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ISOTROPIC IMMERSIONS OF THE CAYLEY PROJECTIVE
PLANE AND CAYLEY FRENET CURVES

HiroMasa TANABE

Abstract

We investigate parallel isotropic immersions of an open submanifold of either the
Cayley projective plane CayP?(a) or its noncompact dual into a real space form M"(¢é),
and give a characterization of the first standard embedding of CayP?(x) into M"(¢) in
terms of a particular class of Frenet curves of order 2.

1. Introduction

Let f: M — M be an isometric immersion of a Riemannian manifold M
into an ambient Riemannian manifold M. In order to study the properties of
the immersion f it is one of natural ways to examine the extrinsic shape of curves
in the submanifold M.

A smooth curve y in M parametrized by its arc-length is called a Frenet
curve of proper order 2 of curvature i if there exist a smooth unit vector field V'
along y and a positive smooth function x satisfying the following system of
ordinary differential equations

(1.1) Vip=xV and V;V = —xj.

We call a Frenet curve of proper order 2 with positive constant curvature k a
circle of curvature k. We regard a geodesic as a circle of null curvature. K.
Nomizu and K. Yano proved that a submanifold M is an extrinsic sphere of M
(that is, a totally umbilical submanifold with parallel mean curvature vector)
if and only if every circle of curvature k in M is also a circle in M for some
positive constant £ ([9]). Motivated by their result, in [13] we gave character-
izations of an extrinsic sphere and every totally geodesic submanifold in a
Riemannian manifold in terms of a Frenet curve of proper order 2. In [§], S.
Maeda and the author characterized all totally geodesic Kéhler immersions of
Kéhler manifolds into an ambient Kédhler manifold and all parallel isometric
immersions of a complex space form into a real space form by using a particular
class of Frenet curves.
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Along this context, in the preceding paper [14] the author established a
theorem which provides a characterization of the first standard minimal immer-
sion of the Cayley projective plane CayP?(c) into a real space form by observing
the extrinsic shape of some Frenet curves of order 2 in CayP?(c). However,
there was a gap in the proof of the theorem. He stated that the parallelism of the
second fundamental form implies the rigidity of the parallel isotropic immersion
and it is possible to use the classification theorem of complete parallel submani-
folds in a real space form as a local theorem (see page 15 in [14]). His comment
is true, but he did not give a full detail of the proof. Additionally, there was a
slight deficiency of the precision in his theorem, because he did not describe one
of examples which he should have done (see page 13 in [14] and our Theorem 2).

We have two aims of the present paper. One of those is to bring the above
local rigidity theorem to completion. That is, we shall prove the following.

THEOREM 1. Let M be a connected open submanifold of either the Cayley
projective plane CayP*(a) of maximal sectional curvature o(>0) or Cayley
hyperbolic plane CayH?*(«) of minimal sectional curvature o(<0). Let f be a
full parallel isotropic immersion of M into a real space form M'*?(¢) of constant
sectional curvature ¢. Then the immersion f is constant isotropic and we have
a>0, p=9 or 10. Moreover, [ is locally congruent to either

(1) the first standard minimal immersion fi : CayP*(a) — S*(3a/4) or

(2) a parallel immersion defined by f, o fi : CayP?(o) EL S%(30/4) EL M),

where fi is given above, f> is a totally umbilical immersion and 30./4 > ¢.

To prove Theorem 1, we take a different way from that mentioned in [14]
and utilize the result of Y. Agaoka and E. Kaneda [3]. The proof of Theorem 1
will be given in §4. Preparatorily, in §3 we study the properties of isotropic
immersions of the Cayley plane into a real space form by examining the structure
of the first normal space.

Using the above theorem, we can deal with not only CayP?(x) but also
CayH?(x). The other aim of this paper is to establish the following new
theorem which fills up the deficiency in [14] and is an improvement of that:

THEOREM 2. Let M be a connected open submanifold of CayP*(a) (o> 0)
or CayH?(¢) (x < 0) and f an isometric immersion of M into a real space form
M'4P(&). Assume that there exists a positive smooth function x(s) satisfving that
f maps every Cayley Frenet curve y = y(s) of curvature k(s) in M to a plane curve
in M'*P(&).  Then the open submanifold M must be in CayP?(a) (« > 0) and the
immersion f is locally congruent to one of the following examples:

(1) the first standard minimal immersion f; : CayP*(a) — S*(30/4),

(2) a parallel immersion defined by f>o fi: CayP*(a) £ S¥(30/4) EL

M 1612(¢), where fi is as above, f> is a totally umbilical immersion and
3u/4 > ¢.
In addition, the Cayley Frenet curve y is a Cayley circle.
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For the notions of Cayley Frenet curves and Cayley circles in the Cayley
plane, we refer to §5. The proof of Theorem 2 will be given in §6.

