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A>-SINGULARITIES OF HYPERSURFACES WITH NON-NEGATIVE
SECTIONAL CURVATURE IN EUCLIDEAN SPACE

KENTARO SAJ, MAsaAKl UMEHARA AND KOTARO YAMADA

Abstract

In a previous work, the authors gave a definition of ‘front bundles’. Using this, we
give a realization theorem for wave fronts in space forms, like as in the fundamental
theorem of surface theory. As an application, we investigate the behavior of principal
singular curvatures along Aj-singularities of hypersurfaces with non-negative sectional
curvature in Euclidean space.

0. Introduction

It is known that several Gauss-Bonnet formulas hold for closed orientable
fronts (wave fronts) in R® (see [3], [7] and [11]). From these, it is expected that
there is an intrinsic formulation of wave fronts, as well as of their realization
problem, like as in the fundamental theorem of surface theory.

In this paper, we recall the definitions of coherent tangent bundles and front
bundles given in [11], which is an intrinsic formulation for wave fronts, and give
a necessary and sufficient condition for a given front bundle to be realized as
a wave front in a space form (cf. Theorem 2.7). As an application, we give a
necessary and sufficient condition for a given coherent tangent bundle over a
manifold to be realized as a smooth map into a same dimensional space form
(cf. Theorem 2.9). Another application of the realization theorem is given in [6]
to describe the duality of conformally flat Riemannian manifolds.

Moreover, using this new framework, we show the following assertion, which
is a generalization of [7, Theorem 3.1] for 2-dimensional fronts.

THEOREM 0.1.  Let M™ be an m-manifold and f : M™ — R™"' a wave front
with the singular set Xy.  Take an open subset U(c M™) such that U N, consists
only of Aj-singular points. Then the following hold:
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(1) If the sectional curvature K of the induced metric is bounded on U\,
then the second fundamental form of f vanishes along X, N U.

(2) If K is non-negative on U\Xy, then it is bounded and the singular principal
curvatures of [ (cf. Definition 1.6) along UNZr are all non-positive.

The first assertion of [7, Theorem 5.1] is the same statement as (1). This
theorem follows from the corresponding intrinsic version of the statements given
in Theorem 3.2, which enable us to prove the similar assertions for wave fronts in
the space form of constant curvature ¢ by a suitable modification. As a direct
consequence of the theorem, we get the following assertion, which is the second
assertion of [7, Theorem 5.1].

COROLLARY 0.2. Let f: U — R™" (m > 3) be a front whose singular points
are all Ay-points. If the sectional curvature K is positive everywhere on the set
of regular points, the sectional curvature of the singular submanifold is non-
negative.  Furthermore, if K > (> 0), then the sectional curvature of the singular
submanifold is positive.

An example satisfying the condition in the theorem and the corollary is given
in [7]. In this paper, we shall also give a new such example.

1. Coherent tangent bundles

1.1. Coherent tangent bundles and their singularities. According to [11], we
recall a general setting for intrinsic fronts: Let M™ be an oriented m-manifold
(m=>=1). A coherent tangent bundle over M™ is a S-tuple (M™,&,{,>,D,p),
where

(1) & is a vector bundle of rank m over M™ with an inner product {, ),

(2) D is a metric connection on (&, <, ),

(3) ¢ : TM™ — & is a bundle homomorphism which satisfies

(L1) Dxgp(Y) - Dyp(X) — p([X, ¥]) = 0

for vector fields X and Y on M™.
In this setting, the pull-back of the metric

(1.2) dsy =",

is called the ¢-metric, which is a positive semidefinite symmetric tensor on M ™.
A point p e M™ is called a g-singular point if ¢, : T,M™ — &, is not a bijection,
where &, is the fiber of & at p, that is, ds; is not positive definite at p. We
denote by X, the set of ¢-singular points on M™. On the other hand, a point
peM™ZX, is called a g-regular point. By (1.1), the pull-back connection of D
by ¢ coincides with the Levi-Civita connection with respect to dsé on the set of
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p-regular points. Thus, one can recognize that the concept of coherent tangent
bundles is a generalization of Riemannian manifolds (cf. [6]).

A coherent tangent bundle (M™ &,<{,> D,¢) is called co-orientable if the
vector bundle & is orientable, namely, there exists a smooth non-vanishing section
u of the determinant bundle of the dual bundle &* such that

(L.3) uley, ... e,) =+l

for any orthonormal frame {e;,...,e,} on &. The form p is determined
uniquely up to a +-ambiguity. A co-orientation of the coherent tangent bundle
& is a choice of . An orthonormal frame {ei,...,e,} is called positive with
respect to the co-orientation u if wu(ey,...,e,) = +1.

We give here typical examples of coherent tangent bundles:

Example 1.1 ([11]). Let M™ be an oriented m-manifold and (N”,g) an
oriented Riemannian m-manifold. A C*-map f : M"™ — N induces a coherent
tangent bundle over M"™ as follows: Let &y := f*TN™ be the pull-back of the
tangent bundle TN by f. Then g induces a positive definite metric {, ) on &,
and the restriction D of the Levi-Civita connection of g gives a connection on &
which is compatible with respect to the metric {, >. Weset ¢, :=df : TM™ — &,
which gives the structure of the coherent tangent bundle on M™. A necessary
and sufficient condition for a given coherent tangent bundle over an m-manifold
to be realized as a smooth map into an m-dimensional space form will be given in
Theorem 2.9 in Section 2.

