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Abstract

In the paper we prove a normality criterion for a family of meromorphic functions

which involves sharing of a non-zero finite value by certain di¤erential polynomials

generated by the members of the family.

1. Introduction and results

Let D be a domain in the open complex plane C and F be a family of
meromorphic functions defined in D. The family F is said to be normal in
D, in the sense of Montel, if for any sequence f fngHF, there exists a subse-
quece f fnjg converging spherically locally uniformly to a meromorphic function
or y.

Let f and g be two meromorphic functions and a A C. If f and g have the
same set of a-points, then we say that f and g share the value a IM (ignoring
multiplicities).

In 1998 Y. F. Wang and M. L. Fang [9] proved the following result.

Theorem A [9]. Let k; nðb k þ 1Þ be positive integers and f be a transcen-
dental meromorphic function. Then ð f nÞðkÞ assumes every finite non-zero value in-
finitely often.

Following normality criterion corresponds to Theorem A.

Theorem B [8]. Let F be a family of meromorphic functions defined in a

domain D and k; nðb k þ 3Þ be positive integers. If ð f nÞðkÞ 0 1 for every f A F,
then F is normal.

In 2009 Y. T. Li and Y. X. Gu [4] improved Theorem B in the following
manner.
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Theorem C [4]. Let F be a family of meromorphic functions in a domain D,
k; nðb k þ 2Þ be positive integers and a A Cnf0g. If ð f nÞðkÞ and ðgnÞðkÞ share the
value a IM in D for each pair of functions f ; g A F, then F is normal.

In [4] it is shown that Theorem C does not hold for n ¼ k þ 1. So it is an
interesting problem to investigate the situation under which the condition n ¼
k þ 1 can be accommodated. In this direction we prove the following theorem.

Theorem 1.1. Let F be a family of meromorphic functions defined in a
domain D, a A Cnf0g and k, n be positive integers such that nb 1 if k ¼ 1 and

nb 2 if kb 2. If f nð f kþ1ÞðkÞ and gnðgkþ1ÞðkÞ share the value a IM in D for each
pair of functions f ; g A F, then F is normal.

Following corollary immediately follows from Theorem 1.1.

Corollary 1.1. Let F be a family of meromorphic functions defined in a
domain D, a A Cnf0g and k, n be positive integers such that nb 1 if k ¼ 1 and
nb 2 if kb 2. If f nð f kþ1ÞðkÞ 0 a for every f A F, then F is normal.

Remark 1.1. If the members of F have no simple zero, then Theorem 1.1 and
Corollary 1.1 hold for n ¼ 1 and kb 2.

Remark 1.2. Considering the family F ¼ femz : m ¼ 1; 2; 3; . . .g and the do-
main D ¼ fz : jzj < 1g we can verify that a0 0 is essential for Theorem 1.1 and
Corollary 1.1.

2. Lemmas

In this section we present some necessary lemmas.

Lemma 2.1 fp. 101 [7], [6]g. Let F be a family of meromorphic functions in a
domain DHC. If F is not normal in D, then there exist

(i) a number r with 0 < r < 1,
(ii) points zj satisfying jzj j < r,
(iii) functions fj A F,
(iv) positive numbers rj ! 0 as j ! y,

such that fjðzj þ rjzÞ ! gðzÞ as j ! y locally spherically uniformly, where g is a
non-constant meromorphic function in C with g#ðzÞa g#ð0Þ ¼ 1. In particular, g
has order at most 2.

A di¤erential polynomial P of a meromorphic function f is defined by
PðzÞ ¼

Pn
i¼1 fiðzÞ, where fiðzÞ ¼ aiðzÞ

Qp
j¼0ð f ð jÞðzÞÞ

Sij , where aiðzÞ2 0 are small
functions of f and Sij ’s are non-negative integers. The numbers dðPÞ ¼
max1aian

Pp
j¼0 Sij and dðPÞ ¼ min1aian

Pp
j¼0 Sij are respectively called the degree

and the lower degree of the di¤erential polynomial P.

