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WRONSKIAN MATRICES AND WEIERSTRASS GAP SET FOR

A PAIR OF POINTS ON A COMPACT RIEMANN SURFACE

Tohru Gotoh

1. Introduction

Let X be a compact Riemann surface and P1; . . . ;Pn be distinct points on it.
Then the Weierstrass semigroup for P1; . . . ;Pn is defined by

HðP1; . . . ;PnÞ :¼ ðm1; . . . ;mnÞ A ðN0Þn
there exists a meromorphic
function f on X such that
divyð f Þ ¼ m1P1 þ � � � þmnPn

������
9=;:

8<:
Here N0 denotes the set of non-negative integers, and divyð f Þ denotes the polar
divisor of the meromorphic function f . It is known that HðP1; . . . ;PnÞ becomes
a subgroup of the additive semigroup ðN0Þn ¼ N0 � � � � �N0 (n-times product).
The complement of HðP1; . . . ;PnÞ in ðN0Þn is called the Weierstrass gap set (gap
set for short) for P1; . . . ;Pn, and it is denoted by GðP1; . . . ;PnÞ:

GðP1; . . . ;PnÞ :¼ ðN0ÞnnHðP1; . . . ;PnÞ:
These sets are related closely to the concept of base points. In fact, an n-

tuple of nonnegative integers ðm1; . . . ;mnÞ belongs to HðP1; . . . ;PnÞ if and only if
the e¤ective divisor m1P1 þ � � � þmnPn is base-point-free. Because any divisor is
base-point-free provided its degree is grater than 2g (g denotes the genus of X ),
the Weierstrass gap set is of finite. We are mainly interested in the cardinality of
the Weierstrass gap sets.

The case of n ¼ 1 is the classical Weierstrass point theory. It is well known
that the gap set for any point always consists of g integers, which are called the
gap numbers at the point. The case of n ¼ 2 has been studied first by Kim [K],
in which he proved that the cardinality of the gap set for a pair of points is
bounded from below by ðg2 þ 3gÞ=2 and from above by ð3g2 þ gÞ=2. The upper
bound is attained when and only when both points are hyperelliptic Weierstrass
points. The cases of n ¼ 3; 4 were studied by Isii [I], in which he obtained
similar results to Kim’s results (partially for n ¼ 4). The cases of nf 5 remain
to be unknown at present. Balico and Kim [BK] have proposed a conjecture on
the range of the cardinality of the gap set for n points. Results by Kim and Ishii
support their conjecture.
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When n ¼ 1, the gap numbers at a point P can be interpreted as orders of
holomorphic 1-forms on X at P. In fact an integer a belongs to GðPÞ if and
only if there exists a holomorphic 1-form o such that ordPðoÞ ¼ a� 1. In this
article, we study the gap set for a pair of points from this point of view. In
section 2, we characterize the Kim’s bijection (denoted by m in this article)
between the gap sets for a single point in terms of the orders of holomorphic
1-form (Theorem 2.6). This characterization gives a good basis for the space of
holomorphic 1-forms on X with respect to a pair of distinct points. Such a basis
is useful to controll the Wronskian matrix associated to an e¤ective divisor
supported by the pair of distinct points. Because the dimension of the space
of meromorphic functions associated to an e¤ective divisor is computed by the
rank of a certain Wronskian matrix (Theorem 2.1), such a basis turns out to be
usefull in the study on the gap set for a pair of points. In section 3, we use the
method of the Wronskian matrices developed in section 2 in order to obtain the
expressions of the cardinality of the Weierstrass gap sets for a pair of distinct
points due to Kim and Homma.

Section 4 and 5 will be devoted to investigate a pair of points for which the
cardinality of the Weierstrass gap set attains the lowest bound gðgþ 3Þ=2. In the
classical Weierstrass point theory (namely the case n ¼ 1), the Weierstrass points
are characterized as zeros of a holomorphic section of a certain holomorphic line
bundle over X . To be exact, the holomorphic line bundle is the gðgþ 1Þ=2-times
tensor product of the canonical line bundle of X , and the holomorphic section
is the Wronskian determinant associated to a basis of the space of holomorphic
1-forms. After making preparations on triangulations of the Wronskian matrices,
we construct a family of holomorphic sections of a certain holomorphic line
bundle over X � X . Then we show that a necessary and su‰cient condition for
the Weierstrass gap set for a pair of points to have the lowest cardinality is that
at least one of the holomorphic sections in the family does not vanish at the pair
of points (Theorem 5.2). As a consequence, we find that the cardinality of the
Weierstrass gap set for a pair of points attains the lowest bound on an open and
dense subset in X � XnDðXÞ. This formalism seems to be an analogy to the
classical Weierstrass point theory mentioned above.

In the final section 6, we calculate the holomorphic section defined in section
5 in the case where X is a hyperellptic Riemann surface.

2. Wronskian matrices and Weierstrass gap sets

Let X be a compact Riemann surface of genus g and o be a holomorphic
1-form on X . Taking a local coordinate function z on an open subset U in X ,
we write o ¼ f dz, where f is a holomorphic function defined on U . Then, for
a non-negative integer n, we set

oðnÞðPÞ ¼ d nf

dzn
ðPÞ ðP A UÞ:
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Although this value depends on the choice of a local coordinate function, we use
the notation whenever any confusion may not occur.

For holomorphic 1-forms o1; . . . ;ol (not necessarily linearly independent)
on X , a point P in X and a non-negative integer n, we define a l� n matrix by

WnP½o1; . . . ;ol� ¼

o1ðPÞ o 0
1ðPÞ � � � o

ðn�1Þ
1 ðPÞ

o2ðPÞ o 0
2ðPÞ � � � o

ðn�1Þ
2 ðPÞ

olðPÞ o 0
lðPÞ � � � o

ðn�1Þ
l ðPÞ

0BBBB@
1CCCCA:

� � � � � � � � � � � � � � � � � � � � � � � � � � � � � �

For an e¤ective divisor D ¼ n1P1 þ � � � þ nnPn, where P1; . . . ;Pn are distinct
points in X , we put further

WD½o1; . . . ;ol� ¼ ðWn1P1
½o1; . . . ;ol�; . . . ;WnnPn

½o1; . . . ;ol�Þ;

which is a matrix with l rows and deg D ¼ n1 þ � � � þ nn columns. We call the
matrix the Wronskian matrix associated to an e¤ective divisor D and holomorphic
1-forms o1; . . . ;ol on X . When ni ¼ 0 for some i, we understand for the i-th
matrix WniPi ½o1; . . . ;ol� to be ommited.

Let WðX Þ denote the space of holomorphic 1-forms on X and o1; . . . ;og be
a basis of WðXÞ. If A is an invertible g� g matrix, we obtain a new basis
ðo1; . . . ;ogÞA of WðXÞ from o1; . . . ;og. The Wronskian matrices associated to
these bases are related as

WD½ðo1; . . . ;ogÞA� ¼ tA �WD½o1; . . . ;og�:ð1Þ

The Local coordinate functions chosen to define the Wronskian matrices are fixed
in this formula.

The divisor of a meromorphic function f on X is denoted by divð f Þ. For a
divisor D, we denote, as usual, by h0ðDÞ the dimension of the space consisting of
all meromorphic functions f on X which satisfy divð f Þf�D. The following
formula which express h0ðDÞ in terms of a Wronskian matrix is one of the
consequences of the Riemann-Roch Theorem. This plays essential roles in our
study on the Weierstrass gap sets.