Example 1.2 ([11]). Let (N"*! g) be an (m 4+ 1)-dimensional Riemannian
manifold. A C*-map f: M™ — N"*! is called a frontal if for each pe M",
there exists a neighborhood U of p and a unit vector field v along f defined on
U such that g(df (X),v) = 0 holds for any vector field X on U (that is, v is a unit
normal vector field), and the map v: U — T1N"*! is a C*-map, where T;N"+!
is the unit tangent bundle of N”*!. Moreover, if v can be taken to be an
immersion for each p e M, f is called a front or a wave front. We remark that
/ is a front if and only if f has a lift Ly : M™ — P(T*N™"!) as a Legendrian
immersion, where P(T*N"*!) is the projectified cotangent bundle on N”*! with
the canonical contact structure. The subbundle & which consists of the vectors
in the pull-back bundle f*TN"*! perpendicular to v gives a coherent tangent
bundle. In fact, ¢, : TM™ 3 X + df (X) € 6; gives a bundle homomorphism.
Let V be the Levi-Civita connection on N”*!. Then by taking the tangential
part of V, it induces a connection D on &y satistying (1.1). Let <{,) be a metric
on & induced from the Riemannian metric on N”*!. Then D is a metric
connection on &r. Thus we get a coherent tangent bundle (M™, &, <, >, D, ;).
Since the unit tangent bundle can be canonically identified with the unit cotan-
gent bundle, the map v: U — TyN"*! can be considered as a lift of Ls|,. A
frontal f is called co-orientable if there is a unit normal vector field v globally
defined on M. When N”*! is orientable, the coherent tangent bundle is co-
orientable if and only if so is f.
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From now on, we assume that (M™ &,<, >, D,¢) is co-orientable, and fix a
co-orientation u on the coherent tangent bundle. (If & is not co-orientable, one
can take a double cover 7 : M™ — M" such that the pull-back of & by = is a co-
orientable coherent tangent bundle over M"™.)

DeriNTION 1.3 ([11]).  The signed gp-volume form dA, and the (unsigned)
p-volume form dA, are defined as

(1.4) dA, == " ="y duy A Adity, dA, = |ly| dis A--- A dity,,

where (U;uy,...,u,) is a local coordinate system of M™ compatible with the
orientation of M™, and

J\ .
(1.5) dp = P15 0m) (=0 o Jj=1,....m].

Uj

We call the function 4, the ¢-Jacobian function on U. The set of g-singular
points on U is expressed as

(1.6) 2,NU:={pe Ui (p) =0}

Both dAAq, and dA, are independent of the choice of positively oriented local
coordinate system (U;ui,...,u,), and give two globally defined m-forms on M.
(d4, is C™-differentiable, but dA4, is only continuous.) When M™ has no
p-singular points, the two forms coincide up to sign. We set

MJ ={pe Mm\zwéd/iw(P) =dA,(p)},
M, :={pe M"™\Z,;dA,(p) = —dA,(p)}.
The g@-singular set X, coincides with the boundary 6M(/f =JdM, .

A g-singular point p (€ X,) is called non-degenerate if di, does not vanish
at p. On a neighborhood of a non-degenerate g-singular point, the ¢-singular
set consists of an (m — 1)-submanifold in M"™, called the ¢-singular submanifold.
If p is a non-degenerate p-singular point, the rank of ¢, is m — 1. The direction
of the kernel of ¢, is called the null direction. Let n be the smooth (non-
vanishing) vector field along the ¢-singular submanifold X,, which gives the null
direction at each point in X,.

DEerINITION 1.4 (Ap-singular points, [11]). Let (M™ &,{,>,D,p) be a
coherent tangent bundle. A non-degenerate gp-singular point p e M™ is called
an A,-singular point or an A,-point of ¢ if the null direction #(p) is transversal
to the singular submanifold.

It should be remarked that for the definition of A4,-singularities, the condition
(1.1) is not required (cf. [11]).
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We set
(1.7) /1(; =d2,(7),

where 7 is a vector field on a neighborhood U of p which coincides with # on
2,NU. Then p is an A>-point if and only if the function /1; does not vanish
at p (see [10, Theorem 2.4]).

When m =2 and (M?,&,{,> D,p) comes from a front in 3-manifold as
in Example 1.2 (resp. a map into 2-manifold as in Example 1.1), an 4,-point
corresponds to a cuspidal edge (resp. a fold) (cf. [9]).

1.2. Singular curvatures. Let (M™ &,<{,> D,p) be a co-oriented coherent
tangent bundle and fix a ¢-singular point p € X, which is an A;-point. Then
there exists a neighborhood U of p such that X,N U consists of A4,-points.
Now we define the singular shape operator as follows: Since the kernel of ¢, is
transversal to X, at p, ¢\T2 ,NU) is 1n]ectlve where U is a sufficiently small
neighborhood of p. Then the metric dqu is positive definite on Z, N U. We take
an orthonormal frame field ey, es,...,e,—1 on X, N U with respect to ds?.  With-
out loss of generality, we may assume that (el,ez, ..., en_1) is smoothly extended
on U as an orthonormal (m — 1)-frame field. Then we can take a unique smooth
section n: U — & (called the conormal vector field) so that (p(e1),...,0(em-1),n)
gives a positively oriented orthonormal frame field on &. Now, we set

(1.8) Sp(X) = —sgn(diy(n(q)))g~ (Dxm) (X € T,Zy,q €Z,N ),

where the non-vanishing null vector field # is chosen so that (e,...,e,_1,7) is
compatible with respect to the orientation of M™. It holds that

1 if #(q) points toward M '

(1.9) sgn(dz,(n(q))) = {1 if #(g) points toward M, .