The author wishes to express his appreciation to Professor S. Maeda for his
constant encouragement and help in developing this paper. He also greatly
appreciates the referee’s valuable suggestions.

2. Preliminaries

In this section we review a few fundamental equations in submanifold theory
and prepare some lemmas. Let M and M be Riemannian manifolds and
f:M — M an isometric immersion. We identify a vector X of M with a
vector f.(X) of M throughout this paper. The Riemannian metrics on M, M
are denoted by the same notation {,). The pull back f ~“ITM of the tangent
bundle 7M of M is orthogonally decomposed into the sum of tangent bundle
TM of M and normal bundle NM: f~'TM =TM @ NM. We denote by V
and V the covariant differentiations of M and M, respectively. Then the
formulae of Gauss and Weingarten are

VY =VyY +0/(X,Y), Vyé=—A:X +Vié

for vector fields X, Y of M and a normal vector field &, where V* denotes the
covariant differentiation in the normal bundle NM. The tensors ¢ = gy and A
are called the second fundamental form of f and the shape operator in the
direction of &, respectively. We define the covariant differentiation V' of the
second fundamental form o of f with respect to the connection in TM @ NM
by

(Vko)(Y,Z) = Vy(a(Y,Z)) = o(VxY,Z) — a(Y,VxZ)

for vector fields X, Y, Z of M. An isometric immersion f is said to be parallel
if its second fundamental form satisfies Vg = 0.

Let {e,...,e,} be a local field of orthonormal frames on M, where
n=dim M. Then the mean curvature vector field h =10, of f is defined by
b= (1/n)>" (e e). If h =0, the immersion f is said to be minimal. We
say the mean curvature vector field b of f is parallel if V2 =0. Tt is said to be
totally umbilical if a(X,Y) = (X, Y )l for all vector fields X, ¥ on M. If there
exists a function g on the submanifold M such that <{a(X, Y),h) = u(X, Y for
any vector fields X, Y on M, then the immersion f is said to be pseudo
umbilical. Tt is clear that every minimal isometric immersion is pseudo umbilical
and that for a pseudo umbilical immersion we have u = 1H]|%.

A real space form M™(¢) is an m-dimensional Riemannian manifold of
constant sectional curvature ¢, which is locally congruent to either a Euclidean
space R™, a standard sphere S™(¢) or a real hyperbolic space H"(¢) according as
the curvature ¢ is zero, positive or negative. In case that the ambient manifold
is a real space form M™(¢), the equation of Gauss for an isometric immersion
f:M — M"(¢) can be written as
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(2.1)  (RX,Y)Z,W) =KX, WYY, Z) —<X,ZXXY,W))
+ <G(X7 W),O'(Y,Z)> - <O-(Xa Z)7U(Yv W)>7

for vector fields X, Y, Z, W of M, where R represents the curvature tensors
for V.

Next, we recall the notion of isotropic immersions in the sense of B. O'Neill.
An isometric immersion f: M — M is said to be (A.-)isotropic at xe M if
there exists a nonnegative constant A, such that ||o(X,X)| = A, for every unit
tangent vector X € T,,M. If there exists a nonnegative constant A satisfying that
lo(X, X)|| = 4 for every point x € M and for every unit tangent vector X € T, M,
then f is called a constant isotropic immersion whose isotropy constant is A.
Note that a totally umbilical immersion is isotropic, but not vice versa. We have
the following lemma (see [12]).

LemMMA 1. Let M, M' be Riemannian manifolds and M a pseudo Riemannian
manifold. Let f': M — M’ be an isometric immersion, f": M’ — M a totally
umbilical immersion whose mean curvature vector Y, is parallel and let f = f" o f'
be the composition of [’ and f". Then:

(1) The mean curvature vector by, of f is parallel if and only if by of f is

parallel.

(2) f is constant A-isotropic if and only if f' is constant A'-isotropic, where

2= o
(3) f is parallel if and only if [’ is parallel.

