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LENGTHS OF CIRCULAR TRAJECTORIES ON GEODESIC
SPHERES IN A COMPLEX PROJECTIVE SPACE

Tuvya Bao AND TOSHIAKI ADACHI

Abstract

We study trajectories for Sasakian magnetic fields which are also circles of positive
geodesic curvature on geodesic spheres in a complex projective space. Investigating
their extrinsic shapes we give a condition for them to be closed. By use of information
on lengths of circles on a complex projective space, we give their lengths, and estimate
the bottom of the length spectrum of circular trajectories.

1. Introduction

Let M be a real hypersurface in a Kahler manifold M with complex
structure J and Riemannian metric {,». This hypersurface admits a canonical
almost contact metric structure (¢,&,#,<,)) induced by J. The characteristic
vector field & is given by & = —J./" with a unit normal 4" on M in M, and the
characteristic tensor ¢ is given by ¢(v) = Jv — {v,)A".  Associated with this
structure we have a canonical closed 2-form Fy on M defined by Fy(v,w) =
{v,p(w)>. Given a constant x we set F,. = «xF, and call it a Sasakian magnetic
field on M (c.f. [10]). The motion of an electric charged particle of unit speed
under this magnetic field is a smooth curve y which is parameterized by its
arclength and satisfies the equation V;y =x¢y. We call it a trajectory for
F.. When x = 0, trajectories are geodesics. We can hence consider trajectories
for Sasakian magnetic fields are generalization of geodesics which are associated
with the almost contact metric structure. But as the characteristic tensor ¢ is not
parallel, trajectories for Sasakian magnetic fields are not simple objects in general
from curve-theoretic point of view.

In this paper, we focus our mind on trajectories which are also circles on
typical homogeneous real hypersurfaces in a complex projective space and study a
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condition for them to be closed. If we consider circles on a standard sphere or
on a Euclidean space, we see they are closed. But the situation is not the same
on geodesic spheres in a complex projective space even if we restrict ourselves
to circular trajectories. We show that there are infinitely many open circular
trajectories and infinitely many closed circular trajectories. The reasons why we
focus our mind on trajectories which are also circles are one is that circles are
simplest curves next to geodesics and the other is that trajectories for Kidhler
magnetic fields are always circles. A constant multiple B, = kB, of the Kéhler
form B; on a Kéhler manifold (M, J) is said to be a Kdhler magnetic field. A
trajectory for B, is a smooth curve which is parameterized by its arclength and
satisfies the equation V; = xJy (see [1] and its sequels for more detail). Since
some homogeneous real hypersurfaces in a non-flat complex space form can be
regarded as odd dimensional objects corresponding to complex space forms,
which are called Sasakian space forms, we are interested in some similarity and
difference between Sasakian magnetic fields and Kéhler magnetic fields.

In this paper we also study the distribution of lengths of circular trajectories.
It is known that geodesic spheres of sufficiently large radius in a complex pro-
jective space are examples of “Berger spheres”. Borrowing an idea on the study
on lengths of circles given in [4], we give an expression of lengths of closed
circular trajectories and estimate the length of shortest closed circular trajectories.
We here note that every trajectory for our Sasakian magnetic fields is a homoge-
neous curve on a geodesic sphere in a complex projective space, that is, it is an
orbit of a one-parameter subgroup of the isometry group of a geodesic sphere
([5]). Though trajectories for Sasakian magnetic fields essentially are not circles,
from the viewpoint of curve-theory, we may say that our study gives a clue to the
study of homogeneous curves on Sasakian space forms.

The authors are grateful to the referee for valuable suggestions.

2. Main results

A smooth curve y on a Riemannian manifold which is parameterized by its
arclength is called a circle if it satisfies the differential equation V;V;j + k%) =0
with some nonnegative constant k. This constant k is called the geodesic cur-
vature of a circle. When k =0 it is a geodesic. We may hence say that circles
of positive geodesic curvature are simplest curves next to geodesics. In this
paper we study trajectories for Sasakian magnetic fields which are also circles of
positive geodesic curvature. We call such a trajectory circular.