Theorem 2.1. Let D be an e¤ective divisor on X and o1; . . . ;og be a basis
of WðXÞ. Then we have

h0ðDÞ ¼ deg Dþ 1� rank WD½o1; . . . ;og�:

This formula can be found in the Gunning’s text [G, Lemma 17 (p. 118)].
By definition, for a divisor D, a point P is a base point of D if and only if an

equality h0ðDÞ ¼ h0ðD� PÞ holds. Thus Theorem 2.1 implies

Corollary 2.2. Let D be an e¤ective divisor on X and o1; . . . ;og be a basis
of WðXÞ. Then for a point P contained in the support of D, the following are
mutually equivalent.
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(1) P is a base point of D.
(2) rank WD½o1; . . . ;og� ¼ rank WD�P½o1; . . . ;og� þ 1.

Note that any point not contained in the support of D is not a base point of it.
Now let P and Q be distinct points in X . As was mentioned in the

introduction, the Weierstrass semigroup HðP;QÞ is related to the concenpt of
base points of a divisor and some Wronskian matrices as well.

Corollary 2.3. Let o1; . . . ;og be a basis of WðX Þ. Then for a pair
ðm; nÞ A N0 �N0, the following are mutually eqivalent.

(1) ðm; nÞ belongs to HðP;QÞ.
(2) The e¤ective divisor mPþ nQ is base-point-free.
(3) h0ðmPþ nQÞ ¼ h0ððm� 1ÞPþ nQÞ ¼ h0ðmP þ ðn� 1ÞQÞ.
(4)

rank WmPþnQ½o1; . . . ;og� ¼ rank Wðm�1ÞPþnQ½o1; . . . ;og�

¼ rank WmPþðn�1ÞQ½o1; . . . ;og�:

In [K], Kim have defined a map from GðPÞ to GðQÞ, which plays a central
role in his study on GðP;QÞ. For a gap number a at P, we define after Kim
(ba in his notation)

mðaÞ :¼ minfbf 1 j ða; bÞ A HðP;QÞg:
Then mðaÞ is a gap number at Q, and the correspondence a 7! mðaÞ defines a
bijection between GðPÞ and GðQÞ. We want to investigate how the map m
relates to the orders of holomorphic 1-forms on X . To begin with, we show the

Proposition 2.4. For a gap number a at P and a holomorphic 1-form o on
X which satisfy ordPðoÞ ¼ a� 1, we have the following inequality

ordQðoÞe mðaÞ � 1:

Proof. Let o1; . . . ;og be a basis of WðXÞ such that o1 ¼ o. Suppose we
have inequalities ordQðoÞf bf 1, then the Wronskian matrices are

WaPþbQ½o1; . . . ;og� ¼
0 � � � 0 o

ða�1Þ
1 ðPÞ

WaP½o2; . . . ;og�

����o1ðQÞ � � � o
ðb�1Þ
1 ðQÞ

WbQ½o2; . . . ;og�

 !

¼ 0 � � � 0 o
ða�1Þ
1 ðPÞ

WaP½o2; . . . ;og�

���� 0 � � � � � � 0

WbQ½o2; . . . ;og�

 !
;

Wða�1ÞPþbQ½o1; . . . ;og� ¼
0 � � � � � � 0

Wða�1ÞP½o2; . . . ;og�

����o1ðQÞ � � � o
ðb�1Þ
1 ðQÞ

WbQ½o2; . . . ;og�

 !

¼
0 � � � � � � 0

Wða�1ÞP½o2; . . . ;og�

���� 0 � � � � � � 0

WbQ½o2; . . . ;og�

� �
:
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Because o
ða�1Þ
1 ðPÞ0 0,

rank WaPþbQ½o1; . . . ;og�

¼ rank
0 � � � � � � � � � 0 o

ða�1Þ
1 ðPÞ

Wða�1ÞP½o2; . . . ;og� O

���� 0 � � � � � � 0

WbQ½o2; . . . ;og�

 !
¼ rank Wða�1ÞPþbQ½o1; . . . ;og� þ 1;

and hence Corollary 2.3 implies that ða; bÞ does not belong to HðP;QÞ. There-
fore if ða; bÞ belongs to HðP;QÞ, then the inequality ordQðoÞ < b necessarily
holds. Especially we obtain the inequality ordQðoÞe mðaÞ � 1. U

Corollary 2.5. Let P and Q be distinct points in X and the sets of gap
numbers at those points be GðPÞ ¼ fa1; . . . ; agg, GðQÞ ¼ fb1; . . . ; bgg. Suppose
there exists a basis o1; . . . ;og of WðXÞ such that ordPðoiÞ ¼ ai � 1 and ordQðoiÞ ¼
bi � 1 for each i ¼ 1; . . . ; g. Then mðaiÞ ¼ bi for each i ¼ 1; . . . ; g.

Proof. The assumption and Proposition 2.4 show that fb1; . . . ; bgg ¼
fmða1Þ; . . . ; ðagÞg and bi e mðaiÞ ði ¼ 1; . . . ; gÞ. Therefore we obtain mðaiÞ ¼ bi
for each i ¼ 1; . . . ; g. U

It is obvious that almost all o do not attain the equality in Proposition 2.4.
Next we consider when this is the case.

Theorem 2.6. For each gap number a at P, there exists a holomorphic
1-form o whose orders at P and Q are a� 1 and mðaÞ � 1 respectively.

Before proceeding to prove the theorem, we note the following lemma which
is easy to see.

Lemma 2.7. For holomorphic 1-forms o1; . . . ;ol on X and any point P, the
following are equivalent.

(1) o1; . . . ;ol are linearly independent over C.
(2) rank WnP½o1; . . . ;ol� ¼ l for some nf 1.

Proof of Theorem 2.6. Let a1 ¼ 1 < a2 < � � � < agð< 2gÞ be the gap num-
bers at P with a ¼ ai. Then we can take a basis o1; . . . ;og of WðXÞ whose
orders are given by ordPðojÞ ¼ aj � 1 ð j ¼ 1; . . . ; gÞ. In what follows, we shall
construct a holomorphic 1-form o and a positive integer b that satisfy the
following:

ordPðoÞ ¼ a� 1; ordQðoÞ ¼ b � 1 and ða; bÞ A HðP;QÞ:ð2Þ

Then we find b ¼ mðaÞ by the definition of mðaÞ and Proposition 2.4, and the
assertion of the theorem will be obtained.
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Now because o1; . . . ;og are linearly independent, Lemma 2.7 implies that

rank WnQ½oi;oiþ1; . . . ;og� ¼ g� i þ 1 > rank WnQ½oiþ1; . . . ;og� ¼ g� i;

for su‰ciently large n, so that the following b exists:

b :¼ minfnf 1 j rank WnQ½oi;oiþ1; . . . ;og� > rank WnQ½oiþ1; . . . ;og�g:

Note that the property ordPðojÞ ¼ aj � 1 ð j ¼ 1; . . . ; gÞ implies the following
equalities.

rank WaiPþbQ½o1; . . . ;og� ¼ rank WbQ½oiþ1; . . . ;og� þ i;

rank Wðai�1ÞPþbQ½o1; . . . ;og� ¼ rank WbQ½oi;oiþ1; . . . ;og� þ i � 1;

rank WaiPþðb�1ÞQ½o1; . . . ;og� ¼ rank Wðb�1ÞQ½oiþ1; . . . ;og� þ i:

ð3Þ

We first consider the case where b ¼ 1. In this case, because of the
definition of b and

WQ½oi;oiþ1; . . . ;og� ¼
oiðQÞ

WQ½oiþ1; . . . ;og�

� �
;

we have oiðQÞ0 0 and WbQ½oiþ1; . . . ;og� ¼ O. Therefore ordQðoiÞ ¼ 0 ¼ b � 1
and (3) implies

rank WaiPþQ½o1; . . . ;og� ¼ rank Wðai�1ÞPþbQ½o1; . . . ;og�

¼ rank WaiP½o1; . . . ;og� ¼ i:

Thus ða; bÞ ¼ ðai; 1Þ belongs to HðP;QÞ by Corollary 2.3, and hence oi itself and
b ¼ 1 satisfy (2).

