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A2-SINGULARITIES OF HYPERSURFACES WITH NON-NEGATIVE

SECTIONAL CURVATURE IN EUCLIDEAN SPACE

Kentaro Saji, Masaaki Umehara and Kotaro Yamada

Abstract

In a previous work, the authors gave a definition of ‘front bundles’. Using this, we

give a realization theorem for wave fronts in space forms, like as in the fundamental

theorem of surface theory. As an application, we investigate the behavior of principal

singular curvatures along A2-singularities of hypersurfaces with non-negative sectional

curvature in Euclidean space.

0. Introduction

It is known that several Gauss-Bonnet formulas hold for closed orientable
fronts (wave fronts) in R3 (see [3], [7] and [11]). From these, it is expected that
there is an intrinsic formulation of wave fronts, as well as of their realization
problem, like as in the fundamental theorem of surface theory.

In this paper, we recall the definitions of coherent tangent bundles and front
bundles given in [11], which is an intrinsic formulation for wave fronts, and give
a necessary and su‰cient condition for a given front bundle to be realized as
a wave front in a space form (cf. Theorem 2.7). As an application, we give a
necessary and su‰cient condition for a given coherent tangent bundle over a
manifold to be realized as a smooth map into a same dimensional space form
(cf. Theorem 2.9). Another application of the realization theorem is given in [6]
to describe the duality of conformally flat Riemannian manifolds.

Moreover, using this new framework, we show the following assertion, which
is a generalization of [7, Theorem 3.1] for 2-dimensional fronts.

Theorem 0.1. Let Mm be an m-manifold and f : Mm ! Rmþ1 a wave front
with the singular set Sf . Take an open subset UðHMmÞ such that U VSf consists
only of A2-singular points. Then the following hold:
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(1) If the sectional curvature K of the induced metric is bounded on UnSf ,
then the second fundamental form of f vanishes along Sf VU.

(2) If K is non-negative on UnSf , then it is bounded and the singular principal
curvatures of f (cf. Definition 1.6) along U VSf are all non-positive.

The first assertion of [7, Theorem 5.1] is the same statement as (1). This
theorem follows from the corresponding intrinsic version of the statements given
in Theorem 3.2, which enable us to prove the similar assertions for wave fronts in
the space form of constant curvature c by a suitable modification. As a direct
consequence of the theorem, we get the following assertion, which is the second
assertion of [7, Theorem 5.1].

Corollary 0.2. Let f : U ! Rmþ1 ðmb 3Þ be a front whose singular points
are all A2-points. If the sectional curvature K is positive everywhere on the set
of regular points, the sectional curvature of the singular submanifold is non-
negative. Furthermore, if K b dð> 0Þ, then the sectional curvature of the singular
submanifold is positive.

An example satisfying the condition in the theorem and the corollary is given
in [7]. In this paper, we shall also give a new such example.

1. Coherent tangent bundles

1.1. Coherent tangent bundles and their singularities. According to [11], we
recall a general setting for intrinsic fronts: Let Mm be an oriented m-manifold
(mb 1). A coherent tangent bundle over Mm is a 5-tuple ðMm;E; h ; i;D; jÞ,
where

(1) E is a vector bundle of rank m over Mm with an inner product h ; i,
(2) D is a metric connection on ðE; h ; iÞ,
(3) j : TMm ! E is a bundle homomorphism which satisfies

DXjðYÞ �DYjðXÞ � jð½X ;Y �Þ ¼ 0ð1:1Þ

for vector fields X and Y on Mm.
In this setting, the pull-back of the metric

ds2j :¼ j�h ; ið1:2Þ

is called the j-metric, which is a positive semidefinite symmetric tensor on Mm.
A point p A Mm is called a j-singular point if jp : TpM

m ! Ep is not a bijection,
where Ep is the fiber of E at p, that is, ds2j is not positive definite at p. We
denote by Sj the set of j-singular points on Mm. On the other hand, a point
p A MmnSj is called a j-regular point. By (1.1), the pull-back connection of D
by j coincides with the Levi-Civita connection with respect to ds2j on the set of
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j-regular points. Thus, one can recognize that the concept of coherent tangent
bundles is a generalization of Riemannian manifolds (cf. [6]).

A coherent tangent bundle ðMm;E; h ; i;D; jÞ is called co-orientable if the
vector bundle E is orientable, namely, there exists a smooth non-vanishing section
m of the determinant bundle of the dual bundle E� such that

mðe1; . . . ; emÞ ¼G1ð1:3Þ
for any orthonormal frame fe1; . . . ; emg on E. The form m is determined
uniquely up to a G-ambiguity. A co-orientation of the coherent tangent bundle
E is a choice of m. An orthonormal frame fe1; . . . ; emg is called positive with
respect to the co-orientation m if mðe1; . . . ; emÞ ¼ þ1.

We give here typical examples of coherent tangent bundles:

Example 1.1 ([11]). Let Mm be an oriented m-manifold and ðNm; gÞ an
oriented Riemannian m-manifold. A Cy-map f : Mm ! Nm induces a coherent
tangent bundle over Mm as follows: Let Ef :¼ f �TNm be the pull-back of the
tangent bundle TNm by f . Then g induces a positive definite metric h ; i on Ef ,
and the restriction D of the Levi-Civita connection of g gives a connection on Ef

which is compatible with respect to the metric h ; i. We set jf :¼ df : TMm ! Ef ,
which gives the structure of the coherent tangent bundle on Mm. A necessary
and su‰cient condition for a given coherent tangent bundle over an m-manifold
to be realized as a smooth map into an m-dimensional space form will be given in
Theorem 2.9 in Section 2.