Lemma 2.2 [3]. Let f be transcendental and meromorphic and P be a non-
constant di¤erential polynomial of f such that dðPÞ > 1. Then
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Tðr; f Þa Qþ 1

dðPÞ � 1
Nðr; 0; f Þ þ 1

dðPÞ � 1
Nðr; a;PÞ þ Sðr; f Þ;

where Q ¼ max1aian

Pp
j¼1 jSij .

Lemma 2.3 [2, 5]. Let f be a transcendental meromorphic function and
a A Cnf0g. Then f nf 0 has infinitely many a-points, where nðb 2Þ is an integer.

Lemma 2.4. Let f be a transcendental meromorphic function and k, n be
positive integers such that nb 1 if k ¼ 1 and nb 2 if kb 2. Then f nð f kþ1ÞðkÞ
assumes every value a A Cnf0g infinitly often.

Proof. Without loss of generality we may choose a ¼ 1. Let P ¼
f nð f kþ1ÞðkÞ. If k ¼ 1, then P ¼ 2f nþ1f 0 assumes the value 1 infinitely often
by Lemma 2.3.

Let kb 2. Then dðPÞ ¼ nþ k þ 1 and Q ¼ k in Lemma 2.2. So by
Lemma 2.2 we get

Tðr; f Þa k þ 1

nþ k
Nðr; 0; f Þ þ 1

nþ k
Nðr; 1;PÞ þ Sðr; f Þ

and so

n� 1

nþ k
Tðr; f Þa 1

nþ k
Nðr; 1;PÞ þ Sðr; f Þ;

which shows that P assumes the value 1 infinitely often. This proves the
lemma. r

Let R ¼ A

B
be a rational function. We denote by ðRÞy the number

degðAÞ � degðBÞ. Using the Laurent expansion around y we can easily obtain
the following lemma (or see the proof of Lemma 6 of [10]).

Lemma 2.5. If ðRÞy < 0, then ðRðkÞÞy ¼ ðRÞy � k.

Lemma 2.6. Let R ¼ A

B
be rational and B be non-constant. Then ðRðkÞÞy a

ðRÞy � k.

Proof. We consider the following cases.

Case 1. Let ðRÞy < 0. Then the lemma follows from Lemma 2.5.

Case 2. Let ðRÞy ¼ 0. Then we can write

R ¼ cþ p

B
;ð2:1Þ

where c is a non-zero constant and p is a polynomial with degðpÞ < degðBÞ.
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Since degðAÞ ¼ degðBÞ > degðpÞ, we get

p

B

� �
y

<
A

B

� �
y

:ð2:2Þ

So from (2.1), (2.2) and Lemma 2.5 we obtain

ðRðkÞÞy ¼ p

B

� �ðkÞ !
y

¼ p

B

� �
y

� k <
A

B

� �
y

� k ¼ ðRÞy � k:

Case 3. Let ðRÞy > 0. Then we can express R as follows

R ¼ amz
m þ � � � þ a1zþ a0 þ

p

B
;ð2:3Þ

where a0; a1; . . . ; am�1; amð0 0Þ are constants, m is a positive integer and p is a
polynomial with degðpÞ < degðBÞ.

We now further consider the following subcases.

Subcase 3.1. Let k > m. Since
p

B

� �
y

< 0, by Lemma 2.5 we get from (2.3)

ðRðkÞÞy ¼ p

B

� �ðkÞ !
y

¼ p

B

� �
y

� k < ðRÞy � k:

Subcase 3.2. Let k ¼ m. Then ðRÞy ¼ m ¼ k. By Lemma 2.5 we get

p

B

� �ðkÞ !
y

¼ p

B

� �
y

� k < �k < 0:ð2:4Þ

We put
p

B

� �ðkÞ
¼ P

Q
, where P, Q are polynomials. From (2.4) we get

degðPÞ < degðQÞ and so degðamQm!þ PÞ ¼ degðQÞ. Hence

ðRðkÞÞy ¼ amm!þ p

B

� �ðkÞ !
y

¼ amm!þ P

Q

� �
y

¼ amQm!þ P

Q

� �
y

¼ 0 ¼ k � k ¼ ðRÞy � k:

Subcase 3.3. Let k < m. Then ðRÞy ¼ m and by Lemma 2.5 we get

p

B

� �ðkÞ !
y

¼ p

B

� �
y

� k < �k < 0:ð2:5Þ

We put
p

B

� �ðkÞ
¼ P

Q
, where P, Q are polynomials. From (2.5) we see that

degðPÞ < degðQÞ and so
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deg
amm!

ðm� kÞ! z
m�k þ � � � þ k!

� �
Qþ P

� �
¼ deg

amm!

ðm� kÞ! z
m�k þ � � � þ k!

� �
Q

� �
:

Therefore

ðRðkÞÞy ¼ amm!

ðm� kÞ! z
m�k þ � � � þ k!þ p

B

� �ðkÞ !
y

¼

amm!

ðm� kÞ! z
m�k þ � � � þ k!

� �
Qþ P

Q

0
BB@

1
CCA
y

¼ m� k

¼ ðRÞy � k:

This proves the lemma. r

Lemma 2.7. Let f be a non-constant rational function, k, n be positive
integers and a A Cnf0g. Then f nð f kþ1ÞðkÞ has at least two distinct a-points.

Proof. We consider the following cases.

Case 1. Suppose f nð f kþ1ÞðkÞ has exactly one a-point.

First we suppose that f is a non-constant polynomial. We set f nð f kþ1ÞðkÞ

� a ¼ Aðz� z0Þ l , where A is a non-zero constant and l is a positive integer

satisfying lb nþ ðk þ 1� kÞ ¼ nþ 1b 2. Then ½ f nð f kþ1ÞðkÞ� 0 ¼ Alðz� z0Þ l�1.
Since a zero of f is a zero of f nð f kþ1ÞðkÞ of multiplicity at least 2, it is also
a zero of ½ f nð f kþ1ÞðkÞ� 0. Since ½ f nð f kþ1ÞðkÞ� 0 has exactly one zero at z0 and f is
a non-constant polynomial, it follows that z0 is a zero of f and so is a zero of
f nð f kþ1ÞðkÞ, which is a contradiction. Therefore f is a non-polynomial rational
function. We set

f ðzÞ ¼ A
ðz� a1Þm1ðz� a2Þm2 � � � ðz� asÞms

ðz� b1Þ
n1ðz� b2Þ

n2 � � � ðz� btÞ
nt ;ð2:6Þ

where Að0 0Þ is a constant and m1;m2; . . . ;ms, n1; n2; . . . ; nt are positive integers.
We put

M ¼ ðk þ 1Þ
Xs
j¼1

mj ; M 0 ¼ n
Xs
j¼1

mj; N ¼ ðk þ 1Þ
Xt

i¼1

ni and N 0 ¼ n
Xt

i¼1

ni:

From (2.6) we get

f kþ1ðzÞ ¼ Akþ1 ðz� a1Þm1ðkþ1Þðz� a2Þm2ðkþ1Þ � � � ðz� asÞmsðkþ1Þ

ðz� b1Þ
n1ðkþ1Þðz� b2Þ

n2ðkþ1Þ � � � ðz� btÞ
ntðkþ1Þð2:7Þ

109a normality criterion for meromorphic functions



and so

ð f kþ1ÞðkÞ ¼ ðz� a1Þm1ðkþ1Þ�kðz� a2Þm2ðkþ1Þ�k � � � ðz� asÞmsðkþ1Þ�k

ðz� b1Þ
n1ðkþ1Þþkðz� b2Þ

n2ðkþ1Þþk � � � ðz� btÞ
ntðkþ1Þþk

gðzÞ;ð2:8Þ

where g is a polynomial.
From (2.6) and (2.8) we get

f nð f kþ1ÞðkÞð2:9Þ

¼ An ðz� a1Þm1ðnþkþ1Þ�kðz� a2Þm2ðnþkþ1Þ�k � � � ðz� asÞmsðnþkþ1Þ�k

ðz� b1Þ
n1ðnþkþ1Þþkðz� b2Þ

n2ðnþkþ1Þþk � � � ðz� btÞ
ntðnþkþ1Þþk

gðzÞ

¼ p1

q1
; say;

where p1, q1 are polynomials.