We next consider the case where b > 1. In this case, by the definition of b,
we have the following equalities

rank Wðb�1ÞQ½oi;oiþ1; . . . ;og� ¼ rank Wðb�1ÞQ½oiþ1; . . . ;og�;ð4Þ

rank WbQ½oi;oiþ1; . . . ;og� ¼ rank WbQ½oiþ1; . . . ;og� þ 1:ð5Þ

Because

Wðb�1ÞQ½oi;oiþ1; . . . ;og� ¼
Wðb�1ÞQ½oi�

Wðb�1ÞQ½oiþ1; . . . ;og�

� �
¼

Wðb�1ÞQ½oi�
Wðb�1ÞQ½oiþ1�
� � � � � � � � � � � � �
Wðb�1ÞQ½og�

0BBB@
1CCCA;

(4) implies that the ðb � 1Þ-dimensional row vector Wðb�1ÞQ½oi� can be written
as a linear combination of the row vectors Wðb�1ÞQ½oiþ1�; . . . ;Wðb�1ÞQ½og�. Thus
we can write

Wðb�1ÞQ½oi� ¼ c1Wðb�1ÞQ½oiþ1� þ � � � þ cg�iWðb�1ÞQ½og�;ð6Þ
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where c1; . . . ; cg�i are complex constants. Then define a holomorphic 1-form o
by

o :¼ oi � c1oiþ1 � � � � � cg�iog:

We shall show that these o and b constructed as above satisfy (2).
First since ordPðoiÞ ¼ ai � 1, ordPðoiþ1Þ ¼ aiþ1 � 1; . . . ; ordPðogÞ ¼ ag � 1

are strictly increasing series, ordPðoÞ ¼ ordPðoiÞ ¼ ai � 1 ¼ a� 1.

Second we have oðnÞðQÞ ¼ o
ðnÞ
i ðQÞ � c1o

ðnÞ
iþ1ðQÞ � � � � � cg�io

ðnÞ
g ðQÞ ¼ 0 for

each n ¼ 0; 1; . . . ; b � 2 by the definition of o and (6), and so ordQðoÞf b � 1.

If we suppose oðb�1ÞðQÞ ¼ 0, then o
ðb�1Þ
i ðQÞ ¼ c1o

ðb�1Þ
iþ1 ðQÞ � � � � � cg�io

ðb�1Þ
g ðQÞ,

which implies

WbQ½oi� ¼ c1WbQ½oiþ1� þ � � � þ cg�iWbQ½og�:

However this contradicts to (5), and we have ordQðoÞ ¼ b � 1.
Finally we show that ða; bÞ belongs to HðP;QÞ. To this end, it is su‰cient

to show the equalities

rank WaPþbQ½o1; . . . ;oi�1;o;oiþ1; . . . ;og�
¼ rank Wða�1ÞPþbQ½o1; . . . ;oi�1;o;oiþ1; . . . ;og�

¼ rank WaPþðb�1ÞQ½o1; . . . ;oi�1;o;oiþ1; . . . ;og�;

because of Corollary 2.3. On the other hand, the Wronskian matrices associated
to a new basis o1; . . . ;oi�1;o;oi; . . . ;og of WðXÞ still satisfy the same equalities
as in (3). Hence we have only to show the equalities

rank WbQ½o;oiþ1; . . . ;og� ¼ rank WbQ½oiþ1; . . . ;og� þ 1

¼ rank Wðb�1ÞQ½oiþ1; . . . ;og� þ 1:

Now by the definition of o, the matrix WbQ½o;oi; . . . ;og� is obtained by making
use of suitable row operations to the matrix WbQ½oi;oiþ1; . . . ;og�, so that they
have the same rank. Therefore because of the definiton of b,

rank WbQ½o;oiþ1; . . . ;og� ¼ rank WbQ½oi;oiþ1; . . . ;og�
¼ rank WbQ½oiþ1; . . . ;og� þ 1:

On the other hand, because ordQðoÞ ¼ b � 1 as we have shown above,

rank WbQ½o;oiþ1; . . . ;og� ¼ rank

0 � � � � � � � � � 0 oðb�1ÞðQÞ
o

ðb�1Þ
iþ1 ðQÞ

Wðb�1ÞQ½oiþ1; . . . ;og� ..
.

o
ðb�1Þ
g ðQÞ

0BBBBB@

1CCCCCA
¼ rank Wðb�1ÞQ½oiþ1; . . . ;og� þ 1: U
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As an immediate consequence of Proposition 2.4 and Theorem 2.6, we have
another interpretation for the map m : GðPÞ ! GðQÞ in terms of holomorphic
1-forms:

mðaÞ ¼ max bf 1

���� there exists o A WðXÞ such that
ordPðoÞ ¼ a� 1 and ordQðoÞ ¼ b � 1

� �
:

Now let a be a gap number at P and take a holomorphic 1-form o with
ordPðoÞ ¼ a� 1 and ordQðoÞ ¼ mðaÞ � 1. Then because the degree of a canon-
ical divisor is equal to 2g� 2,

ða� 1Þ þ ðmðaÞ � 1Þ ¼ ordPðoÞ þ ordQðoÞe 2g� 2:

Hence for each gap number a at P, we have an inequality

aþ mðaÞe 2g:ð7Þ

Proposition 2.8. The following are equivalent:
(1) aþ mðaÞ ¼ 2g for each a A GðPÞ.
(2) h0ðaPþ mðaÞQÞ ¼ gþ 1 for each a A GðPÞ.
(3) Both P and Q are hyperelliptic Weierstrass points in X. Especially X

must be a hyperelliptic Riemann surface.

Here a point in X is called a hyperelliptic Weierstrass point provided its least
non-gap number is equal to 2.

Proof. (1) , (2): A general result on the range of h0ðDÞ for divisors D
shows the equivalence between (1) and (2). See, for instance, the figure at page
331 in [C].

(1) ) (3): Taking summation on a A GðPÞ in the equality aþ mðaÞ ¼ 2g, we
obtain

wtðPÞ þ wtðQÞ ¼ g2 � g ¼ 2
gðg� 1Þ

2
;ð8Þ

where wtðPÞ :¼
P

a AGðPÞ a� gðgþ 1Þ=2 denotes the Weierstrass weight at a point
P. In general, it is known that the Weierstrass weight at a point P satisfies the
inequalities 1ewtðPÞe gðg� 1Þ=2 and the equality wtðPÞ ¼ gðg� 1Þ=2 holds if
and only if P is a hyperelliptic Weierstrass point. Thus (8) implies (3).