Example 1.2 ([11]). Let ðNmþ1; gÞ be an ðmþ 1Þ-dimensional Riemannian
manifold. A Cy-map f : Mm ! Nmþ1 is called a frontal if for each p A Mm,
there exists a neighborhood U of p and a unit vector field n along f defined on
U such that gðdf ðXÞ; nÞ ¼ 0 holds for any vector field X on U (that is, n is a unit
normal vector field), and the map n : U ! T1N

mþ1 is a Cy-map, where T1N
mþ1

is the unit tangent bundle of Nmþ1. Moreover, if n can be taken to be an
immersion for each p A Mm, f is called a front or a wave front. We remark that
f is a front if and only if f has a lift Lf : M

m ! PðT �Nmþ1Þ as a Legendrian
immersion, where PðT �Nmþ1Þ is the projectified cotangent bundle on Nmþ1 with
the canonical contact structure. The subbundle Ef which consists of the vectors
in the pull-back bundle f �TNmþ1 perpendicular to n gives a coherent tangent
bundle. In fact, jf : TM

m C X 7! df ðX Þ A Ef gives a bundle homomorphism.
Let ‘ be the Levi-Civita connection on Nmþ1. Then by taking the tangential
part of ‘, it induces a connection D on Ef satisfying (1.1). Let h ; i be a metric
on Ef induced from the Riemannian metric on Nmþ1. Then D is a metric
connection on Ef . Thus we get a coherent tangent bundle ðMm;Ef ; h ; i;D; jf Þ.
Since the unit tangent bundle can be canonically identified with the unit cotan-
gent bundle, the map n : U ! T1N

mþ1 can be considered as a lift of Lf jU . A
frontal f is called co-orientable if there is a unit normal vector field n globally
defined on Mm. When Nmþ1 is orientable, the coherent tangent bundle is co-
orientable if and only if so is f .
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From now on, we assume that ðMm;E; h ; i;D; jÞ is co-orientable, and fix a
co-orientation m on the coherent tangent bundle. (If E is not co-orientable, one
can take a double cover p : M̂Mm ! Mm such that the pull-back of E by p is a co-
orientable coherent tangent bundle over M̂Mm.)

Definition 1.3 ([11]). The signed j-volume form dÂAj and the (unsigned )
j-volume form dAj are defined as

dÂAj :¼ j�m ¼ lj du15� � �5dum; dAj :¼ jljj du15� � �5dum;ð1:4Þ

where ðU ; u1; . . . ; umÞ is a local coordinate system of Mm compatible with the
orientation of Mm, and

lj ¼ m j1; . . . ; jmð Þ jj ¼ j
q

quj

� �
; j ¼ 1; . . . ;m

� �
:ð1:5Þ

We call the function lj the j-Jacobian function on U . The set of j-singular
points on U is expressed as

Sj VU :¼ fp A U ; ljðpÞ ¼ 0g:ð1:6Þ

Both dÂAj and dAj are independent of the choice of positively oriented local
coordinate system ðU ; u1; . . . ; umÞ, and give two globally defined m-forms on Mm.
(dÂAj is Cy-di¤erentiable, but dAj is only continuous.) When Mm has no
j-singular points, the two forms coincide up to sign. We set

Mþ
j :¼ fp A MmnSj; dÂAjðpÞ ¼ dAjðpÞg;

M�
j :¼ fp A MmnSj; dÂAjðpÞ ¼ �dAjðpÞg:

The j-singular set Sj coincides with the boundary qMþ
j ¼ qM�

j .

A j-singular point p ðA SjÞ is called non-degenerate if dlj does not vanish
at p. On a neighborhood of a non-degenerate j-singular point, the j-singular
set consists of an ðm� 1Þ-submanifold in Mm, called the j-singular submanifold.
If p is a non-degenerate j-singular point, the rank of jp is m� 1. The direction
of the kernel of jp is called the null direction. Let h be the smooth (non-
vanishing) vector field along the j-singular submanifold Sj, which gives the null
direction at each point in Sj.

Definition 1.4 (A2-singular points, [11]). Let ðMm;E; h ; i;D; jÞ be a
coherent tangent bundle. A non-degenerate j-singular point p A Mm is called
an A2-singular point or an A2-point of j if the null direction hðpÞ is transversal
to the singular submanifold.

It should be remarked that for the definition of A2-singularities, the condition
(1.1) is not required (cf. [11]).
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We set

l 0
j :¼ dljð~hhÞ;ð1:7Þ

where ~hh is a vector field on a neighborhood U of p which coincides with h on
Sj VU . Then p is an A2-point if and only if the function l 0

j does not vanish
at p (see [10, Theorem 2.4]).

When m ¼ 2 and ðM 2;E; h ; i;D; jÞ comes from a front in 3-manifold as
in Example 1.2 (resp. a map into 2-manifold as in Example 1.1), an A2-point
corresponds to a cuspidal edge (resp. a fold) (cf. [9]).

1.2. Singular curvatures. Let ðMm;E; h ; i;D; jÞ be a co-oriented coherent
tangent bundle and fix a j-singular point p A Sj which is an A2-point. Then
there exists a neighborhood U of p such that Sj VU consists of A2-points.
Now we define the singular shape operator as follows: Since the kernel of jp is
transversal to Sj at p, jjTðSjVUÞ is injective, where U is a su‰ciently small
neighborhood of p. Then the metric ds2j is positive definite on Sj VU . We take
an orthonormal frame field e1; e2; . . . ; em�1 on Sj VU with respect to ds2j. With-
out loss of generality, we may assume that ðe1; e2; . . . ; em�1Þ is smoothly extended
on U as an orthonormal ðm� 1Þ-frame field. Then we can take a unique smooth
section n : U ! E (called the conormal vector field ) so that ðjðe1Þ; . . . ; jðem�1Þ; nÞ
gives a positively oriented orthonormal frame field on E. Now, we set

SjðX Þ :¼ �sgnðdljðhðqÞÞÞj�1ðDXnÞ ðX A TqSj; q A Sj VUÞ;ð1:8Þ

where the non-vanishing null vector field h is chosen so that ðe1; . . . ; em�1; hÞ is
compatible with respect to the orientation of Mm. It holds that

sgnðdljðhðqÞÞÞ ¼
1 if hðqÞ points toward Mþ

j ;

�1 if hðqÞ points toward M�
j :

(
ð1:9Þ

Since j is injective on each tangent space of Sj and DXn A jðTSjÞ, the inverse
element j�1ðDXnÞ is uniquely determined. Thus we get a bundle endomorphism
Sj : TSj ! TSj which is called the singular shape operator on Sj.

Fact 1.5 ([11]). The definition of the singular shape operator Sj is inde-
pendent of the choice of an orthonormal frame field e1; . . . ; em�1, the choice of an
orientation of Mm, and the choice of a co-orientation of E. Moreover, it holds
that

ds2jðSjðX Þ;Y Þ ¼ ds2jðX ;SjðYÞÞ ðX ;Y A TqSj; q A SjÞ;

namely, Sj is symmetric with respect to ds2j.