The first normal space at the point x of M is defined as the subspace N (M)
of NyM spanned by the image of the second fundamental form at x, that is,

NN (M) = Spang{c(X,Y); X, Y e T\M} = N M,

X

where Spang{*} denotes the real vector space spanned by {x}. The discriminant
A; at xe M is given as

Ac=K(X,Y)-K(X,Y),

where K(X,Y) (resp. K(X,Y)) represents the sectional curvature of the plane
spanned by orthonormal vectors X,Y € T\M for M (resp. for M).
The following two lemmas are due to B. O’Neill ([10]):

LEMMA 2. For an isometric immersion f: M — M the following conditions
are mutually equivalent:
(1) f is Ac-isotropic at x € M for some Ay(>0).
(2) (o(X,X),0(X,Y)> =0 for an arbitrary orthogonal pair X,Y € TyM.
(3) C<o(X,Y),0(Z,W)>+<a(X,Z),a(W,Y))+{a(X,W),0(Y,2))
= 2L(KX, YXZ W+ (X ZYXW, Yy + (X, WY, Z))
for some 2,(=0) and for any vectors X,Y,Z, W e T.M.
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LEmMMA 3. Let x be an arbitrary fixed point of M, V an r-dimensional
subspace of TxM and {e\,...,e;} an orthonormal basis of V, where 1 <r <
dim M. Let N(V) be a subspace of NN M) given by N(V)=
Spang{co(X,Y); X, Y e V}. Suppose that f is Ay(> 0)-isotropic at the point
X €M and the restriction A.|, of the discriminant A, to V is constant on V.
Then we have

r+2

2 2
30— 1)2)6 <Ay <25

Moreover,
(1) Ay =22 & dim N(V) =1, r
) Ay =—{(r+2)/2(r = D)}l & ) oler,e) =0 < dim N(V)
i=1

={r(r+1)/2} - 1,
(3) —{(r+2)/2(r — )}22 < A\|, < 22 & dim N(V) = r(r +1)/2.

3. Isotropic immersions of the Cayley plane

Let Cay denote the set of Cayley numbers, which is an §-dimensional non-
associative division algebra over the real numbers ([6]). It has multiplicative
identity 1 and a positive definite symmetric bilinear form <,». Let {uy =1,
ui,...,u7} be an orthonormal basis of Cay with respect to the form {,)». The
multiplication of Cayley numbers is completely determined by the multiplication
table given below:

[Z0) Uy [25) us Uy us Ug uz
Uuo Uup up [Z5) us Ug Uus Ue uz
up up —Ug us —Uy Uus —Uy uy —Ug
up us —U3 —Uy Uy —Ug Uz Uy —Us
us us up —U —Uy Uz Ug —Us —Uy
Uy | Uy —Us Ueg —Uuy —Uy uy —Uy us
us Us Uy —Uy —Ug —Uj —Uy us [Z5)
Ug Ug —U7 —Uy us U —us —Uy 23]
Uz uy Ug Us Ug —Uu3 —Up —U —Ug

To express the above multiplication simply, we define ¢; (¢ =+1) and
KU (K[/:O,l,...,7) by

(3.1) uill; = &l

for i,j=0,1,...,7.
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Let M be a connected open submanifold of CayP?(x) or CayH?(x). The
tangent space of M can be identified with the set of ordered pair of Cayley
numbers Cay @ Cay. The vector space Cay @ Cay has a positive definite sym-
metric bilinear form <, ) given by {(a,c), (b,d))> = {a,b) + {c,d). We put ¢; =
(4;,0), e+ = (0,u;) for 0 <i<7. Then the vectors ey,...,e7, €,...,e;- form
an orthonormal basis of the tangent space of M.

The curvature tensor R of M is given by

(3.2) (R((a,b),(c,d))(e, [),(g,h)>
= a({c,e){a,gy — {a,ex{c,g) + d, [ <{b,hy —<b, [H<d, h))
+%(<ed, gb) — Leb, gd) + Lcf ,ahy — Laf ,ch) + {ad — cb, gf — eh))
(for detail, see [4]).