(3) ) (1): In this case, the gap numbers are GðPÞ ¼ GðQÞ ¼ f1; 3; . . . ;
2g� 1g. Then by virture of the inequality (7), the map m must be determined
as mðaÞ ¼ 2g� a, because m is a bijection. U

Compare the argument in the proof of Theorem 3.2 in [K].

3. The Cardinality of the Weierstrass gap sets

In this section, by means of the Wronskian matrices, we will derive expres-
sions of the cardinality of the Weierstrass gap set for a pair of distinct points due
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to Kim and Homma. As a result, we give a necessary and su‰cient condition
for the Weierstrass gap set for a pair of distinct points to have the lowest
cardinality gðgþ 3Þ=2 in terms of the Wronskian matrix.

Let P and Q be distinct points in X and a1 ¼ 1 < a2 < � � � < ag be gap
numbers at P. By virture of Theorem 2.6, we can take a basis o1; . . . ;og of
WðX Þ with ordPðoiÞ ¼ ai � 1 and ordQðoiÞ ¼ mðaiÞ � 1 for all i ¼ 1; . . . ; g. Then
the Wronskian matrix associated to an e¤ective divisor mP þ nQ and the basis
o1; . . . ;og of WðXÞ is of the form such as

WmPþnQ½o1; . . . ;og� ¼ ðWmP½o1; . . . ;og�;WnQ½o1; . . . ;og�Þ

¼

A1 � � � � � � � � � � � � � � � � � � � � � o
ðm�1Þ
1 ðPÞ

0 � � � 0 A2 � � � � � � � � � o
ðm�1Þ
2 ðPÞ

� � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � �
0 � � � � � � � � � 0 Ai � � � o

ðm�1Þ
i ðPÞ

0 � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � �
� � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � �
0 � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � �

0BBBBBBBBBBB@

����������������

0 � � � � � � 0 B1 � � � � � � o
ðn�1Þ
1 ðQÞ

0 � � � 0 B2 � � � � � � � � � o
ðn�1Þ
2 ðQÞ

� � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � �
0 � � � � � � � � � � � � � � � � � � � o

ðn�1Þ
i ðQÞ

0 � � � � � � � � � 0 Biþ1 o
ðn�1Þ
iþ1 ðQÞ

� � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � �
0 Bg � � � � � � � � � � � � � � � o

ðn�1Þ
g ðQÞ

1CCCCCCCCCCCA
;

where we put Ai ¼ o
ðai�1Þ
i ðPÞ and Bi ¼ o

ðmðaiÞ�1Þ
i ðQÞ ði ¼ 1; . . . ; gÞ. For each

non-negative integers m and n, we set

sm :¼afif 1 j ai emg ¼ maxfif 1 j ai emg;
tm;n :¼af jf 1 j j > sm and mðajÞe ng;

where aS denotes the cardinality of the set S. Then the rank of
WmPþnQ½o1; . . . ;og� is equal to sm þ tm;n, and so Theorem 2.1 implies

h0ðmPþ nQÞ ¼ mþ nþ 1� sm � tm;n:ð9Þ

In addition, if we set s�1 ¼ tm;�1 ¼ 0, t�1;n ¼ t0;n, then we obtain the following
equalities:

h0ðmPþ nQÞ � h0ððm� 1ÞPþ nQÞ ¼ 1þ sm�1 � sm þ tm�1;n � tm;n;

h0ðmPþ nQÞ � h0ðmPþ ðn� 1ÞQÞ ¼ 1þ tm;n�1 � tm;n;

sm�1 � sm ¼ �1 ðm A GðPÞÞ;
0 ðm B GðPÞÞ;

�
tm�1;n � tm;n ¼

1 ðm A GðPÞ and mðasmÞe nÞ;
0 ðm A GðPÞ and mðasmÞ > nÞ;

�
tm;n�1 � tm;n ¼

�1 ðmðajÞ ¼ n for some j > smÞ;
0 ðmðajÞ0 n for all j > smÞ:

�
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Because of these equalities and Corollary 2.3, we find that each ðm; nÞ A N0 �N0

belongs to GðP;QÞ if and only if m A GðPÞ and mðasmÞ > n, or mðajÞ ¼ n for some
j > sm. Therefore setting

G 0 ¼ fðm; nÞ A N0 �N0 jm A GðPÞ and mðasmÞ > ng;
G 00 ¼ fðm; nÞ A N0 �N0 j mðajÞ ¼ n for some j > smg;
G 00

0 ¼ G 00 V ðGðPÞ �N0Þ;
G 00

1 ¼ G 00 V ðHðPÞ �N0Þ;

the gap set GðP;QÞ is decomposed as GðP;QÞ ¼ G 0 UG 00 ¼ G 0 UG 00
0 UG 00

1 . The
cardinality of these components are given by

aG 0 ¼
Xg
i¼1

mðaiÞ ¼
X

b AGðQÞ
b ¼ wtðQÞ þ gðgþ 1Þ

2
;

aG 00
0 ¼

Xg
i¼1

ðg� iÞ ¼ gðg� 1Þ
2

;

aG 00
1 ¼

X
m AHðPÞ

0eme2g�2

ðg� smÞ ¼ wtðPÞ þ g:

On the other hand, G 0 VG 00
0 ¼ 6g

i¼1
fðai; mðajÞÞ j j > i and mðajÞ < mðaiÞg, and so

we set

tðmÞ :¼afða; a 0Þ A GðPÞ � GðPÞ j a > a 0 and mðaÞ < mða 0Þg;

then tðmÞ ¼aG 0 VG 00
0 . Note that tðmÞ is nothing but the Homma’s ‘‘r’’ defined

in [H]. Summarizing the argument above, we obtain an expression of the cardi-
nality of the gap set GðP;QÞ:

aGðP;QÞ ¼aG 0 þaG 00
0 þaG 00

1 �aG 0 VG 00
0ð10Þ

¼ wtðPÞ þ wtðQÞ � tðmÞ þ gðgþ 1Þ:

This is the Homma’s expression ofaGðP;QÞ appeared in [H, Theorem 1 (p. 340)].
To obtain the other expression of aGðP;QÞ, we note

tai ;mðaiÞ ¼af jf 1 j j > sai ¼ i and mðajÞ < mðaiÞg;

and hence

tðmÞ ¼
Xg
i¼1

tai ;mðaiÞ ¼
X

a AGðPÞ
ta;mðaÞ:
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Putting m ¼ a, n ¼ mðaÞ in the equality (9) and taking summation on a A GðPÞ,
we obtain X

a AGðPÞ
h0ðaPþ mðaÞQÞ ¼ wtðPÞ þ wtðQÞ � tðmÞ þ gðgþ 3Þ

2
:

Hence (10) implies the another expression of the cardinality of the gap set
GðP;QÞ:

aGðP;QÞ ¼
X

a AGðPÞ
h0ðaPþ mðaÞQÞ þ gðg� 1Þ

2
:

This is the Kim’s expression of aGðP;QÞ appeared in [K, Theorem 3.1 (p. 79)].
In consequence of (10), Homma have mentioned the equivalence between the

first two in the lemma below.

Lemma 3.1. Let P and Q be distinct points in X. Then the following are
equivalent.

(1) aGðP;QÞ ¼ gðgþ 3Þ
2

(the lowest cardinality)

(2) Both P and Q are non-Weierstrass points and the map m : GðPÞ ! GðQÞ is
given by mðiÞ ¼ gþ 1� i ði ¼ 1; . . . ; gÞ.