Definition 1.6 ([11]). Let p A Sj be an A2-point of j. Then

kjðX Þ :¼ ds2jðSjðXÞ;XÞ=ds2jðX ;XÞ; ðX A TpSjnf0gÞð1:10Þ
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is called the j-singular normal curvature at p with respect to the direction X .
The eigenvalues of Sj are called the j-singular principal curvatures, which give the
critical values of the singular normal curvature on TpSj.

In [11, Theorem 2.13], it was shown that at least one of the j-singular
principal curvatures diverges to �y at non-degenerate singular points other than
A2-points.

When m ¼ 2, the j-singular principal curvature is called (simply) the
j-singular curvature, which is also denoted by kj. This definition of the singular
curvature is the same as in [7, (1.7)] and [8, (1.6)]. More precisely, kj is
computed as follows: Let p A Sj be an A2-point of j. Then the j-singular
set Sj is parametrized by a regular curve gðtÞ (t A I HR) on a neighborhood of p,
and gðtÞ is an A2-point of j for each t A I . Since _ggðtÞ ( _ ¼ d=dt) is not a null-
direction, jð _ggðtÞÞ0 0. Take a section nðtÞ of E along g such that fjð _ggÞ=jjð _ggÞj; ng
gives a positive orthonormal frame field on E along g, where jjð _ggÞj ¼
hjð _ggÞ; jð _ggÞi1=2. Then we have

kjðtÞ :¼ kjð _ggðtÞÞ ¼ �sgnðdljðhðtÞÞÞ
hDd=dtnðtÞ; jð _ggðtÞÞi

jjð _ggðtÞÞj2
;ð1:11Þ

where hðtÞ is a null-vector field along gðtÞ such that f _ggðtÞ; hðtÞg is compatible with
the orientation of M 2. By (1.9), it holds that

sgnðdljðhðtÞÞÞ ¼
1 if Mþ

j lies on the left-hand side of g;

�1 if M�
j lies on the left-hand side of g:

(
ð1:12Þ

2. The realization of frontal bundles

First, we recall a definition of frontal bundles given in [11], and consider a
realization problem of them as fronts in space forms.

2.1. Front bundles. Let Mm be an oriented m-manifold and
ðMm;E; h ; i;D; jÞ a co-orientable coherent tangent bundle over Mm. If there
exists another bundle homomorphism c : TMm ! E such that ðMm;E; h ; i;D;cÞ
is also a coherent tangent bundle and the pair ðj;cÞ of bundle homomorphisms
satisfies a compatibility condition

hjðX Þ;cðYÞi ¼ hjðY Þ;cðXÞi;ð2:1Þ
then ðMm;E; h ; i;D; j;cÞ is called a frontal bundle. The bundle homomor-
phisms j and c are called the first homomorphism and the second homomorphism,
respectively. We set

IðX ;YÞ :¼ ds2jðX ;YÞ ¼ hjðXÞ; jðY Þi;

IIðX ;YÞ :¼ �hjðX Þ;cðYÞi;

IIIðX ;YÞ :¼ ds2cðX ;Y Þ ¼ hcðXÞ;cðYÞi
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for X ;Y A TpM
m ( p A Mm), and we call them the first, the second and the third

fundamental forms, respectively. They are all symmetric covariant tensors on Mm.

Definition 2.1 ([11]). A frontal bundle ðMm;E; h ; i;D; j;cÞ is called a
front bundle if

KerðjpÞVKerðcpÞ ¼ f0gð2:2Þ
holds for each p A Mm.

Example 2.2 ([11]). Let ðNmþ1ðcÞ; gÞ be an ðmþ 1Þ-dimensional space form,
that is, the simply connected complete Riemannian ðmþ 1Þ-manifold of con-
stant curvature c, and denote by ‘ the Levi-Civita connection on Nmþ1ðcÞ. Let
f : Mm ! Nmþ1ðcÞ be a co-orientable frontal. Then there exists a globally
defined unit normal vector field n. Since the coherent tangent bundle Ef given in
Example 1.2 is orthogonal to n, we can define a bundle homomorphism

cf : TpM
m C X 7! ‘Xn A Ep ðp A MmÞ:

Then ðMm;Ef ; h ; i;D; jf ;cf Þ is a frontal bundle (we shall prove this in Prop-
osition 2.4 later). Moreover, this is a front bundle in the sense of Definition 2.1
if and only if f is a front, which is equivalent to I þ III being positive definite.

Remark 2.3. As seen above, if f : Mm ! Nmþ1ðcÞ is a front, then

ðMm;Ef ; h ; i;D; jf ;cf Þ
is a front bundle. Since j ¼ jf and c ¼ cf have the completely same conditions,
the third fundamental form III plays the same role as I by definition.
This means that we can reverse the roles of I and III .

When Nmþ1ðcÞ is the unit sphere Smþ1 (i.e. c ¼ 1), then the unit normal
vector field n along f can be considered as a map n : Mm ! Smþ1 and the third
fundamental form of f coincides with the first fundamental form of n.

When Nmþ1ðcÞ is the Euclidean space Rmþ1 (i.e. c ¼ 0), then the unit normal
vector field n along f can be considered as a map n : Mm ! Sm and the third
fundamental form of f coincides with the pull-back of the canonical metric of the
unit sphere Sm by n.