Remark 1. From (3.2), we see the scalar curvature p of M is given by
p = 1440,

Now, we consider a A.(> 0)-isotropic immersion f* of M into a real space
form M'®*7(¢) of constant sectional curvature ¢. Using the equation of Gauss
(2.1) and Lemma 2(3), we have

(3.3) o(X,Y),0(Z,W))
= (R(Z,X)Y, W)+ {R(Z, V)X, W)+ (22 = 20){X, Y)Z, W)
+ (24X, ZXW, YD+ (X, WY, Z)}

for all vectors X,Y,Z W eT.M. For an orthonormal basis {ey,...,e7,
e,...,e7+} of the tangent space TyM, we employ the simple notation oy,
o;- and o, instead of g(e;, e;), a(e;, ¢j+) and o(e;+,e;-), respectively. Then, the
equation (3.3), combined with (3.2), yields the following orthogonal relations:

(3.4)  <oy,0u) = Oi+j*, Ok+1+ )

1, . 1 )
=31+ 200 = O)}oy0u + 3 {4: — (4 = }Oudj + 9jd),

1 o 5
(3'5) <O'ij70'k*l*> :§ (lliJrizc‘)éij(Sk/,
o 1 ~
(3:6) Coj+ 0> = Fiendy, + 3 {2 — (2= O)}owdy,
(3.7) {ojj, 0k ) = 0=, Ok+1+ ) = 0,

where ¢; and x; are defined by (3.1).
A straightforward calculation shows the following lemmas.
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LemMMA 4. For a (> 0)-isotropic immersion f : M — M'"*P(¢), we have
L . .
(3.8) IB1* = 55 (343 + 3 = 50),

where Yy is the mean curvature vector of f.

LEMMA 5. A (> 0)-isotropic immersion f : M — M'*P(¢) is pseudo um-
bilical.

Consider the vector subspaces S, T, T*, U, (im=0,...,7) of the first

normal space N!(M) given by

S = Spang{000, . - ., 077, 00%0%, - - . , O77+ },

T = Spang{0;;0 <i < j <7},
T* = Spang{oij-;0 <i< j<T},
Uy, = Spang{oj;x; =m,0<i<7,0<j<7}

Then, the relations (3.4),...,(3.7) tell us that the vector space N!(M) is decom-
posed into a direct sum of subspaces which are mutually orthogonal:

N(M)=SOTOT @U@ - @ U;.

Evaluating the dimension of each subspace, we obtain the following lemma
which gives a necessary condition for an isometric immersion f to be isotropic.

LemMmA 6. Let f be a (> 0)-isotropic immersion of M into a real space
form M'®TP(¢).  Then the dimension of the first normal space NY(M) at the point
x of M is equal to either 9, 10, 126, 127, 135 or 136 Moreover we have

1)dimN( )—9<:>oc>0 c—4ocand) o,

2) dm N (M)=100>0, ¢<3 ocandiz_oc—c

3) dim N}(M) =126 < o < 0, c——%oc and 2l =—1a,

(

(2) (M) =

(3) (M) =

4) dim N}(M) =127 < a <0, c<—§oc and A2+5<x+cf0
(5) (M)

(6) (M) =

5) dim N}(M) =135« —2¢ <a < %¢ and 3/12+3a—5c_0
6) dim N} (M 136<:)/lz+5a+c>0 300 4+30-5¢>0 and -3 <
oc—c</lf

Proof. Denote by K(X,Y) the sectional curvature of the plane spanned by
vectors X, Y € T.M = Cay @ Cay. Then we see from (3.2) that

K((a,0), (b,0)) = (R((a,0), (6,0))(b,0), (a,0)>/||(a, 0) A (b,0)]* =

for (a,0),(h,0) e TxM with (a, 0) A (b,0) #£0. So the restriction Ay |Ca}(—B{O} of
the discriminant to Cay @ {0} is constantly equal to « — ¢ on the linear sub-
space Cay @ {0} of T M, and hence we can apply Lemma 3 to the subspace
Cay ® {0}. Our discussion is divided into the following three cases: (A)

u—¢=72, (B) a—é=—512/7, (C) =542/T <o —¢< il
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First, we investigate the case (A). The relation (3.4) reduces to
)2
Oij, 0k1) = {Oivje, Oke1+ ) = A0;j0ki

so that we have oy =01 =--- =077, 000 =01+1- =---=077- and g, =
o+ =0 for i < j, that is, dim S=1,2 and dim 7 =dim 7*=0. The rela-
tion (3.5) becomes

o
<0'17,O'k*/*> = <;Li — 2)5,]5/(1.