(3) There exists a basis o1; . . . ;og of WðX Þ associated to which the Wron-
skian matrix WgPþgQ½o1; . . . ;og� turns to be of the form

WgPþgQ½o1; . . . ;og� ¼

A1 � � � 0 � � � 0 B1

0 A2 � � ..
. ..

.

B2 �
..
. . .

. . .
.

� 0

..
.

� �
0 � � � 0 Ag Bg � � �

0BBBBB@

1CCCCCA;ð11Þ

�����������
where A1; . . . ;Ag and B1; . . . ;Bg are non-zero complex numbers.

Proof. We give a proof only for the equivalence between (2) and (3).
If we suppose (2), both P and Q have the same gap numbers 1; 2; . . . ; g. By

virture of Theorem 2.6, we can take a basis o1; . . . ;og of WðXÞ whose orders are
ordPðoiÞ ¼ i � 1 and ordQðo1Þ ¼ mðiÞ � 1 ¼ g� i ði ¼ 1; . . . ; gÞ. Then the Wron-
skian matrix WgPþgQ½o1; . . . ;og� turns to be of the form (11).

Conversely, if the Wronskian matrix WgPþgQ½o1; . . . ;og� is of such a form
(11), the gap numbers are GðPÞ ¼ GðQÞ ¼ f1; 2; . . . ; gg, that is, both P and Q are
non-Weierstrass points and the orders of oi are ordPðoiÞ ¼ i � 1 and ordQðoiÞ ¼
g� i. Then Corollary 2.5 shows mðiÞ ¼ gþ 1� i ði ¼ 1; . . . ; gÞ. U

4. Triangulations of the Wronskian matrices

Throughout the present section, we let g be a positive integer and f1; . . . ; fg
be holomorphic functions defined on an open subset U in the complex plane C.
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The Wronskian matrix associated to f1; . . . ; fg is define to be a square g� g
matrix

W ½ f1; . . . ; fg� ¼

f1 f 0
1 � � � f

ðg�1Þ
1

f2 f 0
2 � � � f

ðg�1Þ
2

fg f 0
g � � � f

ðg�1Þ
g

0BBBB@
1CCCCA:

� � � � � � � � � � � � � � � � � � � �

Its determinant (called the Wronskian determinant) is denoted by Wð f1; . . . ; fgÞ.
We begin with providing an explicit formula of the upper triangular matrix

obtained by making use of a succession of row operations to the Wronskian
matrix. The triangulation formulas obtained below will be used in the next
section to investigate a pair of distinct points for which the Weierstrass gap set
have the lowest cardinality gðgþ 3Þ=2. For this purpose, Lemma 3.1 suggests
that two kinds of triangulations are needed, that is, upper triangulations and
lower anti-triangulations. For a square n� n matrix A ¼ ðaijÞ, its anti-diagonal
entry is an entry aij with i þ j ¼ nþ 1. The matrix A is called an upper (resp.
lower) anti-triangular matrix if aij ¼ 0 for i þ j > nþ 1 (resp. i þ j < nþ 1).

Now define an upper triangular g� g matrix W D½ f1; . . . ; fg�, lower triangular
g� g matrices Lk½ f1; . . . ; fg� ðk ¼ 1; . . . ; g� 1Þ and L½ f1; . . . ; fg� as follows:

W D½ f1; . . . ; fg�ij :¼

f1 f 0
1 � � � f

ði�2Þ
1 f

ð j�1Þ
1

f2 f 0
2 � � � f

ði�2Þ
2 f

ð j�1Þ
2

fi f 0
i � � � f

ði�2Þ
i f

ð j�1Þ
i

���������

���������
Wð f1; . . . ; fi�1Þ

ð1e ie je gÞ;

� � � � � � � � � � � � � � � � � � � � � � � � � � �

Lk½ f1; . . . ; fg� :¼

1 0
0 . .

.

..

. . .
. . .

.

0 � � � 0 1

0 � � � 0 �Wð f1; . . . ; fk�1; fkþ1Þ
Wð f1; . . . ; fkÞ

1

..

.
� � � ..

. ..
.

0 . .
.

..

.
� � � ..

. ..
. ..

. . .
. . .

.

0 � � � 0 �Wð f1; . . . ; fk�1; fgÞ
Wð f1; . . . ; fkÞ

0 � � � 0 1

0BBBBBBBBBBBBBBBBBBBB@

1CCCCCCCCCCCCCCCCCCCCA

;

k-th column
zfflfflfflfflfflffl}|fflfflfflfflfflffl{

L½ f1; . . . ; fg� :¼ Lg�1½ f1; . . . ; fg� � � � � � L2½ f1; . . . ; fg� � L1½ f1; . . . ; fg�:
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Here we put Wð f1; . . . ; fi�1Þ ¼ 1 when i ¼ 1. Then we have the following trian-
gulation formula for the Wronskian matrices:

L½ f1; . . . ; fg� �W ½ f1; . . . ; fg� ¼ W D½ f1; . . . ; fg�:
In order to obtain holomorphic objects, we set

Tlow½ f1; . . . ; fg� :¼
Yg�1

k¼1

Wð f1; . . . ; fiÞ
 !

L½ f1; . . . ; fg�;

W up½ f1; . . . ; fg� :¼
Yg�1

k¼1

Wð f1; . . . ; fiÞ
 !

W D½ f1; . . . ; fg�:

Then Tlow½ f1; . . . ; fg� (resp. W up½ f1; . . . ; fg�) is a lower (resp. upper) triangular
matrix with entries in OðUÞ (as usual OðUÞ denotes the space of holomorphic
functions on U), and the following equality holds:

Tlow½ f1; . . . ; fg� �W ½ f1; . . . ; fg� ¼ W up½ f1; . . . ; fg�:
We note that the entries of Tlow½ f1; . . . ; fg� are given precisely by

Tlow½ f1; . . . ; fg�ij ¼ ð�1Þ iþj Wð f1; . . . ; bfjfj; . . . ; fiÞ
Wð f1; . . . ; fi�1Þ

Yg�1

k¼1

Wð f1; . . . ; fiÞ:ð12Þ

for 1e je ie g. Here the circumflex over a term means that it is to be
ommited. We also note that because their i-th diagonal entries (i ¼ 1; . . . ; g) are
given by

Tlow½ f1; . . . ; fg�ii ¼
Yg�1

k¼1

Wð f1; . . . ; fkÞ;

W up½ f1; . . . ; fg�ii ¼
Wð f1; . . . ; fi�1; fiÞ
Wð f1; . . . ; fi�1Þ

Yg�1

k¼1

Wð f1; . . . ; fkÞ;

for a point z in U , Tlow½ f1; . . . ; fg�ðzÞ is invertible if and only ifQg�1
k¼1 Wð f1; . . . ; fiÞðzÞ0 0, while W up½ f1; . . . ; fg�ðzÞ is invertible if and only ifQg
k¼1 Wð f1; . . . ; fiÞðzÞ0 0.

The lower anti-triangulation version to the above can be obtained by
applying the argument above to fg; . . . ; f1. Namely if we set

R :¼

0 1

1

..
.