Since f nð f kþ1ÞðkÞ has exactly one a-point at z0, say, we get from (2.9)

f nð f kþ1ÞðkÞð2:10Þ

¼ aþ Bðz� z0Þ l

ðz� b1Þ
n1ðnþkþ1Þþkðz� b2Þ

n2ðnþkþ1Þþk � � � ðz� btÞ
ntðnþkþ1Þþk

¼ p1

q1
;

where B is a non-zero constant and l is a positive integer.
From (2.9) and (2.10) we obtain respectively

½ f nð f kþ1ÞðkÞ� 0ð2:11Þ

¼ ðz� a1Þm1ðnþkþ1Þ�k�1ðz� a2Þm2ðnþkþ1Þ�k�1 � � � ðz� asÞmsðnþkþ1Þ�k�1

ðz� b1Þ
n1ðnþkþ1Þþkþ1ðz� b2Þ

n2ðnþkþ1Þþkþ1 � � � ðz� btÞ
ntðnþkþ1Þþkþ1

� g1ðzÞ
and

½ f nð f kþ1ÞðkÞ� 0ð2:12Þ

¼ ðz� z0Þ l�1
g2ðzÞ

ðz� b1Þ
n1ðnþkþ1Þþkþ1ðz� b2Þ

n2ðnþkþ1Þþkþ1 � � � ðz� btÞ
ntðnþkþ1Þþkþ1

;

where g1, g2 are polynomials.
From (2.7) and (2.8) we get

ð f kþ1Þy ¼ M �N and ðð f kþ1ÞðkÞÞy ¼ M �N � ðsþ tÞk þ degðgÞ:

Since by Lemms 2.6 ðð f kþ1ÞðkÞÞy a ð f kþ1Þy � k, we get

degðgÞa kðsþ t� 1Þ:ð2:13Þ

110 shanpeng zeng and indrajit lahiri



From (2.9) and (2.11) we obtain

ð f nð f kþ1ÞðkÞÞy ¼ M þM 0 � ksþ degðgÞ � ðN þN 0 þ ktÞð2:14Þ
and

ð f nð f kþ1ÞðkÞÞ0y ¼ M þM 0 � ðk þ 1Þsþ degðg1Þ � fN þN 0 þ ðk þ 1Þtg:ð2:15Þ
By Lemma 2.6 we see that

ð f nð f kþ1ÞðkÞÞ0y a ð f nð f kþ1ÞðkÞÞy � 1:ð2:16Þ
Hence from (2.13)–(2.16) we get

degðg1Þa degðgÞ þ tþ s� 1a kðsþ t� 1Þ þ sþ t� 1ð2:17Þ
¼ ðk þ 1Þðsþ t� 1Þ:

Now we consider the following sub-cases.

Subcase 1.1. Let l < N þN 0 þ kt. From (2.10) we see that degðp1Þ ¼ degðq1Þ.
From (2.9) and (2.13) we get

degðq1Þ ¼ N þN 0 þ kt ¼ degðp1Þ ¼ M þM 0 � ksþ degðgÞ
aM þM 0 � ksþ kðsþ t� 1Þ ¼ M þM 0 þ kt� k:

Hence ðM þM 0Þ � ðN þN 0Þb k and so ðnþ k þ 1Þ½ðm1 þm2 þ � � � þmsÞ�
ðn1 þ n2 þ � � � þ ntÞ�b k. This implies ðm1 þm2 þ � � � þmsÞ � ðn1 þ n2 þ � � � þ ntÞ
b 1. So ð f Þy b 1 and hence ð f kþ1Þy b k þ 1. Therefore we can express f kþ1

as follows

f kþ1 ¼ amz
m þ � � � þ a1zþ a0 þ

p

B
;

where a0; a1; . . . ; am�1; amð0 0Þ are constants, mðb k þ 1Þ is an integer, p and B
are polynomials with degðpÞ < degðBÞ. Since m > k, by Subcase 3.3 of the proof
of Lemma 2.6 we get

ðð f kþ1ÞðkÞÞy ¼ ð f kþ1Þy � kb k þ 1� k ¼ 1:ð2:18Þ
Since ð f Þy b 1, from (2.18) we see that ð f nð f kþ1ÞðkÞÞy b nþ 1, which by

(2.9) contradicts the fact that degðp1Þ ¼ degðq1Þ.

Subcase 1.2. Let l > N þN 0 þ kt. Then from (2.10) we see that
ð f nð f kþ1ÞðkÞÞy > 0. We now verify that m1 þm2 þ � � � þms > n1 þ n2 þ � � � þ nt
and so

M > N and M 0 > N 0:ð2:19Þ
If m1 þm2 þ � � � þms a n1 þ n2 þ � � � þ nt, then ð f Þy a 0, ð f nÞy a 0 and

ð f kþ1Þy a 0.
Hence by Lemma 2.6 we get

ð f nð f kþ1ÞðkÞÞy ¼ ð f nÞy þ ðð f kþ1ÞðkÞÞy a 0þ ð f kþ1Þy � k ¼ �k < 0;

a contradiction.
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From (2.10) and (2.12) we respectively get

ð f nð f kþ1ÞðkÞÞy ¼ l � ðN þN 0 þ ktÞ and

ð f nð f kþ1ÞðkÞÞ0y ¼ l � 1þ degðg2Þ � ðN þN 0 þ ktÞ � t:

So by Lemma 2.6 we obtain l � 1þ degðg2Þ � ðN þN 0 þ ktÞ � ta
l � ðN þN 0 þ ktÞ � 1 and so degðg2Þa t.

Since ai 0 z0 for i ¼ 1; 2; . . . ; s, from (2.11) and (2.12) we see that

ðz� a1Þm1ðnþkþ1Þ�k�1ðz� a2Þm2ðnþkþ1Þ�k�1 � � � ðz� asÞmsðnþkþ1Þ�k�1

is a factor of g2. Therefore

M þM 0 � ðk þ 1Þsa degðg2Þa t:ð2:20Þ
From (2.19) and (2.20) we get

M þM 0
a tþ ðk þ 1Þs
a ðn1 þ n2 þ � � � þ ntÞ þ ðk þ 1Þðm1 þm2 þ � � � þmsÞ

¼ N 0

n
þM

< M þM 0

n

aM þM 0;
a contradiction.

Subcase 1.3. Let l ¼ N þN 0 þ kt. Then from (2.10) we see that
ð f nð f kþ1ÞðkÞÞy a 0. We now show that m1 þm2 þ � � � þms a n1 þ n2 þ � � � þ nt.
If m1 þm2 þ � � � þms > n1 þ n2 þ � � � þ nt, then ð f nÞy ¼ M 0 �N 0

b n and
ð f kþ1Þy ¼ M �Nb k þ 1. So following the reasoning of Subcase 1.1 and using

the proof of Subcase 3.3 of Lemma 2.6 we get ðð f kþ1ÞðkÞÞy ¼ ð f kþ1Þy � kb
k þ 1� k ¼ 1 and so ð f nð f kþ1ÞðkÞÞy b nþ 1, which is a contradiction.