A smooth curve y parameterized by its arclength is said to be closed if there
is a positive constant 7, satisfying y(¢ + ¢.) = p(¢) for all . The minimum positive
t. with this property is called the length of y and is denoted by length(y). For
a smooth curve which is not closed we say it is open and set length(y) = co. We
here give our main results. On geodesic spheres in a complex projective space
CP" we find trajectories are closed if and only if their radii and strengths of
Sasakian magnetic fields satisfy a relation.
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THEOREM 1. Let y be a circular trajectory for a Sasakian magnetic field F,
on a geodesic sphere G(r) of radius r (0 <r < m/2) in a complex projective space
CP"(4) of constant holomorphic sectional curvature 4.

(1) When n/4 <r < /2 and k* = (3y/2(cot> r+ 1) — 4)/2, it is closed and

its length is Zn\/Z sin 7(3v/2 — 4 sin r).

(2) Otherwise, y is closed if and only if
2.1 (1? +2)|2* + 8k =9 cot? r — 1| q(9p? — ¢?)

. 2(ic* + dic? — 3 cot? r 4 1)*/? (3p2 +¢2)*?

holds with some relatively prime positive integers p, q satisfying
p>q. In this case its length is given as

70(p. )iy (3 + 42)/(c* + 4K — 3 cot? 4 1),

where d(p,q) =1 when pq is odd and o(p,q) =2 when pq is even.

Though the above theorem shows the explicit formula on lengths of closed
circular trajectories, as the relation between radii and strengths of Sasakian
magnetic fields is given by cubic equations, it is not easy to get how lengths of
circular trajectories are distributed on the real line. We hence consider pro-
perties of the length spectrum. We say two smooth curves y,, y, on G(r)
are congruent to each other if there exist an isometry ¢ of G(r) and a con-
stant o with y,(¢+ t9) = @ o y,(¢) for all 2. We denote by 74(G(r)) the set of
all congruence classes of circular trajectories on G(r) in CP"(4). We define
L TH(G(r)) — RU{0} by L([y]) = length(y) and call it the length spectrum of
circular trajectories. Here [y] denotes the congruence class containing a circular
trajectory y. We set LSpec,(G(r)) = £(74(G(r))) NR and call it also the length
spectrum of circular trajectories.

THEOREM 2. The length spectrum LSpec,(G(r)) of circular trajectories on a
geodesic sphere G(r) in CP" is not bounded.

With Proposition 1 and Lemma 1 which will be mentioned below, this
theorem guarantees that there exist infinitely many closed circular trajectories.
On the other hand, as the set of all the solutions for (2.1) is a discrete subset
of a real line even if (p,q) runs over all pairs of relatively prime positive
integers satisfying p > ¢, we find there also exist infinitely many open circular
trajectories.

COROLLARY 1. On a geodesic sphere G(r) in CP", there exist infinitely many
closed circular trajectories and infinitly many open circular trajectories.

It is known that every trajectory for Kdhler magnetic fields on a complex
projective space is closed. From the viewpoint of shapes of trajectories, Sasakian
magnetic fields have different aspects from Kidhler magnetic fields.
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3. Circular trajectories on geodesic spheres

We shall start by reviewing the circular condition on trajectories for Sasakian
magnetic fields on geodesic spheres in a complex projective space CP". A
smooth curve y parameterized by its arclength on a Riemannian manifold N is
said to be a helix of proper order d if it satisfies the following system of ordinary
differential equations V;Y; = —x;_1Y;_1 +x;Y;11 (1 < j <d) with positive con-

stants x,...,xks-; and an orthonormal system {Y; =7, Ys,..., Y} of vector
fields along y. Here we put k9 = x; = 0 and choose Yj, Y i1 to be null vector
fields along y. We call these constants xi,...,ks—; and the frame {Y),..., Y4}

the geodesic curvatures and the Frenet frame of y, respectively. A helix of order
1 is a geodesic and a helix of proper order 2 is a circle of positive geodesic
curvature.