1 0

0BBB@
1CCCA ðg� g matrixÞ;

T up½ f1; . . . ; fg� :¼ R � Tlow½ fg; . . . ; f1� � R ¼ tTlow½ fg; . . . ; f1�;
Wlowan½ f1; . . . ; fg� :¼ R �W up½ fg; . . . ; f1�;
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then T up½ f1; . . . ; fg� (resp. Wlowan½ f1; . . . ; fg�) is a upper (resp. lower anti-) trian-
gular matrix with entries in OðUÞ, and the following equality holds:

T up½ f1; . . . ; fg� �W ½ f1; . . . ; fg� ¼ Wlowan½ f1; . . . ; fg�:

Their i-th diagonal and anti-diagonal entries (i ¼ 1; . . . ; g) are given by

T up½ f1; . . . ; fg�ii ¼
Yg�1

k¼1

Wð fg; . . . ; fgþ1�kÞ;

Wlowan½ f1; . . . ; fg�i;gþ1�i ¼
Wð fg; . . . ; fiþ1; fiÞ
Wð fg; . . . ; fiþ1Þ

Yg�1

k¼1

Wð fg; . . . ; fgþ1�kÞ:

For later use, we introduce some notation. For a square g� g matrix
A ¼ ðaijÞ, we denote by d iðAÞ the i-th principal minor (i ¼ 1; . . . ; g) of A, and
moreover we put diðAÞ :¼ d iðRAÞ, where R is the anti-diagonal matrix mentioned
above. Precisely those are defined by

d iðAÞ ¼
a11 � � � a1i

ai1 � � � aii

������
������; diðAÞ ¼

ag1 � � � agi

ag�iþ1;1 � � � ag�iþ1; i

������
������:� � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � �

Then the Wronskian determinants appeared above are denoted as

Wð f1; . . . ; fiÞ ¼ d iðW ½ f1; . . . ; fg�Þ and Wð fg; . . . ; fgþ1�iÞ ¼ diðW ½ f1; . . . ; fg�Þ:

Summarizing the argument above, we obtain the following.

Lemma 4.1. Let f1; . . . ; fg be holomorphic functions defined on an open subset
U in C. Then there exist a lower triangular matrix Tlow½ f1; . . . ; fg� and an upper
triangular matrix T up½ f1; . . . ; fg� both with entries in OðUÞ which have the follow-
ing properties. Let z be a point in U.

(1) Suppose that
Qg

i¼1 d
iðW ½ f1; . . . ; fg�ðzÞÞ0 0, then Tlow½ f1; . . . ; fg�ðzÞ is an in-

vertible lower triangular matrix, for which the product ðTlow½ f1; . . . ; fg�ðzÞÞ �
ðW ½ f1; . . . ; fg�ðzÞÞ turns to an invertible upper triangular matrix.

(2) Suppose that
Qg

i¼1 diðW ½ f1; . . . ; fg�ðzÞÞ0 0, then T up½ f1; . . . ; fg�ðzÞ is an in-
vertible upper triangular matrix, for which the product ðT up½ f1; . . . ; fg�ðzÞÞ �
ðW ½ f1; . . . ; fg�ðzÞÞ turns to an invertible lower anti-triangular matrix.

5. The lowest cardinality for aGðP;QÞ

Let o1; . . . ;og be a basis of WðX Þ, U and V be open subsets of X with local
coordinate functions z and w respectively. We then write oi ¼ fi dz ¼ hi dw
ði ¼ 1; . . . ; gÞ, where fi and hi are holomorphic functions defined respectively on
U and V .
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We now use the triangular matrices constructed in the previous section to
define a holomorphic function on U � V , namely we set

c½o1; . . . ;og�ðz;wÞ :¼
Yg
i¼1

d iðW ½ f1; . . . ; fg�ðzÞÞ

�
Yg
i¼1

diððTlow½ f1; . . . ; fg�ðzÞÞ � ðW ½h1; . . . ; hg�ðwÞÞÞ:

Then this function relates to the cardinality of Gðz;wÞ as follows.

Proposition 5.1. Under the notation as above, suppose we are given distinct
points z in U and w in V. Then the condition cðz;wÞ0 0 implies aGðz;wÞ ¼
gðgþ 3Þ=2.

Proof. We will show the existence of a basis of WðX Þ associated to which
the Wronskian matrix of the e¤ective divisor gzþ gw turns to be of the form
(11).

First since
Qg

i¼1 d
iðW ½ f1; . . . ; fg�ðzÞÞ0 0 by the condition c½o1; . . . ;og�ðz;wÞ

0 0, the lower triangular matrix Tlow½ f1; . . . ; fg�ðzÞ must be invertible by Lemma
4.1.(1). Thus we can define a new basis ôo1; . . . ; ôog of WðX Þ by

ðôo1; . . . ; ôogÞ :¼ ðo1; . . . ;ogÞ � ð tTlow½ f1; . . . ; fg�ðzÞÞ:

Write ôoi ¼ f̂fi dz ¼ ĥhi dw on U and V respectively as before. Then on account

of (1), the Wronskian matrix W ½ f̂f1; . . . ; f̂fg�ðzÞ is equal to ðTlow½ f1; . . . ; fg�ðzÞÞ �
ðW ½ f1; . . . ; fg�ðzÞÞ, which turns to an invertible upper triangular matrix because
of Lemma 4.1.(1). Moreover also (1) implies that the Wronskian matrix
W ½ĥh1; . . . ; ĥhg�ðwÞ is given by

W ½ĥh1; . . . ; ĥhg�ðwÞ ¼ ðTlow½ f1; . . . ; fg�ðzÞÞ � ðW ½h1; . . . ; hg�ðwÞÞ:

Thus we have
Qg

i¼1 diðW ½ĥh1; . . . ; ĥhg�ðwÞÞ0 0 by the condition c½o1; . . . ;og�ðz;wÞ
0 0, and hence Lemma 4.1.(2) implies that T up½ĥh1; . . . ; ĥhg�ðwÞ turns to an inver-
tible upper triangular matrix. Thus we can further define a new basis ^̂oôoo1; . . . ; ^̂oôoog

of WðX Þ by

ð ^̂oôoo1; . . . ; ^̂oôoogÞ ¼ ðôo1; . . . ; ôogÞ � ð tT up½ĥh1; . . . ; ĥhg�ðwÞÞ:

Write ^̂oôooi ¼ ^̂
ff̂ffi dz ¼

^̂
hĥhhi dw on U and V respectively as well. Then also on account

of (1), the Wronskian matrix associated to
^̂
hĥhh1; . . . ;

^̂
hĥhhg at w is

W ½^̂hĥhh1; . . . ; ^̂hĥhhg�ðwÞ ¼ ðT up½ĥh1; . . . ; ĥhg�ðwÞÞ � ðW ½ĥh1; . . . ; ĥhg�ðwÞÞ;

which turns to an invertible lower anti-triangular matrix by Lemma 4.1.(2).