We here recall the Gram determinant G(vi, ..., v,)(= G({vi},—;_ ,)) of a set
of vectors vy,...,v, in a real metric vector space glven by
orv1) Cor,v2) 0 U1, 00

(v, v1)  Cv2,v2) o0 U2, U
G(vy,...,v,) = det ) )

<Ul’lavl> <Un502> <Un,l)n>

It is well known that G(vy,...,v,) > 0 and that the vectors vy, ..., v, are linearly
independent if and only if the Gram determinant G(vy,...,v,) is nonzero. For
our vectors oo, gg+0+ € S, we have
2 2
;{x }“x - 2 ,
G(000,00+-) = det =af Al —= ).
22 o 22 * 4
r 2

This means that 0 < a/4 < /12 and the dimension of the subspace S equals 1
(resp. 2) if and only if ¢ = 3oc/4 (resp. & < 30/4), because o — ¢ = A2,
We see from (3.6) that

12 :% and <O’,~j*;0'k1*> = %gijgkl for Gij+, Ofl+ € U,.
Hence we have dim U,, =1 (m=0,...,7) so dim N!(M) =9 or 10 according as

¢=30/4 or ¢ < 3u/4. This proves the assertion (1), (2).

Next, we study the case (B). Lemma 3 says that Zl 00i =0 and
dim SpanR{a,-j;O <i<7,0<j<7}=35 sowehave dim Spang{ow,...,066} =7
and dim 7 = 28. On the other hand, for vectors (0,a),(0,b) e T\M with (0,a) A
(0,6) # 0 we have K((0,a),(0,b)) =a. Hence we can apply Lemma 3 to the
linear subspace {0} @ Cay of TxM. Since A¢|ygc,y =2 — ¢ = —5)2/7, we see
21.7:0 o+~ =0 and dim Spal’lR{O'()*o*, .oy 066} =7, dim T* =28 as well. Thus,
we find that our 1mmers1on fis mlnlmal S Looi+ Yy =0. Thanks to
Lemmd 4, we have 3) + 30— 5¢ =0. This, combined with the equality o — ¢ =
—5)2/7, gives ¢ = —3oc/2 and 42 = —7a/2. Then, from the relation (3.5) we

get
{oji, 0k =0,
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which implies that vectors ay,...,d6¢, 0G0<0+,---,06+ form an independent
system and dim S = 14.
We evaluate the dimension of Uy = Spang{oo:,...,077:}. The relation

(3.6) becomes

o
(T, Ok ) = ~ Eij€kke — 200k,

4
SO
7 1 1
_Za | _Za .. _Za
1 7 1
—qo | —ta T
1 3 1
G(O’oo*, .. .,0',','*) = det
1 1 7
—ZO( ZOC —ZOC
for 1 <i<7. We see G(ago+,...,077+) =0, G(ago+,...,066-) >0 and we con-

clude dim Uy = 7.

For the other subspace U,,, we can also see dim U,, = 7. Consequently, we
get the assertion (3).

Lastly, we consider the case (C). In this case,

dim Spang{c;;0 <i<7,0 <j <7} =dim Spang{c;i;+;0<i<7,0<;<7}=36

so that dim Spang{o,...,o77} = dim Spang{c¢-o+,...,07+7-} =8 and dim T =
dim 7* =28. A computation gives
216 N Y p 2
G((J'()()7 ey 077, 00%0%, - - - ,0'7*7*) = ﬁ(d —C— )”x) (50( +c+ ix)(:;(% —5¢c+ 31/\)

Suppose that Su+ ¢+ 22 =0. Since —512/7 <a—¢&< )2, we have —212/7 <
o< 0. Then

21471 R
G(600, - -+, 077,00%0%, - - -, O6r6+) = TO( (7o + 2}.);) >0,
G(O’O()*, e 0'77*) =0, G(()’()()*7 . 70-66*) = 2% > 0,

hence dim S = 15 and dim Uy =7. We see dim U,, =7(m=1,...,7) as well as
Up. Tt follows that dim N!(M) = 127.
If 30— 5¢+342 =0, we have —227/7 < o < 412, from which

215

G(Goo, ey 077, 0050%y « - - ,06x6x) = W (OC — 4)52{)2(706 + 2].3) > 0,

9

2
T 38 .58 (o = 4}“5)7(7“ + 2/1,3) >0,

G(JOO*) RS 0-77’) = G({ai/’*}x[/:m> =

and therefore dim N} (M) = 135.
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Suppose (5« + ¢+ A2)(3a — 5¢4342) > 0. Then
1
G(O’OQ*, s 7077*) = G({Jlj*}lﬁ/zm) = ﬁ ('13 —o+ 6)7()”3 + S0+ E)

does not vanish because A> >« — ¢ Hence we have A7 + S+ ¢ > 0, 3¢ — 56+
342> 0 and dim S =16, dim U,, =8 (m=0,...,7) so that dim N!(M) = 136.
This completes the proof. ]

Remark 2. By Lemma 4 and Lemma 6 we find that if the immersion f is
minimal then ¢ >0 and dim N!(M) must be 9, 126 or 135.