Since ¢ is 1njectlve on each tangent space of X, and Dyn e ¢(T%,), the inverse
element ¢~ !(Dyn) is umquely determined. Thus we get a bundle endomorphism
S, : TX, — T%, which is called the singular shape operator on X,.

Facr 1.5 ([(11]). The definition of the singular shape operator S, is inde-
pendent of the choice of an orthonormal frame field ey, ..., e, 1, the choice of an
orientation of M™, and the choice of a co-orientation of &  Moreover, it holds
that

dsy(Sp(X),Y) = ds;(X,S,(Y)) (X, Y eTZ,qeX,),

namely, S, is symmetric with respect to dsé‘

DerFINITION 1.6 ([11]). Let pe X, be an A,-point of ¢. Then
(1.10) Kp(X) i=ds)(S,(X), X) /ds; (X, X), (X € T,E,\{0})
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is called the ¢-singular normal curvature at p with respect to the direction X.
The eigenvalues of S, are called the g-singular principal curvatures, which give the
critical values of the singular normal curvature on 7,%,.

In [11, Theorem 2.13], it was shown that at least one of the ¢-singular
principal curvatures diverges to —co at non-degenerate singular points other than
A»-points.

When m =2, the g-singular principal curvature is called (simply) the
@-singular curvature, which is also denoted by x,. This definition of the singular
curvature is the same as in [7, (1.7)] and [8, (1.6)]. More precisely, «, is
computed as follows: Let peX, be an Ar-point of ¢. Then the ¢-singular
set X, is parametrized by a regular curve y(¢) (¢ € I = R) on a neighborhood of p,
and y(z) is an A,-point of ¢ for each re . Since y(¢) (" =d/df) is not a null-
direction, ¢(p(¢)) # 0. Take a section n(t) of & along y such that {p(p)/|e(p)|, n}
gives a positive orthonormal frame field on & along y, where |p(y)|=
{p(7),p(7)>"/>. Then we have

{Dyyjam(t), p(7(1))7
lo(3(0))]?

where #(7) is a null-vector field along y(#) such that {y(z),#(#)} is compatible with
the orientation of M2. By (1.9), it holds that

1.12 dJ _J1if M7 lies on the left-hand side of 7,
(1-12) - sen(d2,0(0) =1 _1 it M, Ties on the left-hand side of 7.

(L.11) 1y (1) := 10y (3(1)) = —sgn(d,(1(1)))

)

2. The realization of frontal bundles

First, we recall a definition of frontal bundles given in [11], and consider a
realization problem of them as fronts in space forms.

2.1. Front bundles. Let M™ be an oriented m-manifold and
(M™,&,{,>,D,p) a co-orientable coherent tangent bundle over M™. If there
exists another bundle homomorphism  : TM™ — & such that (M™,&,<{,>,D,{)
is also a coherent tangent bundle and the pair (¢,y) of bundle homomorphisms
satisfies a compatibility condition

2.1) $p(X), ¥ (Y)) = Lp(Y), (X)),

then (M™, &,{,>,D,p,) is called a frontal bundle. The bundle homomor-
phisms ¢ and  are called the first homomorphism and the second homomorphism,
respectively. We set

I(X,Y):= dSé(X, Y) =<p(X),0(Y)),
(X, Y) = —<{p(X),y(Y)),
HI(X,Y) :=ds; (X, Y) = Y(X),¥(Y))
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for X, Y e T,M™ (pe M™), and we call them the first, the second and the third
Sfundamental forms, respectively. They are all symmetric covariant tensors on M ™.

DeriNiTION 2.1 ([11]). A frontal bundle (M™,&,{,> D,p,y) is called a
front bundle if

(2.2) Ker(p,) NKer(y,) = {0}
holds for each pe M™.

Example 2.2 ([11]). Let (N"*!(c),g) be an (m + 1)-dimensional space form,
that is, the simply connected complete Riemannian (m + 1)-manifold of con-
stant curvature ¢, and denote by V the Levi-Civita connection on N"*!(c). Let
f:M™— N™1(c) be a co-orientable frontal. Then there exists a globally
defined unit normal vector field v. Since the coherent tangent bundle &, given in
Example 1.2 is orthogonal to v, we can define a bundle homomorphism

Y TL,M" 3 X —Vyved, (peM™).

Then (M™,87,<,» D,¢,Yy) is a frontal bundle (we shall prove this in Prop-
osition 2.4 later). Moreover, this is a front bundle in the sense of Definition 2.1
if and only if f is a front, which is equivalent to I + III being positive definite.

Remark 2.3. As seen above, if f: M™ — N™!(c¢) is a front, then

(Mm gf7< >7D (ﬂfvl//f)

is a front bundle. Since ¢ = ¢, and Y =y, have the completely same conditions,
the third fundamental form [II plays the same role as I by definition.
This means that we can reverse the roles of I and III.

When N"*1(¢) is the unit sphere S”*! (i.e. ¢ =1), then the unit normal
vector field v along f can be considered as a map v: M” — S”*! and the third
fundamental form of f coincides with the first fundamental form of v.

When N”*!(c) is the Euclidean space R™! (i.e. ¢ = 0), then the unit normal
vector field v along f can be considered as a map v: M — S and the third
fundamental form of f coincides with the pull-back of the canonical metric of the
unit sphere S by v.