For a trajectory y for a Sasakian magnetic field F, on a geodesic sphere
G(r) of radius r in CP", we define its structure torsion p, by p, = {},&).
Though the structure torsion of a trajectory is not necessarily constant along this
on general real hypersurfaces, as the shape operator 4 and ¢ of G(r) in CP" are
simultaneously diagonalizable, each trajectory for a Sasakian magnetic field on
G(r) in CP" has constant structure torsion (see [9]). For the trivial magnetic field
Fy, its trajectories are geodesics. In terms of helices, the feature of trajectories for
non-trivial Sasakian magnetic fields are as follows.

ProposITION 1 ([9]). Let y be a trajectory for a non-trivial Sasakian magnetic
field F,. on a geodesic sphere G(r) of radius r (0 < r < 7/2) in a complex projective
space CP"(4) of constant holomorphic sectional curvature 4.

(i) If p, =41, it is a geodesic on G(r).

(ii) If it satisfies kp, = cotr, it is a circle of geodesic curvature |k|,/1 — p2.

(i) Otherwise, it is a helix of proper order 3.

In particular, a trajectory y on G(r) is circular if and only if xp, = cotr holds.

If the structure torsion of a trajectory y for a Sasakian magnetic field F, on a
geodesic sphere is equal to +1, its equation turns to V;p = 0, hence is a geodesic.
Since the length of geodesics on geodesic spheres in CP” are well-known (see for
example [7]), we have the following.

PROPOSITION 2. If a trajectory for a Sasakian magnetic field F, on G(r) in
CP"(4) has structure torsion +1, then it is closed of length 7 sin 2r.

On contrary, as we do not have sufficient information on circles on geodesic
spheres, we need to study lengths of circular trajectories. Our study also gives a
clue to get properties of circles on geodesic spheres.

4. Extrinsic shapes of circular trajectories on geodesic spheres

It is one of natural ways to study curves on a geodesic sphere G(r) in CP”"
through an immersion :: G(r) — CP". For a smooth curve y on G(r) we call
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the curve 10y its extrinsic shape in CP". In order to show our results we
investigate some properties of circular trajectories on G(r) by observing their
extrinsic shapes in CP".

We here give one more terminology. We call a helix on a Riemannian
manifold N Killing if it is generated by some Killing vector field on N.
Being different from helices on Euclidean spaces, a helix on CP" is not
necessarily Killing. For a helix ¢ of proper order d with Frenet frame
{Y1,...,Ys} on CP", we define its complex torsions 7; (1 <i< j<d) by
77 = <Y;,JY;>. According to the result in [12] a helix ¢ on CP”" is Killing
if and only if all its complex torsions are constant along ¢. Since the set of
congruence classes of helices is complicated, we give more classification on
helices. We say a helix of proper order either 2d — 1 or 2d on CP" to be
essential if it lies on some totally geodesic CPY (c.f. [3]). We then have the
following ([11]):

1) A helix of proper order 2 is essential if and only if 7, = +1;

2) A helix of proper order 3 with geodesic curvatures x, x, is essential and

Killing if and only if its complex torsions satisfy i, = +x1/4/K7 + K3,

713 =0 and 13 = dKy//k} + k3, where double signs take the same
signatures.

3) A helix of proper order 4 with geodesic curvatures xj, k3, x3 is essential
and Killing if and only if its complex torsions satisfy either

1) 2=t = (k1 +13)/ (/13 + (k<1 +13)%, 713 = 124 =0,
T3 = t1a = 412 /\ /K3 + (k1 +53)7,
) 110 = —734 = () — K3)/\/ 63 + (k51 — K3)7, 713 = 124 = O,

T3 = —T14 = iKz/\/K§ + (11 — Ks)z-
In each of the above conditions double signs take the same sig-
natures.