4. The proof of Theorem 1

Our immersion f is a full parallel isotropic immersion of M into a real space
form M'®*?(¢) of constant sectional curvature ¢. Hence, the mean curvature
vector b, of f is parallel. Therefore, as an immediate consequence of Lemma 4
(3.8), we find that the immersion f is constant isotropic. Moreover, we know
from Lemma 5 that f is pseudo umbilical. So, by using a similar method in
[11] it can be shown that either M is minimal in M'6*?(¢) or M is minimally
immersed into a totally umbilical hypersurface M'°*(¢) (¢ = p — 1) of M'*7(¢)
which is orthogonal to the mean curvature vector ;. Here note that our sub-
manifold M is not necessarily complete. The above fact holds without the
hypothesis of completeness.

First, we consider the case that M is minimal in M'**7(¢). From Remark 2
we have ¢ > 0, so that we can regard M as a minimal submanifold of S'6*7(¢)
through a constant isotropic immersion f whose isotropy constant is A. Let :
be the natural embedding of S'°*7(¢) into a Euclidean space R'7"7. Then, we
can see that the immersion z is a constant /¢-isotropic and ||b,|| = /. Thus,
from Lemma 1, the composition 10 f : M — R'7*? is a parallel constant iso-
tropic immersion and its isotropy constant is v/A> +¢. We denote by D and V*
the covariant differentiation of R'7*7 and that in the normal bundle of M in
R!"*7, respectively. Let y = y(s) be an arbitrary geodesic in M parametrized by
its arclength 5.  We have /2% + ¢ = [|o,0/(3,7)||. Set V = (1/V 2> + &)awos (3, 7).

By the formula of Gauss we have
Dyj = 0oy (7.7) = VA2 + V.
Moreover, by the formula of Weingarten
DV = (17 + (Ao 5,09 + V3 (007 (5.9)}-

Since 10 f is isotropic, it follows that 4, ;47 = (22 +¢)j. In fact, we take a
local field of orthonormal frames {ej,e;,...,e|s} around y(s) € M in such a way
that e{ = j(s). Then, owing to Lemma 2 (2), we see

<Amo/(?= ?)j)’ ezl> = <010f(j)7 V), alOf()}7 e;)> = ”Jlof(j)’ 3})”2511'5
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which shows the equality. By the fact that i1o f is parallel, we have
Vi (0107(7,7)) = 0. Hence we obtain

DV =~V + .

Thus we see that every geodesic in M is a circle in R!*7. In general, an
isometric immersion of M into M is called a planar geodesic immersion if every
geodesic in M is mapped locally into a 2-dimensional totally geodesic submani-
folds of M. Our immersion zo f is planar geodesic.

Now, we have the following lemma due to S. L. Hong ([7]):

LemmA 7. Let M be an n-dimensional (n > 2) connected Riemannian man-
ifold, f: M — R"" q planar geodesic immersion. Then f is a constant isotropic
immersion. Denote by A its isotropic constant. If A >0, the maximal (resp.
minimal) sectional curvature of M is equal to 1> (resp. 1*/4), that is,

1
ZAZ <K(X,Y) <A
for any orthonormal vectors X, Y € TxM.

Applying this to our case, we can see that « > 0 and o = A> 4+ & Therefore,
by Lemma 6 and Remark 2, we conclude that p =9.

Next, we investigate the case that M is minimally immersed into a to-
tally umbilical hypersurface M'6*4(¢). Since the totally umbilical immersion of
M'0+4(¢) into M'6*P(¢) is /¢ — c-isotropic and its mean curvature vector is
parallel, by virture of Lemma 1, the minimal immersion f’: M — M'6%4(¢) is a

parallel constant isotropic immersion with its isotropy constant {/A> — (¢ —2¢).
So, by Remark 2, we have ¢ > 0. Along the same argument as above, we
consider the composition of 1’ o f/ of a minimal immersion f’: M — S'674(¢)
and the natural embedding i’ : S19*%(¢) — R'"*%. Since, from Lemma 1 again,
the immersion 1/ o f’ is a parallel constant isotropic immersion whose isotropy

constant is equal to \/{/12 — (-8} +e=+Vi*+¢ it follows that o >0 and
q=09.
Y. Agaoka and E. Kaneda proved the following rigidity theorem ([3]):

THEOREM 3. Let fy be the canonical isometric embedding of CayP?*(a) into
the Euclidean space R*®.  Then, for any isometric immersion f defined on a con-
nected open set of CayP?(v) into R, there exists a Euclidean transformation A

of R? satisfying f = Ao f.