Next, we cosider the case that N"”*!(c) is the hyperbolic space H™*! (i.e.
c=-1)

(2.3) H™ ={p=(po,....pm11) ER]"*p-p=—1,py > 0},

I

where ‘-’ is the canonical Lorentzian inner product with singuature (—,+,...,+)
of the Lorentz-Minkowski space R}""?. The unit normal vector field v along f
can be considered as a map v: M™ — S"*! and the third fundamental form of f
coincides with the first fundamental form of v, where

(2.4) Sl ={peR"™%p-p=1}
is the de Sitter space.



A»-SINGULARITIES OF HYPERSURFACES 397

PROPOSITION 2.4. Let f: M™ — N"*Y(¢c) be a co-orientable frontal, and v a
unit normal vector field. Then (M™,&,{,>,D, (pf,xpf) as in Example 2.2 is a
frontal bundle. Moreover, the following identity (i.e. the Gauss equation) holds
(We denote by “det” the determinant of matrices.):

(2.5) <(RP°(X,Y)E0

(@D (0,0 WNLE WO
- det<<w(X),é> <¢<X>,c>>+det<<w<X>,é> <¢<X>,c>>

where ¢ = ¢, and y =y, X and Y are vector fields on M™, ¢ and ( are sections
e BD - : .
of 6, and R” is the curvature tensor of the connection D:

RP(X,Y)¢ = DyDyé — DyDx& — Dy, y|C.
Furthermore, this frontal bundle is a front bundle if and only if f is a front.

Proof. Let R¢ be the curvature tensor of N"*!(c). Since
Vx& =Dy — Yy (X), v

holds for the Levi-Civita connection V of N™*!(¢), we have the following
identity:

(2.6)  RE(df (X),df (Y))E = RP(X, Y)E = P (Y), 0 (X) + (X)), E0y (Y)
— (Dxpp(Y), & = Dy (X), &5 = Yy ([X, Y]), O)v.
Taking the normal component, we get
Dy (Y), &> = <Dy (X), & = Yy ([X, Y]), -

Since ¢ is arbitrary, this proves that (M™, &, <, >, D, ) is a coherent tangent
bundle. Moreover,

$or(X), 9 (Y)) = g(df (X), Vyv) = o (Y), (X))

Hence (M"™,&,<,>,D,¢,Yy) is a frontal bundle.
On the other hand, taking the tangential component of (2.6), we get

Rdf(X),df (Y))E = RP(X, Y)E — Gy (Y), Oy (X) + <y (X), 9 (Y).
Since (N"*!(c),g) is of constant curvature ¢, it holds that

RE(df (X),df (Y))¢ = c(Lop(Y), Do (X) = Lpp(X), Dpr(Y)),
and hence we get the Gauss equation (2.5). O

DEerINITION 2.5, For a real number ¢, a frontal bundle (M™,&,{, >, D,p, )
is said to be c-integrable if (2.5) holds.
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2.2. A realization of frontal bundles. Now, we give the fundamental
theorem for frontal bundles. To state the theorem, we define equivalence of
frontal bundles:

DEerINITION 2.6. Two frontal bundles over M™ are isomorphic or equivalent
if there exists an orientation preserving bundle isomorphism between them which
preserves the inner products, the connections and the bundle maps.

Let (N"*!(c),g) be the (m + 1)-dimensional space form of constant curva-
ture c.

THEOREM 2.7 (Realization of frontal bundles). Let (M™,&,{,>, D,p,\¥) be
a c-integrable frontal bundle over a simply connected manifold M™, where ¢ is
a real number. Then there exists a frontal f: M™ — N™(¢) such that & is
isomorphic to &y induced from f as in Proposition 2.4. Moreover, such an f
is unique up to orientation preserving isometries of N ”’“(c).

Let S/"*' be the de Sitter space of constant sectional curvature 1. As
mentioned in Remark 2.3, Sl’”+1 can be identified with the hyperquadric in the
Lorentz-Minkowski space R"™* (see (2.4)). A C¥-map f: M" — S is called
a frontal if there exists a C*-map

v:M™ — H™ = {p=(po,..., pms1) ER" p- p=—1,po >0}

such that dv- f =v-df =0. Moreover, f is called a (wave) front if (f,v): M™
— R x R"? is an immersion. By definition, f is a front if and only if v
also is. Thus, by interchanging the roles of the first homomorphism and the
second homomorphism, we get the following

COROLLARY 2.8. Let (M™,&,{,>,D,p,¥y) be a (—1)-integrable frontal
bundle over a simply connected manifold M™. Then there exists a space-like
frontal v : M — S{”“ such that (M™,&,<, >, D\, @) is isomorphic to &, induced
from v. Moreover, such a v is unique up to orientation preserving isometries
Of S{nJrl.