We now study extrinsic shapes of circular trajectories on a geodesic sphere
G(r) of radius r (0 <r<zn/2) in CP"(4). Let A denote the shape operator of
G(r) with respect to a unit normal /" on G(r) in CP". It is known that it has
two distinct principal curvatures. The tangent space splits orthogonally into
TG(r) = T°G(r) ® R, where T°G(r) is a bundle of principal curvature vectors
associated with the principal curvature cot r and ¢ satisfies 4 =2 cot 2r{. We
denote by V and V the Riemannian connections on G(r) and CP"(4), respecti-
vely. They are related by the Gauss formula VyY = VyY + {4X, Y)./" and
Weingarten formula Vy A" = —A4X for vector fields X, Y tangent to G(r). Ex-
trinsic shapes of circular trajectories on geodesic spheres are as follows.

ProproSITION 3. Let G(r) be a geodesic sphere of radius r in CP"(4).
(1) When n/4 < r < m/2, the extrinsic shape of a circular Fyi-trajectory is a

circle of geodesic curvature V1 —cot? r and of complex torsion Ty =
FV1—cot?r
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(2) Otherwise, the extrinsic shape of circular ¥.-trajectory is an essential
Killing helix of proper order 4 which satisfies the condition (I1) whose
geodesic curvatures ki, i, K3 are given as

|2 — 1| cot rVK2 — cot? r K> —cot? r
K2\ /K6 + (1 —2k2) cot’ r /k®+ (1 —2x2) cot? r

1
;\/KG + (1 — 2x2) cot? r,

Proof.  Since a circular F-trajectory y satisfies «p, = cot r and p, # +1, we
see

Ay = (cot r)y — (p, tan r)¢ = Kp,y — KL,

hence we have {4j,7) =cotr—p}tanr=p (x—x'). By use of the Gauss
formula we get

Vi = K + AP, YN = 1JP — pic ' N

Thus we obtain

k1 = K21 = p2) 20— k1) = (12 = 2p2 4022 (#0),
1 . _
Yo =—(kJy—p,x .
K1
Continuing calculation by use of Gauss and Weingarten formulas we have
V(T — p ' N) = =i+ pic Aj + p.&
= —(k> =297 +Kk72p2)i + p, (k7 = D)(p,3 = &).

When x = +1, which is the case that n/4 <r <=n/2 and p = +cotr because
Ip,| <1, the extrinsic shape of y is a circle of positive geodesic curvature.
Otherwise we have

Ky =7 (k> = D[\ /1=p2,  Ya=(sgn(p, (x> = 1))/4/1=p2)(p,7 — &),
where sgn(o) denotes the signature of a number o. As we have
Vilpyi = &) = p, (ki — py ' N) = JAj = (1 = p)ic ' N

/)7("72 - 11 —/)72) 1 . _1
=— (kT — pTIN
o o (reJy Pk )

_ 52

p e
o {=py e = g+ k(1= p)) A},
1

we obtain

k3= (1=p2) (>0), Y=
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Since we see
Vil =, = k)7 + (1 = p2) N} = Vi =p, (o — k)T + (o — p2x )N}
=—(1=p)(p,7 =),

the extrinsic shape is a helix of proper order 4. In view of the Frenet frame
of the extrinsic shape, we find that it lies on some totally geodesic CP? and is
essential. Moreover, we have

| _ sgn(x) - (p2 —k?)  —sgn(k — k) - (k5] — K
Ty = — <P, —K + pi 1 E) = d _ —sen ) 3),
M /Kt = 2625 + p; K2+ (k) — K3)*
sen() - (< — p7)

1
T34:7<p'j}_éap~(’€_’€71>5)_(K_p?v’cil)£>: )
(= p7) P e : e 212

hence the extrinsic shape satisfies the condition (II) if it is of proper order 4.
O

Remark 1. When /4 <r < /2, the extrinsic shape of a circular F_ -
trajectory is a moderate Killing helix. That is, its complex torsions satisfy 7j, =

T13 = T4 = T34 = 0 and T3 = —T14 = 1.