Next, we cosider the case that Nmþ1ðcÞ is the hyperbolic space Hmþ1 (i.e.
c ¼ �1):

Hmþ1 :¼ fp ¼ ðp0; . . . ; pmþ1Þ A Rmþ2
1 ; p � p ¼ �1; p0 > 0g;ð2:3Þ

where ‘�’ is the canonical Lorentzian inner product with singuature ð�;þ; . . . ;þÞ
of the Lorentz-Minkowski space Rmþ2

1 . The unit normal vector field n along f
can be considered as a map n : Mm ! Smþ1

1 and the third fundamental form of f
coincides with the first fundamental form of n, where

Smþ1
1 :¼ fp A Rmþ2

1 ; p � p ¼ 1gð2:4Þ
is the de Sitter space.
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Proposition 2.4. Let f : Mm ! Nmþ1ðcÞ be a co-orientable frontal, and n a
unit normal vector field. Then ðMm;Ef ; h ; i;D; jf ;cf Þ as in Example 2.2 is a

frontal bundle. Moreover, the following identity (i.e. the Gauss equation) holds
(We denote by ‘‘det’’ the determinant of matrices.):

hRDðX ;Y Þx; zið2:5Þ

¼ c det
hjðY Þ; xi hjðY Þ; zi
hjðX Þ; xi hjðX Þ; zi

� �
þ det

hcðY Þ; xi hcðY Þ; zi
hcðX Þ; xi hcðX Þ; zi

� �
;

where j ¼ jf and c ¼ cf , X and Y are vector fields on Mm, x and z are sections
of Ef , and RD is the curvature tensor of the connection D:

RDðX ;Y Þx :¼ DXDYx�DYDXx�D½X ;Y �x:

Furthermore, this frontal bundle is a front bundle if and only if f is a front.

Proof. Let Rc be the curvature tensor of Nmþ1ðcÞ. Since

‘Xx ¼ DXx� hcf ðXÞ; xin

holds for the Levi-Civita connection ‘ of Nmþ1ðcÞ, we have the following
identity:

Rcðdf ðXÞ; df ðY ÞÞx ¼ RDðX ;YÞx� hcf ðYÞ; xicf ðXÞ þ hcf ðX Þ; xicf ðY Þð2:6Þ

� ðhDXcf ðYÞ; xi� hDYcf ðX Þ; xi� hcf ð½X ;Y �Þ; xiÞn:

Taking the normal component, we get

hDXcf ðYÞ; xi� hDYcf ðX Þ; xi ¼ hcf ð½X ;Y �Þ; xi:

Since x is arbitrary, this proves that ðMm;Ef ; h ; i;D;cf Þ is a coherent tangent
bundle. Moreover,

hjf ðX Þ;cf ðYÞi ¼ gðdf ðXÞ;‘YnÞ ¼ hjf ðYÞ;cf ðXÞi:

Hence ðMm;Ef ; h ; i;D; jf ;cf Þ is a frontal bundle.
On the other hand, taking the tangential component of (2.6), we get

Rcðdf ðX Þ; df ðYÞÞx ¼ RDðX ;Y Þx� hcf ðY Þ; xicf ðX Þ þ hcf ðXÞ; xicf ðYÞ:

Since ðNmþ1ðcÞ; gÞ is of constant curvature c, it holds that

Rcðdf ðXÞ; df ðYÞÞx ¼ cðhjf ðY Þ; xijf ðXÞ � hjf ðXÞ; xijf ðY ÞÞ;

and hence we get the Gauss equation (2.5). r

Definition 2.5. For a real number c, a frontal bundle ðMm;E; h ; i;D; j;cÞ
is said to be c-integrable if (2.5) holds.
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2.2. A realization of frontal bundles. Now, we give the fundamental
theorem for frontal bundles. To state the theorem, we define equivalence of
frontal bundles:

Definition 2.6. Two frontal bundles over Mm are isomorphic or equivalent
if there exists an orientation preserving bundle isomorphism between them which
preserves the inner products, the connections and the bundle maps.

Let ðNmþ1ðcÞ; gÞ be the ðmþ 1Þ-dimensional space form of constant curva-
ture c.

Theorem 2.7 (Realization of frontal bundles). Let ðMm;E; h ; i;D; j;cÞ be
a c-integrable frontal bundle over a simply connected manifold Mm, where c is
a real number. Then there exists a frontal f : Mm ! Nmþ1ðcÞ such that E is
isomorphic to Ef induced from f as in Proposition 2.4. Moreover, such an f
is unique up to orientation preserving isometries of Nmþ1ðcÞ.

Let Smþ1
1 be the de Sitter space of constant sectional curvature 1. As

mentioned in Remark 2.3, Smþ1
1 can be identified with the hyperquadric in the

Lorentz-Minkowski space Rmþ2
1 (see (2.4)). A Cy-map f : Mm ! Smþ1

1 is called
a frontal if there exists a Cy-map

n : Mm ! Hmþ1 :¼ fp ¼ ðp0; . . . ; pmþ1Þ A Rmþ2
1 ; p � p ¼ �1; p0 > 0g

such that dn � f ¼ n � df ¼ 0. Moreover, f is called a (wave) front if ð f ; nÞ : Mm

! Rmþ2
1 � Rmþ2

1 is an immersion. By definition, f is a front if and only if n
also is. Thus, by interchanging the roles of the first homomorphism and the
second homomorphism, we get the following

Corollary 2.8. Let ðMm;E; h ; i;D; j;cÞ be a ð�1Þ-integrable frontal
bundle over a simply connected manifold Mm. Then there exists a space-like
frontal n : Mm ! Smþ1

1 such that ðMm;E; h ; i;D;c; jÞ is isomorphic to En induced
from n. Moreover, such a n is unique up to orientation preserving isometries
of Smþ1

1 .

Proof of Theorem 2.7. To prove Theorem 2.7, we write down the funda-
mental equations for frontals. Without loss of generality, we may assume that
Mm is simply connected domain U HRm. First, we consider the case c ¼ 0.
Let f : U ! Rmþ1 ¼ Nmþ1ð0Þ be a frontal, where we consider elements in
the Euclidean space Rmþ1 as column vectors. Then the unit normal vector
field n can be considered as a map n : U ! Sm HRmþ1, and ‘n ¼ dn, where ‘
is the Levi-Civita connection of Rmþ1. Thus the corresponding frontal bundle
is ðU ;Ef ; h ; i;D; j :¼ df ;c :¼ dnÞ, where Ef ¼ fðp; xÞ A U � Rmþ1; x � nðpÞ ¼ 0g.
Take a positively oriented orthonormal frame field (called an adopted frame field
of f )

F :¼ ðe1; . . . ; emþ1Þ : U ! SOðmþ 1Þð2:7Þ
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of Rmþ1 along f such that emþ1 ¼ n. Since n ¼ emþ1, fe1; . . . ; emg is an ortho-
normal frame field of Ef . Let o

j
i be the connection forms of D with respect to

this frame, as 1-forms on U :