On the other hand, the Wronskian matrix associated to
^̂
ff̂ff1; . . . ;

^̂
ff̂ffg at z is

W ½ ^̂ff̂ff1; . . . ;
^̂
ff̂ffg�ðzÞ ¼ ðT up½ĥh1; . . . ; ĥhg�ðwÞÞ � ðW ½ f̂f1; . . . ; f̂fg�ðzÞÞ;
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which turns to an invertible upper triangular matrix because so are the both
factors on the right as we have shown above. Consequently the Wronskian
matrix

Wgzþgw½ ^̂oôoo1; . . . ; ^̂oôoog� ¼ ðW ½ ^̂ff̂ff1; . . . ;
^̂
ff̂ffg�ðzÞ;W ½^̂hĥhh1; . . . ; ^̂hĥhhg�ðwÞÞ

associated to the e¤ective divisor gzþ gw turns to be of the form (11). U

Next in order to obtain a global object (some holomorpic section of a certain
holomorphic line bundle over X � X ), we want to find the transition low for
cðz;wÞ in changing the local coordinate functions. Let ~zz and ~ww be another local
coordinate functions defined respectively on U and V , and write oi ¼ ~ffi d~zz ¼
~hhi d ~ww ði ¼ 1; . . . ; gÞ as above. Then the holomorphic function ~cc½o1; . . . ;og�ð~zz; ~wwÞ
on U � V is defined by using ~ffi and

~hhi as well as c½o1; . . . ;og�ðz;wÞ. If we put
l ¼ d~zz=dz and w ¼ d ~ww=dw, the Wronskian matrices associated to f1; . . . ; fg and
~ff1; . . . ;

~ffg (we write down only for these and omit for h1; . . . ; hg and ~hh1; . . . ; ~hhg)
are subjected to the following transition low in changing the local coordinate
functions:

W ½ f1; . . . ; fg�ðzÞ ¼ ðW ½ ~ff1; . . . ; ~ffg�ð~zzÞÞ �LðzÞ:ð13Þ
Here LðzÞ is a g� g upper triangular matrix of the following form:

LðzÞ ¼

l l 0 l 00 � � �
0 l2 3ll 0 � � �
..
. . .

. . .
. ..

.

0 � � � 0 lg

0BBBB@
1CCCCA:

As for the Wronskian determinant, (13) implies the transition low

Wð fi1 ; . . . ; fimÞðzÞ ¼ lðzÞmðmþ1Þ=2
Wð ~ffi1 ; . . . ; ~ffimÞð~zzÞ;

for each sequence 1e i1 < � � � < im e g, so that we have

Tlow½ f1; . . . ; fg�ðzÞ ¼ lðzÞgðgþ1Þðgþ2Þ=6
Tlow½ ~ff1; . . . ; ~ffg�ð~zzÞ:

Therefore each factor of c½o1; . . . ;og�ðz;wÞ is subjected respectively to the
following transition lows:Yg

i¼1

d iðW ½ f1; . . . ; fg�ðzÞÞ ¼ lðzÞgðgþ1Þðgþ2Þ=6Yg
i¼1

d iðW ½ ~ff1; . . . ; ~ffg�ð~zzÞÞ;

Yg
i¼1

diððTlow½ f1; . . . ; fg�ðzÞÞ � ðW ½h1; . . . ; hg�ðwÞÞ

¼ lðzÞðg�1Þg2ðgþ1Þ2=12
wðwÞgðgþ1Þðgþ2Þ=6

�
Yg
i¼1

diððTlow½ ~ff1; . . . ; ~ffg�ð~zzÞÞ � ðW ½~hh1; . . . ; ~hhg�ð~wwÞÞ:
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Consequently, we obtain the following transition low for c½o1; . . . ;og�ðz;wÞ in
changing the local coordinate functions:

c½o1; . . . ;og�ðz;wÞð14Þ

¼ d~zz

dz
ðzÞ

� �gðgþ1Þðg3þgþ4Þ=12
d ~ww

dw
ðwÞ

� �gðgþ1Þðgþ2Þ=6
~cc½o1; . . . ;og�ð~zz; ~wwÞ:

This means the following. Let KX be the canonical line bundle of X and
pi : X � X ! X be the projection to the i-th component, namely piðx1; x2Þ :¼ xi
ði ¼ 1; 2Þ. Using the notation above, we put on U � V ,

C½o1; . . . ;og�ðz;wÞ :¼ c½o1; . . . ;og�ðz;wÞðdzÞngðgþ1Þðg3þgþ4Þ=12 n ðdwÞngðgþ1Þðgþ2Þ=6:

Then C½o1; . . . ;og� defines a global holomorphic section of the holomorphic line
bundle

p�
1K

ngðgþ1Þðg3þgþ4Þ=12
X n p�

2K
ngðgþ1Þðgþ2Þ=6
X ! X � X :

These holomorphic sections describe a pair of points for which the cardinality of
the Weierstrass gap set attains the lowest bound.

Theorem 5.2. For a pair of distinct points P, Q in X , the following are
equivalent.

(1) aGðP;QÞ ¼ gðgþ 3Þ=2.
(2) There exists a basis o1; . . . ;og of WðX Þ for which C½o1; . . . ;og�ðP;QÞ

0 0.

Proof. The implication ð2Þ ) ð1Þ is due exactly to Proposition 5.1.
Conversely suppose that the cardinality of GðP;QÞ is equal to gðgþ 3Þ=2.

Then by virture of Lemma 3.1.(3), we can take a basis o1; . . . ;og of WðX Þ asso-
ciated to which the Wronskian matrix WgPþgQ½o1; . . . ;og� ¼ ðW ½ f1; . . . ; fg�ðPÞ;
W ½h1; . . . ; hg�ðQÞÞ is of the form (11), fi and hi being locally defined holomorphic
functions as above. In this case, L½ f1; . . . ; fg�ðPÞ becomes the identity matrix,
and we have

c½o1; . . . ;og�ðP;QÞ ¼ A1 � � �Ag

Yg�1

k¼1

A1 � � �Ak

 !ðg2þgþ2Þ=2 Yg
i¼1

Bg � � �Bgþ1�i

 !
0 0;

because A1; . . .Ag, B1; . . . ;Bg are non-zero complex numbers. U

Therefore if we put

Z :¼ ðP;QÞ A X � XnDðX Þ aGðP;QÞ ¼ g2 þ 3g

2

���� �
;

�
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this set is discribed as

Z :¼ 6
o1;...;og;

basis of WðX Þ

fðP;QÞ A X � XnDðXÞ jC½o1; . . . ;og�ðP;QÞ0 0g:

Especially Z is an open and dense subset in X � XnDðXÞ.
We remark that Homma [H, Proposition 3 (p. 344)] has proved for Z to

be open and dense in X for a smooth curve X in characteristic 0. He used the
concept of order-sequences of linear systems on X .

6. Hyperelliptic Riemann surfaces

In this section, we examine the results obtained in the preceding sections
in the case where the Riemann surface is hyperelliptic. In [K] and [H], the
cardinalities of gap sets for pairs of distinct points on a hyperelliptic Riemann
surface have been calculated. In fact, the results are valid for hyperelliptic
curves in an arbitrary charastaristic. Those are summarized as the table below
(we follow the formalism due to [H]). W-point means Weierstrass point.

P;Q m tðmÞ aGðP;QÞ

Both P and Q are W-points mðaÞ ¼ 2g� a gðg� 1Þ=2 gð3gþ 1Þ=2

P is not a W-point and
Q is a W-point

mðaÞ ¼ 2a� 1 gðg� 1Þ=2 gðgþ 1Þ

Neither P or Q is not
W-points and sðPÞ ¼ Q

mðaÞ ¼ a 0 gðgþ 1Þ

Neither P or Q is not
W-points and sðPÞ0Q

mðaÞ ¼ gþ 1� a gðg� 1Þ=2 gðgþ 3Þ=2

Here s denotes the hyperelliptic involution.
In what follows, we will calculate the holomorphic section C½o1; . . . ;og�

defined in the preceding section for a hyperelliptic Riemann surface. Then we
will observe that the non-generic loci (namely the first three cases) in the table
above appear as the irreducible components of the zero locus of the holomorphic
section.