Proof of Theorem 2.7. To prove Theorem 2.7, we write down the funda-
mental equations for frontals. Without loss of generality, we may assume that
M™ is simply connected domain U = R™. First, we consider the case ¢ = 0.
Let f:U — R™!' = N"1(0) be a frontal, where we consider elements in
the Euclidean space R™'! as column vectors. Then the unit normal vector
field v can be considered as a map v: U — S™ < R™*! and Vv = dv, where V
is the Levi-Civita connection of R™*!. Thus the corresponding frontal bundle
is (U,67,<{,>D,p:=df :=dv), where & = {(p,x) e U x R™";x-v(p) = 0}.
Take a positively oriented orthonormal frame field (called an adopted frame field

of /)
(2.7 F = (e1,...,euy1) : U—SO(m+1)
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of R™! along f such that e, =v. Since v=e,41, {el,...,e,} is an ortho-
normal frame field of &;. Let w/ be the connection forms of D with respect to
this frame, as 1-forms on U:

(2.8) Dei:i:wilel, ol =-o! (i,j=1,...,m).
=1
Define an so(m)-valued 1-form Q by Q = (w/), where so(m) is the Lie algebra of
SO(m). Next, we define R"-valued 1-forms g and A as
(2.9) g="0g"....9™), h:="(0"....0i"
with
g =Lp.e), Wo==pey (j=1,....,m),

where R™ is considered as a column vector space. Then, by definition, the
adapted frame # in (2.7) satisfies the ordinary differential equation

m . (Q —h
2.1 = ! F=FQ. Q= )
2.10) g=Y g a7=70 a=(} )

Next, we consider the case ¢ > 0. Without loss of generality, we may
assume that ¢ = 1. In this case, N"™*!(1) can be considered as the unit sphere
S+ (c R™?) centered at the origin. Let f: U — S”*! be a frontal with the
unit normal vector field v: U — S™*!. Then the coherent tangent bundle & is
written as

(2.11) & ={(p,x) e Ux R" " ;x- f(p) =x-v(p) = 0}

T332

where is the canonical inner product of R™*?. The induced inner product
{,» of & is the restriction of “”. Take an SO(m + 2)-valued function (an
adopted frame) F := (eq, ..., em+1) : U — SO(m + 2) such that ey := f, ey 1= .
Since dv- f=dv-v=0, dv is an &r-valued l-form, and then it holds that

Vv =dv,

where V is the Levi-Civita connection of S”*!.  Thus, setting ¢ = df and = dv,
we have the frontal bundle. Denoting by w/ (i,j=1,...,m) the connection
forms of D with respect to {e;}, the adapted frame field .7 satisfies

0 =g 0
(2.12) d7 =7Q, Q=g Q —h/|,

0 ‘A 0
where Q = (/), and g and h are as in (2.9) in the case of ¢ = 0.

Finally, we consider the case ¢ < (0. We may assume that ¢ = —1. Then

N™1(=1) is the hyperbolic space H”*! as in (2.3). Let f:U — H™! be a
frontal and v the unit normal vector field. Then v is a space-like frontal in de
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Sitter space S/"*! as in (2.4), and the coherent tangent bundle is written like as
(2.11), using the canonical Lorentzian inner product. Take an SOg(1,m + 1)-
valued function (an adapted frame) F := (eq,...,em+1) : U — SOy(1,m + 1) such
that ey := f, eyy1 :=v, where SOy(1l,m+ 1) is the identity component of the
group of linear isometries O(1,m + 1) of Ri”*z. Similar to the case of ¢ > 0, it
holds that Vv = dv, and then we can set ¢ =df, Yy =dv. Hence the adapted
frame field & satisfies

0 g 0
(2.13) d7 =7Q, Q=g Q -h|,
0 'h 0

as well as the case of ¢ >0, where Q = (w/), g and h are as in (2.9).

Now, in these three situations, the Gauss equation (2.5) and the Codazzi
equation (1.1) for  can be considered as the integrability conditions for the
differential equations (2.10), (2.12) and (2.13). Thus we get the assertion. []

We give here several applications of the realization theorem.

THEOREM 2.9 (Maps into N”(c¢) of an m-manifold). Let M™ be a simply
connected domain on R™ and (M™,&,{,>,D,p) a coherent tangent bundle over
M™.  Assume that for any vector fields X, Y on M™ and a section & of &, it
holds that

(2.14) RP(X,Y)E = c({p(Y), Ep(X) — {p(X),Ep(Y)),

where RP is the curvature tensor of D. Then there exists a C*-map f: M™ —
N"™(c) into the m-dimensional simply connected space form N™(c) such that & and
6 (as in Example 1.1) are isomorphic.

Proof. We may set M" = U(< R™). Consider the trivial bundle map
0:TM">5X—0e€é. Then by (2.14), (U,6,{,>,D,p,0) is a c-integrable
frontal bundle, and then there exists the corresponding frontal f:U —
N™1(c). Since =0, the image of f lies in a totally geodesic hypersurface
of N™1(¢). O

2.3. Applications to surface theory. Now we introduce applications for
surface theory. To state them, we rewrite the c-integrability (2.5) for the
2-dimensional case. Let (M? &,{,> D,p,y) be a frontal bundle over a
2-manifold M?2. Take a (local) orthonormal frame field {ej,e;} of &, and
take a 1-form w as

(2.15) Dey = —we;, Dey = wey,

that is, w(= w)) is the connection form of D with respect to the frame {ej,es}.
Then one can easily see that (M?,&,<{,>, D,p, ) is c-integrable if and only if

(2.16) do =co+f
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holds, where o and f are 2-forms on M? defined by

OC(X, Y) = <¢(X)a €] ><§0( Y)> ey — <¢(X)a eZ><¢( Y)> e,
BX,Y) = p(X),e1)h(Y),e2) — Y(X), e (Y), e1).
Remark 2.10. Let K, be the Gaussian curvature of the first fundamental
form I =ds;. Then
(2.17) do =K, dA,
holds, where dA}, is the signed ¢-volume form defined in Definition 1.3.
THEOREM 2.11 (Fronts of constant negative extrinsic curvature). Let U be a

simply connected domain of R* and ¢ € R a constant. Take a smooth real-valued
Sfunction 0 = 0(u,v) on U which satisfies the equation:

(2.18) O = (1 —¢)sin 0,

where 0,, := 8*0/(dudv). Then there exists a front f : U — N3(c) whose funda-
mental forms are given by

I =<p,0> = du®+2 cos 0 dudv + dv?,
(2.19) II = —{p, > = 2 sin 0 dudb,
I = > = du* — 2 cos 0 dudv + dv>.