Thanks to their result, we find that our immersion f is locally congruent
to either the first standard minimal immersion CayP?(x) — S>(32/4) or the
composition of the first standard minimal immersion and a totally umbilical
immersion CayP?(a) — S%°(3u/4) — M**(¢) (3u/4 > ¢é).
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5. Cayley Frenet curves

We consider a Frenet curve y of proper order 2 in CayP?(«) («>0) or
CayH?(x) (x < 0). We can see from (1.1) that the sectional curvature K(7, V)
given by the osculating plane spanned by y and V is constant along y. Indeed,
since VR =0 we have

VKR, V)V, 9>
=<R(Vyp, V)V + R, Vi V)V + R(, VIV V9> + <R3, V)V, Vip)
= K<R( V? V) Vv 7> - K<R(ya V) Vv 7> - K<R(y7 V)yv V> + K<R(y7 V) V7 V>
=0.

A Frenet curve y of proper order 2 which satisfies K(7, V) = o is called a Cayley
Frenet curve. If the curvature xk of a Cayley Frenet curve y is constant, namely
if p is a circle, we call y a Cayley circle. We regard a geodesic as a Cayley circle
of null curvature.

A curve y in a Riemannian manifold M is called a plane curve if the curve y
is locally contained in some 2-dimensional totally geodesic submanifold of M.
As a matter of course, every plane curve with positive curvature function is a
Frenet curve of proper order 2. But in general, the converse does not hold. In
the case that the space M is a real space form M"(¢) of constant curvature ¢,
it is easy to see that a curve y is a Frenet curve of proper order 2 if and only if
the curve y is a plane curve with positive curvature.

Suppose that a connected open submanifold M of CayP?(«) or CayH?(x) is
isometrically immersed into a real space form M 16+7() through an immersion f.
It is needless to say that the extrinsic shape f oy of a Frenet curve y of proper
order 2 in M is not always a plane curve in the ambient space M'**7(¢). How-
ever, we have the following ([2]):

ProposITION 1. The immersions (1), (2) given in Theorem 2 map every
Cayley circle in CayP?*(«) to a circle in the ambient space.

6. The proof of Theorem 2

The proof is similar to that in [14]. But for readers we explain it in detail.
Let x be an arbitrary point of M and X € T.M an arbitrary unit vector. Let
y =y(s) be a Cayley Frenet curve in M satisfying the equations (1.1) and the
initial condition (0) = x, (0) = X and K(X, V(0)) = «. Since the curve f oy is
a plane curve in M'®*?(¢) by assump‘Eion, there exist a (nonnegative) function
kK =#k(s) and a field of unit vectors ¥ = V(s) along foy in M'*?(¢) which
satisfy that
(6.1) Viy =&V, ViV =—kp.
Then by the formula of Gauss, we have

(6.2) KV =KV +a(},7),
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hence
- )
(6.3) 2 =1+ o(, 7).

The function ¥ is positive because x > 0.
For the left-hand side of (6.2), by using (6.1) and (6.2) again, we get

(6.4) RV;(RV) = kkV — &9 = ’{kV + a(p, )} — &)

And for the right-hand side of (6.2), by the formulae of Gauss and Weingarten
we have

(6.5)  &Vy{KV +a(j,9)}
= R{EV + kV;V = Ao3.597 + Vi (0(7,9))}
=&{kV +x(V;V +0(3,V)) = Aoz 7 + (Vo) (3, 7) + 20(V;9,7)}
= ’{ikV — %9+ 3K0(3, V) — Agiyp)7 + (Vjo) (3, 7)}-

We compare the tangential components and the normal components for the
submanifold M in (6.4) and (6.5), respectively. Then we obtain the following
equations:

(6.6) KKV — %9 = RV — k% — Ay.97),

(6.7) ko (j,7) = k{30 (j, V) + (Vjo) (7, 7)}-
Differentiating the both sides of (6.3), we have

(6.8) ki = wic + {(Vj0) (7, 7), 0(5, 7)) + 20 (V7). 0 (5, 7).
On the other hand, the equation (6.7) yields

(6.9) kra(p,7) = K {3xa(p, V) + (Vjo) (7,7)}-

Substitute (6.3) and (6.8) into (6.9) and set s =0. Then we have
(610)  {x(0)ic(0) + ((Vya) (X, X), (X, X))
+2k(0)<o(X, X),a(X, V(0))>}o(X, X)
= {x(0) + [|o(X, X)|*H{3x(0)a (X, ¥ (0)) + (Vo) (X, X)}.