From the viewpoint of geometry of helices, Proposition 3 gives geometrically
a family of essential Killing helices of proper order 4 on CP”" with two parameters.

5. Lengths of circular trajectories on geodesic spheres

In this section, by making use of a Hopf fibration w : $**!(1) — CP"(4) of
a standard sphere, which connects the geometry of CP" with that of a complex
Euclidean space C"*!, we show Theorem 1. For this sake we quickly recall
some properties of circles on CP" (see [6] for detail). For a circle ¢ on CP"(4)
we take its horizontal lift ¢ with respect to a Hopf fibration. When the geodesic
curvature of ¢ is 1/v/2 and its complex torsion is 7 (0 < || < 1), its horizontal
lift satisfies the differential equation 6" + (3/2)6" — v—1(¢/v2)6 = 0 as a curve
in C"*'. Its characteristic equation with variable A turns to

(5.1) 0 —(3/2)0+1/V2=0

if we set ®@ = —v/—1A. This cubic equation should have three distinct real
solutions. If we denote them by a, b, ¢ (a < b < ¢), then we see that 6 is of
the form &(r) = AeV=1at 4 BeV=Tbt 4 CoV=1et ywith some A,B,C e C""'. By this
expression we find that o is closed if and only if one of (hence all of) the
ratios b/a, c¢/b, a/c is (are) rational and that the length of ¢ in this case is
21 x LCM.A{(b—a)™',(¢c—5)""'}. On the other hand, by a parallel isometric
embedding S! x "'/~ — CP"(4) defined in [13], geodesics on S' x §"1/~
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are mapped to circles of geodesic curvature 1/v/2 on CP"(4). This shows a
condition for these circles to be closed and their lengths. As we get these
information by two ways, arithmetically and geometrically, we can combine
them.

PRrOPOSITION 4 ([6]). Let ¢ be a circle of geodesic curvature k and of complex
torsion T on CP"(4).

(1) If t= 41, it is closed of length 2rn/V/ K2 + 4.

(2) If =0, it is closed of length 2r/VKk? + 1.

(3) If 0 < || < 1, it is closed if and only if

(3V3/2rt(® + 1) = 1q(9” — ¢*)3p” +¢7) "

holds with some relatively prime positive integers p, q (p>¢q). In
this case, its length is given as nd(p,q)\/(3p*+ ¢*)/3(k* + 1), where
o(p,q) =1 when pq is odd and 6(p,q) =2 when pq is even.

Proof of Theorem 1. Let y be a circular trajectory on G(r) in CP"(4). We
take a horizontal lift § of the extrinsic shape of y with respect to a Hopf fibra-
tion w : §*1(1) — CP"(4). The connections V on C""! and V on CP"(4) are
related as

(5.2) VY =VyY =X, YIN + X, JYYIN

with a unit normal 4" of $¥**1(1) in C"*! and the complex structure J on C"*!,
As we studied in Proposition 3, the extrinsic shape of y, which is also denoted by y
for simplicity, is either a circle or an essential Killing helix of proper order 4 on
CP”". We first consider the latter case. As it lies on some totally geodesic CP?,
we find it is determined by the following system of differential equations ([2]):
Vij = K1 Ya,
V; Ys = —i1j + {(xc1 — 13)7 + sgn(ic — k) /2 + (11 — 1e3) 2T Yo}

Regarding § as a curve in C"*!| we obtain by use of (5.2) that

V}';).jZK1Y2—=/V,

V}) Y, = -3y + sgn(lc — K_l)\/lcg + (Kl — K3)2JY2 + ‘L'12JJV.

Rewriting this system of differential equations, we find it satisfies the following
differential equation

(53) P =Vl = k)P + (2= p))7 + V=11 = p)eT 5 = 0.