In particular, the Gaussian curvature of f is identically ¢ —1 on U\X, where
¥={0=0 (modn)} is the singular set of f. Conversely, any front f:U —
N3(c) whose regular set Ry := U\Zs is dense in U and whose Gaussian curvature
is ¢c—1 on Ry is given in this manner.

Proof. Let & = U x R? be the trivial bundle and take the canonical ortho-
normal frame {a;,a;}. Define the bundle homomorphisms ¢ and  from TU
to & as

@ := cos g(du + dv)a; — sin Q(du —dv)ay,
2 2
(2.20) 0 0
Y := —sin 3 (du + dv)a; — cos 3 (du — dv)as.

Take a connection D of & as
1
(2.21) Da; = —way, Day =owa;, o= 5(9" du — 6, dv).
One can directly show that (2.16) is equivalent to (2.18). Then we have the

corresponding front f. In particular, the fundamental forms of f are given by
(2.19). Hence the coordinate system (u,v) of U forms the asymptotic Chebyshev
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net of f, and the Gaussian curvature is ¢ — 1. Moreover, 0 is the angle between
two asymptotic directions with respect to the first fundamental form.
Conversely, suppose that f: U — N3(c) is a front such that the regular set
Ry of f is dense in U and f has constant Gaussian curvature ¢ —1 on Ry.
Then the sum [ + III of the first and the third fundamental forms is a flat metric
on U because Ry is dense. Since U is simply connected, there is an immersion
®: U — (R*u,v) such that I+ Il = ®*(2(du® + dv®)). The asymptotic lines
of f on R, are geodesic lines with respect to the metric /4 /II, and two
asymptotic directions are mutually orthogonal with respect to the metric 7 + I11.
Thus by rotating the coordinate system (u,v), we may assume that the inverse
image of u, v-lines by ® consists of asymptotic lines. Then the fundamental
forms are given by (2.19) on ®(Ry). Since R, is a dense set, (2.19) holds on
®(U), which proves the assertion. O

In particular, we have the following assertion on the realization of fronts of
constant negative curvature —1 in R and flat front in S°, respectively.

COROLLARY 2.12. Let U be a simply connected domain of R?, and take a
smooth real-valued function 0 on U which satisfies

(2.22) O, =sin 0 (resp. 6,, =0).

Then there exists a front f: U — R® (resp. S®) such that the Gaussian curvature
of f is identically —1 (resp. 0) on U\Z, where ¥ = {0 =0 (mod =)} is the singular
set.

THEOREM 2.13 (Fronts of constant positive curvature). Let U be a simply
connected domain of C = R?, and take a smooth real-valued function 0 on U which
satisfies the sinh-Gordon equation:

(2.23) %(em, + 0p) (= 0.:) = —sinh 0,
where z = u+ iv is the complex coordinate on C = R>. Then there exists a front
f: U — R® without umbilic points, whose fundamental forms are given by
I =<{p,p> = dz* + 2 cosh 0 dzdz + dz°,
= 4{cosh?(0/2) du® + sinh?(0/2) dv*},
II = —{¢p,y) =2 sinh 0 dzdz,
= 4 cosh(6/2) sinh(0/2)(du* + dv?),
I = (Y, )y = —dz* + 2 cosh 0 dzdz — dz*,
= 4{sinh?(0/2) du® + cosh?(0/2) dv*}.

Conversely, any front f : U — R* whose regular set Ry = U\Xy is dense in U and
whose Gaussian curvature is 1 on Ry without umbilic points is given in this manner.

(2.24)
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Proof. Let & = U x R? be the trivial bundle and take the canonical ortho-
normal frame {a;,a;}. Define the bundle homomorphisms ¢ and  as

p:=2 Kcosh g du) a; + <Sinh g dv) az]

= cosh g(dz +dz)a; — i sinh g(dz —dz)ay,

Y= =2 [(sinh g du)al + (cosh g dv) az]

)
= —sinh %(dz +dz)a; + i cosh g(a’z —d2)ay,

(2.25)

and define a connection D on & by a connection form
1 .
(2.26) © =5 (0 du — 0, dv) = %(ez dz — 0: dz).

One can directly show that (2.16) is equivalent to (2.18). Then we have the
corresponding front f. In particular, the fundamental forms of f are given by
(2.24). Hence (u,v) forms a curvature line coordinate system, and the Gaussian
curvature is 1.

Conversely, suppose that f: U — R® is a front such that the regular set
Ry of f is dense in U and f has constant Gaussian curvature 1 on Ry. Then
I — III gives a flat Lorentzian metric. Since U is simply connected, there is an
immersion ® : U — (R*;u,v) such that I — IIl = 4®*(du®> — dv®). The curvature
lines of f on R, are geodesic lines with respect to the metric / — /11, and the two
principal directions are orthogonal with respect to / — III. Thus by a Lorentzian
rotation of the coordinate system (u,v), we may assume that the inverse image
of u, v-lines under ® consists of principal curvature lines. Then the fundamental
forms are given by (2.24) on ®(Ry). Since R, is a dense set, (2.24) holds on
®(U), which proves the assertion. O

3. A relationship between sectional curvatures and singular principal
curvatures

In this section, we investigate a relationship between sectional curvatures
(cf. (3.2)) near A,-singular points of hypersurfaces (as wave fronts) and their
singular principal curvatures.