We note that there exists another Cayley Frenet curve y; = y,(s) with the same
curvature x in M satisfying V; 7, = xV7 and V; V1 = —xp; with the initial con-
dition ,(0) = x, 7,(0) = X and V(0) = —V(0). Then the equality (6.10) for y,
turns to

(6.11) {<(0)&(0) + <(Vyo) (X, X),0(X, X))
= 2k(0)<a(X, X),0(X, V(0)>}o(X,X)
= {x(0)* + [lo (X, X)[PH{=3x(0)a(X, ¥(0)) + (Vyo)(X, X)}.
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Therefore, from (6.10) and (6.11) we obtain
(6.12) 2{a(X,X),a(X,V(0)Da(X,X) = 3{x(0)* + |la(X, X)||*}a(X, V(0)).
Taking the inner product of both sides of (6.12) with o(X, X), we get

2{o(X, X),0(X, V(0))>]lo(X, X)|?

= 3{x(0)” + [|o(X, X)[I*}<o (X, X),0(X, V(0))>
and hence
{3x(0)” + [lo(X, X)|*}a(X, X),a(X, V(0)> = 0.

Since 3x(0)” + ||lo(X, X)||* > 0, we have <a(X, X),a(X, V(0))> =0. Thus, again
from (6.12), we see that o(X,V(0)) =0 holds for any X € T.M and any

V(0) e T\M satisfying K(X,V(0)) = o at an arbitrary point x € M. It follows
that

(6.13) a(p,V) =0 along y.

Taking the inner product of both sides of (6.6) with ¥, we have

Kic = KK — K{Ag(5,5)7, V)
=&k —k{a(},7),0(3, V).
Owing to (6.13), the above equation becomes
(6.14) KK = k.
Then the equation (6.7), together with (6.13) and (6.14), yields

K K
V/ . . — = . . — . .
(V50)(7,79) = 2o, 7) = -0 (7, 7),
and
#(0)
Lo)(X,X)=—=0(X,X).
(VXU)( ’ ) K(O) O-( ) )
Changing X into —X, we get (Vio)(X,X) =
in a space of constant curvature (Vyo)(Y,Z)
parallel.
Next, by (6.14) we see that the equation (6.6) reduces to A, 57 = (K2 — x%)7.
Therefore

0. Thanks to Codazzi’s equation
= (V}0)(X,Z), the immersion f is

<O-(X7 X),O'(X, Y)> = <A0'(X,X)X7 Y> = O

for any orthonormal pair of vectors X, Y € T,.M at each point x € M. Thus, by
virtue of Lemma 2, the immersion f is isotropic at each point x € M. Hence, as
mentioned in the proof of Theorem 1, f is constant isotropic.
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Now, since our immersion is parallel, we can see that the first normal space
UN ) is invariant under parallel translations with respect to the
connectlon in the normal bundle and the dimension of N!(M) is constant on
M. 1If the immersion f is not full, thanks to a theorem of J. Erbacher [5],
there exists a totally geodesic submanifold M '6*4(¢ ) of M'®*?(¢) of dimension
16 + ¢ such that f(M) = M'6*4(¢), where ¢ = dim N'(M). Then the immersion
f M — M'°*4(¢) is a full parallel isotropic immersion. Hence, by Theorem 1,
our immersion f is locally congruent to one of the examples (1), (2) in Theorem
2.
Finally, we shall show that the curve y satisfying the hypothesis of Theorem
2 is a Cayley circle. Assume that the curvature x is not constant. Then there
exists some sy with x(sp) #0. Since x, & >0, we find #(sp) #0 from (6.14).
From the fact that Ve =0 and (6.13) we can see that the equation (6.7)
yields a(7(s0),7(s0)) = 0. As we know that f is constant isotropic, we conclude
o(X,X) =0 for an arbitrary unit vector X € 7. M at each point x € M. Hence
the immersion f : M — M'"®*7(¢) is totally geodesic. But it is known that the
manifold M cannot be immersed into a real space form as a totally geodesic
submanifold. Thus we have a contradiction, so that the curve y is a Cayley
circle. This completes the proof.

Remark 3. Recently, T. Adachi and T. Sugiyama characterized some
isometric immersions from the view point of curvature logarithmic derivatives
of curves. See for example [1].
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