Let b1; b2; . . . ; b2gþ2 be distinct complex numbers and a a non-zero complex
number. Then a hyperelliptic Riemann surface Y of genus g is constructed as
the a‰ne plane curve in C2 defined by the equation y2 ¼ aðx� b1Þðx� b2Þ � � �
ðx� b2gþ2Þ with additional two points at infinity to compactify it. It is then
known that the Weierstrass points on Y are ðb1; 0Þ; . . . ; ðb2gþ2; 0Þ. Moreover the
hyperelliptic involution s : Y ! Y is defined by sðx; yÞ ¼ ðx;�yÞ. Holomorphic
1-forms oa ¼ xa dx=y ða ¼ 0; . . . ; g� 1Þ on Y form a basis of WðY Þ. We put
fa :¼ xa=y away from y ¼ 0.
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First we explain how the cardinality of the gap set for a pair of distinct
points on Y is computed by means of Wronskian matrices associated to
an e¤ective divisor. For instance, let P ¼ ðx; yÞ and Q ¼ ðx; hÞ be distinct
points with sðPÞ ¼ Q. This means that x ¼ x and y ¼ �h0 0, and hence
WgP½o0; . . . ;og�1� ¼ �WgQ½o0; . . . ;og�1�. It is then straightforward that the
Wronskian matrix WgPþgQ½o0; . . . ;og�1� can be deformed by certain row oper-
ations to the following form:

1

y

1

y

� �0
� � � 1

y

� �ðg�1Þ

0
1

y
� � � ðg� 1Þ!

ðg� 2Þ!
1

y

� �ðg�2Þ

..

.
� � � . .

. ..
.

0 � � � 0
ðg� 1Þ!

y

0BBBBBBBBBBB@

�����������������

1

h

1

h

� �0
� � � 1

h

� �ðg�1Þ

0
1

h
� � � ðg� 1Þ!

ðg� 2Þ!
1

h

� �ðg�2Þ

..

.
� � � . .

. ..
.

0 � � � 0
ðg� 1Þ!

h

1CCCCCCCCCCCA
This together with Corollary 2.5 imply that GðPÞ ¼ GðQÞ ¼ f1; 2; . . . ; gg and
mðaÞ ¼ a for any a. Therefore tðmÞ ¼ 0 and aGðP;QÞ ¼ gðgþ 1Þ by (10).
When ðP;QÞ are on the other loci in the table above, the similar but slightly
involved calculations also work to obtain aGðP;QÞ.

Second we shall calculate the function c½o0; . . . ;og�1�ððx; yÞ; ðx; hÞÞ. All the
calculations are elementary and routine, we write down only a recipe in the
following. When y0 0 and h0 0, we can take x and x as the local coordinate
functions around there. Then as for the Wronskian determinants, we have

Wð f0; . . . ; fi�1Þðx; yÞ ¼
Yi�1

k¼0

k!

 !
1

yi
;ð15Þ

Wð f0; . . . ; dfj�1fj�1; . . . ; fi�1Þðx; yÞ ¼
1

ði � jÞ!
Yi�1

k¼0
k0 j�1

k!

0B@
1CA xi�j

yi�1
;ð16Þ

for 1e je ie g. These (15), (16) and (12) imply

Tlow½ f0; . . . ; fg�1�ðx; yÞij ¼ ð�1Þ iþ j i � 1

j � 1

� �
xi�jDðgÞðx; yÞ:ð17Þ

Here DðgÞðx; yÞ is defined by

DðgÞðx; yÞ ¼
Yg�1

i¼1

ðWð f0; . . . ; fi�1Þðx; yÞÞ ¼
Yg�1

i¼1

Yi�1

k¼0

k!

 !
1

ygðg�1Þ=2 ;

in which the second equality comes from (15). The entries of W ½ f0; . . . ; fg�1�ðx; hÞ
are given by

W ½ f0; . . . ; fg�1�ðx; hÞij ¼
Xminfi�1; j�1g

k¼0

ði � 1Þ!
ði � 1� kÞ!

j � 1

k

� �
x i�1�k 1

h

� �ð j�1�kÞ
;ð18Þ
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where ð1=hÞðnÞ denotes the n-th derivative of 1=h by x. Thus (17) and (18) imply

ðTlow½ f0; . . . ; fg�1�ðx; yÞ �W ½ f0; . . . ; fg�1�ðx; hÞÞijð19Þ

¼ DðgÞ
Xminfi�1; j�1g

k¼0

ð�1Þ i�1�k
k!

i � 1

k

� �
j � 1

k

� �
ðx� xÞ i�1�k 1

h

� �ð j�1�kÞ
:

Hence the i-th anti-principal minor of Tlow½ f0; . . . ; fg�1�ðx; yÞ �W ½ f0; . . . ; fg�1�ðx; hÞ
is given by

diðTlow½ f0; . . . ; fg�1�ðx; yÞ �W ½ f0; . . . ; fg�1�ðx; hÞÞð20Þ

¼ ð�1Þ ið2g�i�1Þ=2 Yg�1

a¼1

Ya�1

k¼0

k!

 !i Yi
b¼1

ðb � 1Þ!
 !

ðx� xÞ iðg�iÞ

ðygðg�1Þ=2hÞ i
:

Therefore from (15) and (20), we have obtained

c½o0; . . . ;og�1�ððx; yÞ; ðx; hÞÞ ¼ C
ðx� xÞðg�1Þ=3

yðg2�gþ2Þ=2h

 !gðgþ1Þ=2

;ð21Þ

where the constant C is given by C :¼ ð
Qg�1

i¼1

Q i�1
k¼0 k!Þ

gðgþ1Þ=2ð
Qg

a¼1

Qa�1
k¼0 k!Þ

2.

Remark 6.1. Both y0 0 and h0 0 are assumed in the expression
(21). When those are not the case, we can also obtain an expression of the
function by using the transition low (14) in changing the local coordinate
functions. For example, we consider the function at y ¼ 0 and h0 0. Then
we can take y and x as the local coordinate functions around ðx; 0Þ and ðx; hÞ
respectively. Then the transition low (14) implies that

~cc½o0; . . . ;og�1�ððx; yÞ; ðx; hÞÞ ¼
dx

dy

� �gðgþ1Þðg3þgþ4Þ=12
c½o0; . . . ;og�1�ððx; yÞ; ðx; hÞÞ

¼ C
ðx� xÞðg�1Þ=3ðx 0Þðg

3þgþ4Þ=6

yðg2�gþ2Þ=2h

 !gðgþ1Þ=2

;

where x 0 ¼ dx=dy. Because x 0=y is holomorphic at y ¼ 0, ~cc½o0; . . . ;og�1�ððx; yÞ;
ðx; hÞÞ is holomorphic at ððx; 0Þ; ðx; hÞÞ ðh0 0Þ.

In consequence of the expression of c½o0; . . . ;og�1�, we find the following.
1. As for the special basis o0;o1; . . . ;og�1 of WðYÞ as above, the car-

dinality of aGðP;QÞ attains the lowest value gðgþ 3Þ=2 if and only if
C½o1; . . . ;og�ðP;QÞ0 0.

2. The irreducible components of the zero locus of C½o0; . . . ;og�1� are
(i) fWeierstrass pointg � Y ,
(ii) Y � fWeierstrass pointg,
(iii) the graph of the hyperellptic involution s,
which have been appeared in the table above.
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This seems to suggest a relation between the irreducible components of the zero
locus of C½o0; . . . ;og�1� and the cardinality of the gap set in general.
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