Dei ¼
Xm
l¼1

o l
i el ; o

j
i ¼ �o i

j ði; j ¼ 1; . . . ;mÞ:ð2:8Þ

Define an soðmÞ-valued 1-form W by W ¼ ðo j
i Þ, where soðmÞ is the Lie algebra of

SOðmÞ. Next, we define Rm-valued 1-forms g and h as

g :¼ tðg1; . . . ; gmÞ; h :¼ tðh1; . . . ; hmÞð2:9Þ
with

g j :¼ hj; eji; h j :¼ �hc; eji ð j ¼ 1; . . . ;mÞ;

where Rm is considered as a column vector space. Then, by definition, the
adapted frame F in (2.7) satisfies the ordinary di¤erential equation

df ¼
Xm
l¼1

glel ; dF ¼ F~WW; ~WW ¼ W �h
th 0

� �
:ð2:10Þ

Next, we consider the case c > 0. Without loss of generality, we may
assume that c ¼ 1. In this case, Nmþ1ð1Þ can be considered as the unit sphere
Smþ1ðHRmþ2Þ centered at the origin. Let f : U ! Smþ1 be a frontal with the
unit normal vector field n : U ! Smþ1. Then the coherent tangent bundle Ef is
written as

Ef ¼ fðp; xÞ A U � Rmþ1; x � f ðpÞ ¼ x � nðpÞ ¼ 0gð2:11Þ

where ‘‘�’’ is the canonical inner product of Rmþ2. The induced inner product
h ; i of Ef is the restriction of ‘‘�’’. Take an SOðmþ 2Þ-valued function (an
adopted frame) F :¼ ðe0; . . . ; emþ1Þ : U ! SOðmþ 2Þ such that e0 :¼ f , emþ1 :¼ n.
Since dn � f ¼ dn � n ¼ 0, dn is an Ef -valued 1-form, and then it holds that

‘n ¼ dn;

where ‘ is the Levi-Civita connection of Smþ1. Thus, setting j ¼ df and c ¼ dn,
we have the frontal bundle. Denoting by o

j
i (i; j ¼ 1; . . . ;m) the connection

forms of D with respect to fejg, the adapted frame field F satisfies

dF ¼ F~WW; ~WW ¼
0 � tg 0

g W �h

0 th 0

0
B@

1
CA;ð2:12Þ

where W ¼ ðo j
i Þ, and g and h are as in (2.9) in the case of c ¼ 0.

Finally, we consider the case c < 0. We may assume that c ¼ �1. Then
Nmþ1ð�1Þ is the hyperbolic space Hmþ1 as in (2.3). Let f : U ! Hmþ1 be a
frontal and n the unit normal vector field. Then n is a space-like frontal in de
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Sitter space Smþ1
1 as in (2.4), and the coherent tangent bundle is written like as

(2.11), using the canonical Lorentzian inner product. Take an SO0ð1;mþ 1Þ-
valued function (an adapted frame) F :¼ ðe0; . . . ; emþ1Þ : U ! SO0ð1;mþ 1Þ such
that e0 :¼ f , emþ1 :¼ n, where SO0ð1;mþ 1Þ is the identity component of the
group of linear isometries Oð1;mþ 1Þ of Rmþ2

1 . Similar to the case of c > 0, it
holds that ‘n ¼ dn, and then we can set j ¼ df , c ¼ dn. Hence the adapted
frame field F satisfies

dF ¼ F~WW; ~WW ¼
0 tg 0

g W �h

0 th 0

0
B@

1
CA;ð2:13Þ

as well as the case of c > 0, where W ¼ ðo j
i Þ, g and h are as in (2.9).

Now, in these three situations, the Gauss equation (2.5) and the Codazzi
equation (1.1) for c can be considered as the integrability conditions for the
di¤erential equations (2.10), (2.12) and (2.13). Thus we get the assertion. r

We give here several applications of the realization theorem.

Theorem 2.9 (Maps into NmðcÞ of an m-manifold). Let Mm be a simply
connected domain on Rm and ðMm;E; h ; i;D; jÞ a coherent tangent bundle over
Mm. Assume that for any vector fields X , Y on Mm and a section x of E, it
holds that

RDðX ;YÞx ¼ cðhjðYÞ; xijðXÞ � hjðX Þ; xijðY ÞÞ;ð2:14Þ
where RD is the curvature tensor of D. Then there exists a Cy-map f : Mm !
NmðcÞ into the m-dimensional simply connected space form NmðcÞ such that E and
Ef (as in Example 1.1) are isomorphic.

Proof. We may set Mm ¼ UðHRmÞ. Consider the trivial bundle map
0 : TMm C X 7! 0 A E. Then by (2.14), ðU ;E; h ; i;D; j; 0Þ is a c-integrable
frontal bundle, and then there exists the corresponding frontal ~ff : U !
Nmþ1ðcÞ. Since c ¼ 0, the image of ~ff lies in a totally geodesic hypersurface
of Nmþ1ðcÞ. r

2.3. Applications to surface theory. Now we introduce applications for
surface theory. To state them, we rewrite the c-integrability (2.5) for the
2-dimensional case. Let ðM 2;E; h ; i;D; j;cÞ be a frontal bundle over a
2-manifold M 2. Take a (local) orthonormal frame field fe1; e2g of E, and
take a 1-form o as

De1 ¼ �oe2; De2 ¼ oe1;ð2:15Þ
that is, oð¼ o1

2Þ is the connection form of D with respect to the frame fe1; e2g.
Then one can easily see that ðM 2;E; h ; i;D; j;cÞ is c-integrable if and only if

do ¼ caþ bð2:16Þ
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holds, where a and b are 2-forms on M 2 defined by

aðX ;Y Þ ¼ hjðXÞ; e1ihjðY Þ; e2i� hjðXÞ; e2ihjðY Þ; e1i;
bðX ;Y Þ ¼ hcðXÞ; e1ihcðY Þ; e2i� hcðXÞ; e2ihcðY Þ; e1i:

Remark 2.10. Let Kj be the Gaussian curvature of the first fundamental
form I ¼ ds2j. Then

do ¼ Kj dÂAjð2:17Þ

holds, where dÂAj is the signed j-volume form defined in Definition 1.3.

