421-425.
[5] E. Mues, Über ein problem von Hayman, Math. Z. 164 (1979), 239-259.
[6] X. C. Pang and L. Zalcman, Normal families and shared values, Bull. London Math. Soc. 32 (2000), 325-331.
[7] J. Schiff, Normal families, Springer-Verlag, Berlin, 1993.
[8] W. Schwick, Normality criteria for normal families of meromorphic function, J. Anal. Math. 52 (1989), 241-289.
[9] Y. F. Wang and M. L. Fang, Picard values and normal families of meromorphic functions with multiple zeros, Acta Math. Sinica (Chin. Ser.) 41 (1998), 743-748.
[10] Y. Xu, Normal families and exceptional functions, J. Math. Anal. Appl. 329 (2007), 13431354.

Shanpeng Zeng

Department of Mathematics Science
Nanjing Normal University
Nanjing, Jiangsu 210046
P. R. China

E-mail: zengshanpeng@163.com
Current Address:
Department of Mathematics
Hangzhou Electronic Information Vocational School
(Dingeiao Campus)
Hangzhou, Zheiang 310021
P. R. China

Indrajit Lahiri
Department of Mathematics
University of Kalyani
West Bengal 741235
India
E-mail: indr9431@dataone.in
ilahiri@hotmail.com

[^0]: 2010 Mathematics Subject Classification. 30D35.
 Key words and phrases. Meromorphic function, Normal family, Value sharing. Received February 23, 2011; revised May 18, 2011.