We fix a front bundle (M™ &, {, >, D,p, ) over an m-dimensional manifold
M™.

DeFmNITION 3.1. When p e M™ is not a singular point of ¢, we define

_ X, X)I(Y,Y) - I(X, Y)?

B1)  KHXAY): (X, X)I(Y,Y)-1(X,Y)’

(X,Y e T,M™),
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which is called the extrinsic curvature at p with respect to the X A Y-plane in
I}M}ﬂ.

If a front bundle (M™,&,<{,>, D,p,}) is induced from a front in N"*!(c),
then it holds that

(3.2) K¥XAY):=K(XAY)4c¢ (X,YeT,M"),

where K(X AY) is the sectional curvature at each g¢-regular point p of M™.
Theorem 0.1 given in the introduction is a direct consequence of the following
assertion:

THEOREM 3.2. Let (M™ &,{,> D,p, ) be a front bundle over an oriented

m-manifold M"™. Take an Ay-point p e M™ of ¢. Then the following hold:

(1) Suppose that K= is bounded except on the singular set near p. Then
II(X,Y)=0 holds for all X,Y € T,M™.

(2) If K= does not change sign on a neighborhood of p with the singular set
removed, then K= is bounded on that neighborhood of p with the singular
set removed.

(3) If K= is non-negative except on the singular set near p, then the singular
principal curvatures at p are all non-positive.  Furthermore, if there exists
a C®-vector field  defined on a neighborhood U of p and a constant
0 >0 such that the restriction of 1 on UNZX, gives a null vector field,
and K™(X Af) =0 holds on U\Z, for each C*-vector field X on U
satisfying X nqj # 0, then the singular principal curvatures are all negative

at p.

When m = 2, the assertion has been proved in [7]. The first assertion of
[7, Theorem 5.1] is essentially same statement as (1). We shall prove it for
general m.

Example 3.3. Consider a front
f:M>=S8S*xR>(p,t)— ((a+1*)p,1) e R*,

where S?:= {(x, y,z) e R*; x>+ y2 +z2 =1} and « is a positive constant. The
singular set of f is X :=S% x {0}, which consists of A,-points, and 9/t gives
a null vector field. We set 7 = d,, which is an extended null vector field. One
can easily see that this front satisfies the condition (3) of Theorem 3.2, and all
principal curvatures are equal to —1/a.

First, we choose a coordinate system around an A,-singular point:

Lemma 3.4. Let (M™ &,{,>,D,p,\) be a frontal bundle over an oriented
m-manifold M"™, and let pe M™ be an A,-singular point of ¢. We fix X €
T,2,\{0}. Then there exists a local coordinate system (ui,...,uy,) of M™ on a
neighborhood U of p such that



A»-SINGULARITIES OF HYPERSURFACES 405
(1) The ¢-singular set X, is parametrized as
Z,NU ={(ur,... tm);un =0},

2) X =20, at p.
(3) Om is a null vector field on X,NU.

(4) For each j=1,...,m—1, {@;, Dng,,» =0 holds at p.
Here, we denote

0 .
J

Proof. Since p is a non-degenerate singular point, the singular set %, is a
smooth hypersurface on a neighborhood of p. Moreover, the null vector field is
transversal to X, because p is an A,-point. Then one can choose a coordinate
system (uy,...,u,) around p such that (1)—(3) hold.

We take a new coordinate system (i, ...,%,) as
{aj =t (un)’q (j=1,...,m—1),
Uy = Up,
where a; (j=1,...,m—1) are constants. Then we have
0 0

aﬁj B an

a m—1 a a
= o, ¢ ’
- (; 4 au_,) T e

and thus

a a mfl 6
) o) Eon()
Since 0/d0u,, = d/du,, at p, we have that
0 m—1
Da/aam(ﬂ(ﬁ) = Dinp,, — 2 Z ajp;
m =1

at p. If we set hy:={p; ¢;>, then (4) is equivalent to the equations

m—1

(33) 2Zajhj/€:<Dm¢m7(pk> (k: 1,2,...,1/1’171).
j=1

Since (Mj); k-1 1 18 @ non-singular matrix, we can choose ai,...,d,-1 so that
(3.3) holds, and (&, ...,4,) satisfies (1)—(4). O
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COROLLARY 3.5. Let (uy,...,uy) be a coordinate system as in Lemma 3.4,
and assume (M™,8,{,>,D,p,y) a front bundle. Then both D¢, and \,, are
non-zero vectors perpendicular to ¢; (j=1,...,m—1) at p. In particular, Dy,

is proportional to \,, at p.