Theorem 2.11 (Fronts of constant negative extrinsic curvature). Let U be a
simply connected domain of R2 and c A R a constant. Take a smooth real-valued
function y ¼ yðu; vÞ on U which satisfies the equation:

yuv ¼ ð1� cÞ sin y;ð2:18Þ

where yuv :¼ q2y=ðquqvÞ. Then there exists a front f : U ! N 3ðcÞ whose funda-
mental forms are given by

I ¼ hj; ji ¼ du2 þ 2 cos y dudvþ dv2;

II ¼ �hj;ci ¼ 2 sin y dudv;

III ¼ hc;ci ¼ du2 � 2 cos y dudvþ dv2:

ð2:19Þ

In particular, the Gaussian curvature of f is identically c� 1 on UnS, where
S ¼ fy1 0 ðmod pÞg is the singular set of f . Conversely, any front f : U !
N 3ðcÞ whose regular set Rf :¼ UnSf is dense in U and whose Gaussian curvature
is c� 1 on Rf is given in this manner.

Proof. Let E ¼ U � R2 be the trivial bundle and take the canonical ortho-
normal frame fa1; a2g. Define the bundle homomorphisms j and c from TU
to E as

j :¼ cos
y

2
ðduþ dvÞa1 � sin

y

2
ðdu� dvÞa2;

c :¼ �sin
y

2
ðduþ dvÞa1 � cos

y

2
ðdu� dvÞa2:

ð2:20Þ

Take a connection D of E as

Da1 ¼ �oa2; Da2 ¼ oa1; o ¼ 1

2
ðyu du� yv dvÞ:ð2:21Þ

One can directly show that (2.16) is equivalent to (2.18). Then we have the
corresponding front f . In particular, the fundamental forms of f are given by
(2.19). Hence the coordinate system ðu; vÞ of U forms the asymptotic Chebyshev

401A2-singularities of hypersurfaces



net of f , and the Gaussian curvature is c� 1. Moreover, y is the angle between
two asymptotic directions with respect to the first fundamental form.

Conversely, suppose that f : U ! N 3ðcÞ is a front such that the regular set
Rf of f is dense in U and f has constant Gaussian curvature c� 1 on Rf .
Then the sum I þ III of the first and the third fundamental forms is a flat metric
on U because Rf is dense. Since U is simply connected, there is an immersion
F : U ! ðR2; u; vÞ such that I þ III ¼ F�ð2ðdu2 þ dv2ÞÞ. The asymptotic lines
of f on Rf are geodesic lines with respect to the metric I þ III , and two
asymptotic directions are mutually orthogonal with respect to the metric I þ III .
Thus by rotating the coordinate system ðu; vÞ, we may assume that the inverse
image of u, v-lines by F consists of asymptotic lines. Then the fundamental
forms are given by (2.19) on FðRf Þ. Since Rf is a dense set, (2.19) holds on
FðUÞ, which proves the assertion. r

In particular, we have the following assertion on the realization of fronts of
constant negative curvature �1 in R3 and flat front in S3, respectively.

Corollary 2.12. Let U be a simply connected domain of R2, and take a
smooth real-valued function y on U which satisfies

yuv ¼ sin y ðresp: yuv ¼ 0Þ:ð2:22Þ
Then there exists a front f : U ! R3 (resp. S3) such that the Gaussian curvature
of f is identically �1 (resp. 0) on UnS, where S ¼ fy1 0 ðmod pÞg is the singular
set.

Theorem 2.13 (Fronts of constant positive curvature). Let U be a simply
connected domain of C ¼ R2, and take a smooth real-valued function y on U which
satisfies the sinh-Gordon equation:

1

4
ðyuu þ yvvÞð¼ yzzÞ ¼ �sinh y;ð2:23Þ

where z ¼ uþ iv is the complex coordinate on C ¼ R2. Then there exists a front
f : U ! R3 without umbilic points, whose fundamental forms are given by

I ¼ hj; ji ¼ dz2 þ 2 cosh y dzdzþ dz2;

¼ 4fcosh2ðy=2Þ du2 þ sinh2ðy=2Þ dv2g;
II ¼ �hj;ci ¼ 2 sinh y dzdz;

¼ 4 coshðy=2Þ sinhðy=2Þðdu2 þ dv2Þ;

III ¼ hc;ci ¼ �dz2 þ 2 cosh y dzdz� dz2;

¼ 4fsinh2ðy=2Þ du2 þ cosh2ðy=2Þ dv2g:

ð2:24Þ

Conversely, any front f : U ! R3 whose regular set Rf ¼ UnSf is dense in U and
whose Gaussian curvature is 1 on Rf without umbilic points is given in this manner.
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Proof. Let E ¼ U � R2 be the trivial bundle and take the canonical ortho-
normal frame fa1; a2g. Define the bundle homomorphisms j and c as

j :¼ 2 cosh
y

2
du

� �
a1 þ sinh

y

2
dv

� �
a2

� �

¼ cosh
y

2
ðdzþ dzÞa1 � i sinh

y

2
ðdz� dzÞa2;

c :¼ �2 sinh
y

2
du

� �
a1 þ cosh

y

2
dv

� �
a2

� �

¼ �sinh
y

2
ðdzþ dzÞa1 þ i cosh

y

2
ðdz� dzÞa2;

ð2:25Þ

and define a connection D on E by a connection form

o ¼ 1

2
ðyv du� yu dvÞ ¼

i

2
ðyz dz� yz dzÞ:ð2:26Þ

One can directly show that (2.16) is equivalent to (2.18). Then we have the
corresponding front f . In particular, the fundamental forms of f are given by
(2.24). Hence ðu; vÞ forms a curvature line coordinate system, and the Gaussian
curvature is 1.

Conversely, suppose that f : U ! R3 is a front such that the regular set
Rf of f is dense in U and f has constant Gaussian curvature 1 on Rf . Then
I � III gives a flat Lorentzian metric. Since U is simply connected, there is an
immersion F : U ! ðR2; u; vÞ such that I � III ¼ 4F�ðdu2 � dv2Þ. The curvature
lines of f on Rf are geodesic lines with respect to the metric I � III , and the two
principal directions are orthogonal with respect to I � III . Thus by a Lorentzian
rotation of the coordinate system ðu; vÞ, we may assume that the inverse image
of u, v-lines under F consists of principal curvature lines. Then the fundamental
forms are given by (2.24) on FðRf Þ. Since Rf is a dense set, (2.24) holds on
FðUÞ, which proves the assertion. r

3. A relationship between sectional curvatures and singular principal
curvatures

In this section, we investigate a relationship between sectional curvatures
(cf. (3.2)) near A2-singular points of hypersurfaces (as wave fronts) and their
singular principal curvatures.