Since aj 0 z0 for j ¼ 1; 2; . . . ; s, from (2.11) and (2.12) we see that ðz� z0Þ l�1

is a factor of g1. So by (2.17) we get l � 1a degðg1Þa ðk þ 1Þðsþ t� 1Þ. Now

N þN 0 ¼ l � kt

a ðk þ 1Þðsþ t� 1Þ þ 1� kt

¼ ðk þ 1Þsþ t� k

a ðk þ 1Þðm1 þm2 þ � � � þmsÞ þ ðn1 þ n2 þ � � � þ ntÞ � k

¼ M þN 0

n
� k

aN þN 0 � k;

which is a contradiction.
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Case 2. Suppose f nð f kþ1ÞðkÞ has no a-point. Then f cannot be a polynomial
because in this case f nð f kþ1ÞðkÞ becomes a polynomial of degree at least
nþ 1. Hence f is a non-polynomial rational function. Now putting l ¼ 0
in (2.10) and proceeding as Subcase 1.1 we arrive at a contradiction. This
proves the lemma. r

Lemma 2.8 [1]. Let f be an entire function. If the spherical derivative f # is
bounded in C, then the order of f is at most 1.

3. Proof of Theorem 1.1

Proof. We suppose that F is not normal in D. Then by Lemma 2.1 there
exist

(i) a number r with 0 < r < 1,
(ii) points zj satisfying jzjj < r,
(iii) functions fj A F,
(iv) positive numbers rj ! 0 as j ! y,

such that fjðzj þ rjzÞ ! gðzÞ as j ! y locally spherically uniformly, where g is a
non-constant meromorphic function in C with g#ðzÞa g#ð0Þ ¼ 1. In particular,
g has order at most 2.

We put gjðzÞ ¼ fjðzj þ rjzÞ. Then gn
j ðzÞðgkþ1

j ðzÞÞðkÞ ! gnðzÞðgkþ1ðzÞÞðkÞ as
j ! y locally spherically uniformly.

Let

gnðzÞðgkþ1ðzÞÞðkÞ 1 a:ð3:1Þ

Then g is entire having no zero. So in view of Lemma 2.8 we put gðzÞ ¼
expðczþ dÞ, where cð0 0Þ and d are constants. Therefore from (3.1) we get

ðk þ 1Þkck expfðnþ k þ 1Þczþ ðnþ k þ 1Þdg1 a;

which is impossible unless ðnþ k þ 1Þc ¼ 0, a contradiction. Hence
gnðzÞðgkþ1ðzÞÞðkÞ 2 a.

So by Lemma 2.4 and Lemma 2.7 the function gnðzÞðgkþ1ðzÞÞðkÞ has at least
two distinct a-points z0 and z�0 , say. We now choose two circular neighbour-
hoods D1 and D2 of z0 and z�0 respectively such that D1 VD2 ¼ j and D1 UD2

does not contain any a-point of gnðzÞðgkþ1ðzÞÞðkÞ other than z0 and z�0 .
Now by Hurwitz’s theorem there exist two sequences of points fzjgHD1

and fz�j gHD2 converging to z0 and z�0 respectively such that gn
j ðzjÞðgkþ1

j ðzjÞÞðkÞ

¼ a and gn
j ðz

�
j Þðgkþ1

j ðz�j ÞÞ
ðkÞ ¼ a.

By the given condition for any integer m and for all j we get
gn
mðzjÞðgkþ1

m ðzjÞÞðkÞ ¼ a and gn
mðz

�
j Þðgkþ1

m ðz�j ÞÞ
ðkÞ ¼ a. By (ii) and (iv), if necessary

considering a subsequence, we see that there exists a point x, jxja r, such that

zj þ rjzj ! x and zj þ rjz
�
j ! x as j ! y. So f n

m ðxÞð f kþ1
m ðxÞÞðkÞ ¼ a and since

a-points are isolated, for su‰ciently large j we get zj þ rjzj ¼ x and zj þ rjz
�
j ¼ x.
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Hence zj ¼
x� zj

rj
¼ z�j , which is impossible as D1 VD2 ¼ j. This proves the

theorem. r
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