Proof. By (3) of Lemma 3.4, ¢,, =0 holds on X,. Since p eX, is a non-
degenerate singular point, dA,(p) #0. Then by (1), it holds that 0,,4,(p) # O:
am}’(ﬂ = am:u((pla s 7¢m) = ,u(¢1 P 7(pm—17Dm(pm) # 0 (at p)

Hence {¢y,...,%,_1,Dm®,} is linearly independent at p. That is, D,,p,, is a
non-zero vector which is perpendicular to {¢,...,¢,_;} at p.
On the other hand, by (2.1), we have

<(pjawm>:<‘//j7¢m>:0 (]:1,71’}’[—1)

on %, Thus y,(p) is perpendicular to {¢,(p),...,9,_(p)}, that is, propor-
tional to D@, at p. Here, by (2.2), ¢, (p) =0 implies ¥,,(p) # 0. Thus we
have the conclusion. O

Proof of (1) and (2) of Theorem 3.2. Let (uy,...,u,) be the local coordinate
system on a neighborhood of p as in Lemma 3.4, and set
hl = <¢1 » 1 ><(pm7 (pm> - <§01 ) (pm>2a
hZ = <(ﬂ1 ) lpl><(pm7 l7bm> - <(pm7 lpl >2

on a neighborhood of p. Then K(d Ad,,) = hy/hy on U\X,. Since ¢, =0
on the g-singular set U\Z, = {u,, = 0},
oy

ou,,

h =0

=0, h=0,

)

whenever u,, = 0. Then there exist smooth functions 4; and %, on a neighbor-
hood of p such that

hl = (un1)2il1 and h2 = uml:lz.

Since ¢,, = 0 on {u,, = 0}, and since {¢,, D;yp,,} are linearly independent, as seen
in the proof of Corollary 3.5,

62
up=0 "~ 2
' aum 1, =0

20| I

= <¢1 » 91 ><Dm§0ma Dm(ﬂm> - <(pl ) Dm(pm>2

= ‘(01 /\Dm(pm|2 >0
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holds on the singular set near p. On the other hand, we have

~ 0
h 1, =0 = ﬁ hz = <(p1a ¢1><Dm(9m7 lpm>'

2
m |y, =0

We assume that K'(0; A d,,) is bounded on U\X,. Then hy/h; = izz/(umizl) is
bounded on U\Z,. Thus, h, must vanish on the singular set near p. Here,
D@ ¥,,> #0 holds on a neighborhood of p because of Corollary 3.5.
Thus we have <{g¢,¥;> = —II(X,X) =0 on a singular set near p. Here, since
I (O, 0m) = —{@, ¥,y =0 and X is an arbitrary vector on T,%,, II(Y,Y) =0
holds for all Y e T,M"™. Since II is a symmetric 2-tensor, we have (1).

On the other hand, if K*' is unbounded on U\ZX,, the function hy does
not vanish at p. Then K*'(0; A0,,) = (1/uy)(ha/h1) changes sign at X,. This
implies (2). O

Proof of (3) of Theorem 3.2. We use the same notations as in the proof of
the previous parts. Then it holds that

B e s o
(%Im u,,,:O_au,% =0 P15 Y1 78D Vi O W1

= (am<(ﬂlv l//1>)(am<(ﬂmv l/jm>) - (am<¢m? lp1>)27
because ¢, =0 and <{¢,,¥,,> = <@,,,¥,,> =0 on the singular set. Thus,

2
(34) !Ln'l Kext(al A am)q _ am<§917 lrb1>am<¢mv l/jm> 2(am<(pmv lp1>) )
qlgégw |¢1 A Dm(”m‘

Here, the assumption of the theorem implies that the value (3.4) is greater than
or equal to J (=0). We consider the case that 6 > 0. Then it holds that

(35) (am<¢law]>)(am<¢malpm>) > 0 at P

because of (3.4). (If 6 =0, then the left-hand side of (3.5) is non-negative.)
Since ¢,, =0 and {¢;,¥,,> =0 on the singular set X,, we have

am<(olvlnbl> = <Dm(plalpl> + <¢lvalpl> = <D1¢mvl//1> + <¢17D1lpm>
= al<(om7lﬁ1> - <¢m7D1lﬁl> + 61<¢15 wm> - <D1¢17lﬁm>

= 7<D1§017l//m>
at p. Since D, is proportional to ,, by Corollary 3.5, this is written as
(36) 6n1<(ﬂlawl> = _<D1¢17lpm>

D Dm Dl71 m? m
_ D191, D2 D@y Y at p.

2
| D@
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On the other hand,

(37) 0m<¢mv l»Dm> = <Dm¢ma lr0m>
holds at p. By (3.5), (3.6) and (3.7), we have
(38) <D1¢1aDm(pm> <0

at p. Next, we compute the g-singular normal curvature x,(d;) with respect to
the direction d; at p. Let

n— PLA APy
|(pl /\“'A(pmfl‘ ,
which is the unit conormal vector field such that {¢,,...,¢,,_;,n} is positively
oriented. Then
<D1n7¢1> _ 8<naD](pl>

o) = — -
Kp(0) =~ {p1, 01> oy 01>

where

& =sgn(0mdy) = sgn(Ompl( @y, - -, @) = g0 (@y, - - -, Dingpy,)
= Sgn<(p1 ARRRAY /P Dm¢m> = Sgn<n7 Dm¢i11>'

Here, by Corollary 3.5, D,,¢,, is perpendicular to {¢;,...,¢,_;}, that is, it is
proportional to n. Thus, (3.8) yields

Sgn(K(ﬂ(al)) - Sgn(<Dm¢m,n><Dl(plvn>) = sgn{Dp@,,, D19y <0
at p. (When 0 =0, x,(0;) is non-positive.) Hence we have the conclusion.

O

Proof of Corollary 0.2. For a front bundle induced by a front in R™*!
(see Example 2.2), the sectional curvature of the singular set spanned by two
singular principal directions is equal to the product of the two singular principal
curvatures by the Gauss equation (2.5). Thus, we have Corollary 0.2 in the
introduction. O
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