We fix a front bundle ðMm;E; h ; i;D; j;cÞ over an m-dimensional manifold
Mm.

Definition 3.1. When p A Mm is not a singular point of j, we define

K extðX5Y Þ :¼ IIðX ;XÞIIðY ;YÞ � IIðX ;Y Þ2

IðX ;XÞIðY ;YÞ � IðX ;Y Þ2
ðX ;Y A TpM

mÞ;ð3:1Þ
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which is called the extrinsic curvature at p with respect to the X5Y -plane in
TpM

m.
If a front bundle ðMm;E; h ; i;D; j;cÞ is induced from a front in Nmþ1ðcÞ,

then it holds that

K extðX5YÞ :¼ KðX5Y Þ þ c ðX ;Y A TpM
mÞ;ð3:2Þ

where KðX5YÞ is the sectional curvature at each j-regular point p of Mm.
Theorem 0.1 given in the introduction is a direct consequence of the following
assertion:

Theorem 3.2. Let ðMm;E; h ; i;D; j;cÞ be a front bundle over an oriented
m-manifold Mm. Take an A2-point p A Mm of j. Then the following hold:

(1) Suppose that K ext is bounded except on the singular set near p. Then
IIðX ;Y Þ ¼ 0 holds for all X ;Y A TpM

m.
(2) If K ext does not change sign on a neighborhood of p with the singular set

removed, then K ext is bounded on that neighborhood of p with the singular
set removed.

(3) If K ext is non-negative except on the singular set near p, then the singular
principal curvatures at p are all non-positive. Furthermore, if there exists
a Cy-vector field ~hh defined on a neighborhood U of p and a constant
d > 0 such that the restriction of ~hh on U VSj gives a null vector field,
and K extðX5~hhÞb d holds on UnSj for each Cy-vector field X on U
satisfying X5~hh0 0, then the singular principal curvatures are all negative
at p.

When m ¼ 2, the assertion has been proved in [7]. The first assertion of
[7, Theorem 5.1] is essentially same statement as (1). We shall prove it for
general m.

Example 3.3. Consider a front

f : M 3 :¼ S2 � R C ðp; tÞ 7! ððaþ t2Þp; t3Þ A R4;

where S2 :¼ fðx; y; zÞ A R3; x2 þ y2 þ z2 ¼ 1g and a is a positive constant. The
singular set of f is S :¼ S2 � f0g, which consists of A2-points, and q=qt gives
a null vector field. We set ~hh ¼ qt, which is an extended null vector field. One
can easily see that this front satisfies the condition (3) of Theorem 3.2, and all
principal curvatures are equal to �1=a.

First, we choose a coordinate system around an A2-singular point:

Lemma 3.4. Let ðMm;E; h ; i;D; j;cÞ be a frontal bundle over an oriented
m-manifold Mm, and let p A Mm be an A2-singular point of j. We fix X A
TpSjnf0g. Then there exists a local coordinate system ðu1; . . . ; umÞ of Mm on a
neighborhood U of p such that
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(1) The j-singular set Sj is parametrized as

Sj VU ¼ fðu1; . . . ; umÞ; um ¼ 0g:
(2) X ¼ q1 at p.
(3) qm is a null vector field on Sj VU.
(4) For each j ¼ 1; . . . ;m� 1, hjj;Dmjmi ¼ 0 holds at p.

Here, we denote

qj ¼
q

quj
; jj ¼ jðqjÞ; cj ¼ cðqjÞ; and Dj ¼ Dqj ð j ¼ 1; . . . ;mÞ:

Proof. Since p is a non-degenerate singular point, the singular set Sj is a
smooth hypersurface on a neighborhood of p. Moreover, the null vector field is
transversal to Sj because p is an A2-point. Then one can choose a coordinate
system ðu1; . . . ; umÞ around p such that (1)–(3) hold.

We take a new coordinate system ð~uu1; . . . ; ~uumÞ as

~uuj :¼ uj þ ðumÞ2aj ð j ¼ 1; . . . ;m� 1Þ;
~uum :¼ um;

�

where aj ( j ¼ 1; . . . ;m� 1) are constants. Then we have

q

q~uuj
¼ q

quj
ð j ¼ 1; . . . ;m� 1Þ;

q

q~uum
¼ �2um

Xm�1

j¼1

aj
q

quj

 !
þ q

qum
;

8>>>><
>>>>:

and thus

j
q

q~uum

� �
¼ j

q

qum

� �
� 2um

Xm�1

j¼1

ajj
q

quj

� �
:

Since q=qum ¼ q=q~uum at p, we have that

Dq=q~uumj
q

q~uum

� �
¼ Dmjm � 2

Xm�1

j¼1

ajjj

at p. If we set hij :¼ hji; jji, then (4) is equivalent to the equations

2
Xm�1

j¼1

ajhjk ¼ hDmjm; jki ðk ¼ 1; 2; . . . ;m� 1Þ:ð3:3Þ

Since ðhjkÞj;k¼1;...;m�1 is a non-singular matrix, we can choose a1; . . . ; am�1 so that
(3.3) holds, and ð~uu1; . . . ; ~uumÞ satisfies (1)–(4). r
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Corollary 3.5. Let ðu1; . . . ; umÞ be a coordinate system as in Lemma 3.4,
and assume ðMm;E; h ; i;D; j;cÞ a front bundle. Then both Dmjm and cm are
non-zero vectors perpendicular to jj ð j ¼ 1; . . . ;m� 1Þ at p. In particular, Dmjm
is proportional to cm at p.

Proof. By (3) of Lemma 3.4, jm ¼ 0 holds on Sj. Since p A Sj is a non-
degenerate singular point, dljðpÞ0 0. Then by (1), it holds that qmljðpÞ0 0:

qmlj ¼ qmmðj1; . . . ; jmÞ ¼ mðj1; . . . ; jm�1;DmjmÞ0 0 ðat pÞ:

Hence fj1; . . . ; jm�1;Dmjmg is linearly independent at p. That is, Dmjm is a
non-zero vector which is perpendicular to fj1; . . . ; jm�1g at p.

On the other hand, by (2.1), we have

hjj;cmi ¼ hcj; jmi ¼ 0 ð j ¼ 1; . . . ;m� 1Þ

on Sj. Thus cmðpÞ is perpendicular to fj1ðpÞ; . . . ; jm�1ðpÞg, that is, propor-
tional to Dmjm at p. Here, by (2.2), jmðpÞ ¼ 0 implies cmðpÞ0 0. Thus we
have the conclusion. r

Proof of (1) and (2) of Theorem 3.2. Let ðu1; . . . ; umÞ be the local coordinate
system on a neighborhood of p as in Lemma 3.4, and set

h1 :¼ hj1; j1ihjm; jmi� hj1; jmi
2;

h2 :¼ hj1;c1ihjm;cmi� hjm;c1i
2

on a neighborhood of p. Then K extðq15qmÞ ¼ h2=h1 on UnSj. Since jm ¼ 0
on the j-singular set UnSj ¼ fum ¼ 0g,

h1 ¼ 0;
qh1

qum
¼ 0; h2 ¼ 0;

whenever um ¼ 0. Then there exist smooth functions ~hh1 and ~hh2 on a neighbor-
hood of p such that

h1 ¼ ðumÞ2~hh1 and h2 ¼ um~hh2:

Since jm ¼ 0 on fum ¼ 0g, and since fj1;Dmjmg are linearly independent, as seen
in the proof of Corollary 3.5,

2~hh1jum¼0 ¼
q2

qu2m

����
um¼0

h1

¼ hj1; j1ihDmjm;Dmjmi� hj1;Dmjmi
2

¼: jj15Dmjmj
2 > 0
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holds on the singular set near p. On the other hand, we have

~hh2jum¼0 ¼
q

qum

����
um¼0

h2 ¼ hj1;c1ihDmjm;cmi:

We assume that K extðq15qmÞ is bounded on UnSj. Then h2=h1 ¼ ~hh2=ðum~hh1Þ is

bounded on UnSj. Thus, ~hh2 must vanish on the singular set near p. Here,
hDmjm;cmi0 0 holds on a neighborhood of p because of Corollary 3.5.
Thus we have hj1;c1i ¼ �IIðX ;X Þ ¼ 0 on a singular set near p. Here, since
IIðqm; qmÞ ¼ �hjm;cmi ¼ 0 and X is an arbitrary vector on TpSj, IIðY ;YÞ ¼ 0
holds for all Y A TpM

m. Since II is a symmetric 2-tensor, we have (1).

On the other hand, if K ext is unbounded on UnSj, the function ~hh2 does
not vanish at p. Then K extðq15qmÞ ¼ ð1=umÞð~hh2=~hh1Þ changes sign at Sj. This
implies (2). r

Proof of (3) of Theorem 3.2. We use the same notations as in the proof of
the previous parts. Then it holds that

q~hh2
qum

����
um¼0

¼ q2

qu2m

����
um¼0

ðhj1;c1ihjm;cmi� hjm;c1i
2Þ

¼ ðqmhj1;c1iÞðqmhjm;cmiÞ � ðqmhjm;c1iÞ
2;

because jm ¼ 0 and hj1;cmi ¼ hjm;cmi ¼ 0 on the singular set. Thus,

lim
q! p;

q BSj

K extðq15qmÞq ¼
qmhj1;c1iqmhjm;cmi� ðqmhjm;c1iÞ

2

jj15Dmjmj
2

:ð3:4Þ

Here, the assumption of the theorem implies that the value (3.4) is greater than
or equal to d ðb 0Þ. We consider the case that d > 0. Then it holds that

ðqmhj1;c1iÞðqmhjm;cmiÞ > 0 at pð3:5Þ

because of (3.4). (If d ¼ 0, then the left-hand side of (3.5) is non-negative.)
Since jm ¼ 0 and hj1;cmi ¼ 0 on the singular set Sj, we have

qmhj1;c1i ¼ hDmj1;c1iþ hj1;Dmc1i ¼ hD1jm;c1iþ hj1;D1cmi

¼ q1hjm;c1i� hjm;D1c1iþ q1hj1;cmi� hD1j1;cmi

¼ �hD1j1;cmi

at p. Since Dmjm is proportional to cm by Corollary 3.5, this is written as

qmhj1;c1i ¼ �hD1j1;cmið3:6Þ

¼ � hD1j1;DmjmihDmjm;cmi

jDmjmj
2

at p:
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On the other hand,

qmhjm;cmi ¼ hDmjm;cmið3:7Þ
holds at p. By (3.5), (3.6) and (3.7), we have

hD1j1;Dmjmi < 0ð3:8Þ
at p. Next, we compute the j-singular normal curvature kjðq1Þ with respect to
the direction q1 at p. Let

n ¼ j15� � �5jm�1

jj15� � �5jm�1j
;

which is the unit conormal vector field such that fj1; . . . ; jm�1; ng is positively
oriented. Then

kjðq1Þ ¼ �e
hD1n; j1i

hj1; j1i
¼ e

hn;D1j1i

hj1; j1i
;

where

e ¼ sgnðqmljÞ ¼ sgnðqmmðj1; . . . ; jmÞÞ ¼ sgn mðj1; . . . ;DmjmÞ
¼ sgnhj15� � �5jm�1;Dmjmi ¼ sgnhn;Dmjmi:

Here, by Corollary 3.5, Dmjm is perpendicular to fj1; . . . ; jm�1g, that is, it is
proportional to n. Thus, (3.8) yields

sgnðkjðq1ÞÞ ¼ sgnðhDmjm; nihD1j1; niÞ ¼ sgnhDmjm;D1j1i < 0

at p. (When d ¼ 0, kjðq1Þ is non-positive.) Hence we have the conclusion.
r

Proof of Corollary 0.2. For a front bundle induced by a front in Rmþ1

(see Example 2.2), the sectional curvature of the singular set spanned by two
singular principal directions is equal to the product of the two singular principal
curvatures by the Gauss equation (2.5). Thus, we have Corollary 0.2 in the
introduction. r
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