If we consider the former case that the extrinsic shape of y is a circle in CP"(4),
by use of (5.2) we find (5.3) holds even in this case.
We now consider the characteristic equation

(5.4) A = V=1 =k YA+ (2= p)A+V-1(1 = ph)' =0
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for the differential equation (5.3) on a horizontal lift of the extrinsic shape of .
This cubic equation should have three distinct pure imaginary solutions v/—la,,
V=1b,, V=lce (ax < be < cg). By use of these we have §(¢) = Ae¥ 1o +
Bkeﬁb’f’ + Ckeﬁ"’f’ with some A,, By, C, € C"*!. Therefore we find that y is
closed if and only if there exists a constant d satisfying that all of the ratios
(ap —d)/ (b — d), (b —d)/(ck —d), (¢, —d)/(a, — d) are rational, and that its
length in this case is 2z x L.C.M.{ (b, —ah.)fl,(c,{ —b,()fl}. In order to make
use of the arithmetic information obtained by Proposition 4, we put 6=
(=3vV—-1A —x + K’l)/\/z(zc2 +x2+4—3p2). We then find the equation (5.4)
turns to

;3 sen(k) - (12 +2){2k* + (8 — 9p2)* — 1}
(5.5) 0" —=0— 7 =
2 2V2(k* + 42 — 3p2c2 + 1)
Comparing two cubic equations (5.5) and (5.1) we put
sgn(x) - (% +2){2k* + (8 = 9p7)x* — 1}
2(r* + 4w — 3p2K? + 1)%?
By direct computation we can check that |z(x;r)| < 1. By use of the solutions
a, b, ¢ (a<b<c) for (5.1) with v =7(x;r), we have
e = (a\/2(1c2 +r 2 4+4-3p2) +x—x1)/3,
and so on for b, and c,. Thus we find y is closed if and only if a circle ¢ of

geodesic curvature 1/v/2 and of complex torsion z(x;r) on CP”(4) is closed.
Moreover, in this case we obtain lengths of y and o satisfy the relation

length(y) =3 length(a)/\/Z(K2 +x24+4-3p2).

Since xp, = cot r, we have || > cotr. Thus we find 7(x;r) = 0 if and only if

n/4 <r<mn/2 and k> = (3y/2(cot?> r+ 1) —4)/2. As lengths of circles of geo-
desic curvature 1/v/2 and of complex torsion 7 (|z| < 1) are given as

t(ic;r) = —

2v/61/3, if =0,
length = ¢ (v2/3)nd(p.q)\/3p2 + 2, if = +q(%* — ¢*)(3p* +¢*) ",
0, otherwise,
we get our conclusion. O

Remark 2. On a standard sphere S*~!(1) in C" a trajectory for F, is
circular if and only if xp, = 1 ([9]). Since its geodesic curvature is vVx? — 1, we
find that it is closed of length 27/|x|.

We here rewrite our main result to the case of geodesic spheres in a complex
projective space of constant holomorphic sectional curvature ¢. For this sake we
consider homothetical changes of metrics. Let y be a trajectory for a Sasakian
magnetic field F, on a real hypersurface M in a Kéhler manifold M. If we
change the metric ¢,> on M homothetically to the metric A*(,)> with some
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positive 4, then the curve o given as o(f) = y(t/A) is a curve parameterized by its
arclength with respect to the new induced metric and satisfies Vo' = (ic/A)da’,
hence is a trajectory for F,,, with respect to the new metric. Under this opera-
tion on metrices, sectional curvatures change A >-times of the original sectional
curvatures, and lengths of closed curves change A-times of the original lengths.
We can hence get the following:

THEOREM 3. Let G(r) be a geodesic sphere of radius r (0 <r < m/\/c) in a
complex projective space CP"(c) of constant holomorphic sectional curvature c¢. A
circular trajectory y for a Sasakian magnetic field F, on G(r) satisfies the following:

(1) When n/2\/c < r < rn/\/c and k> = c{3+/2{cot®(\/er/2) + 1} — 4} /8, it is
closed and its length is 471\/(2/c) sin(v/cr/2){3v2 — 4 sin(/cr/2)}.
(2) Otherwise, y is closed if and only if

(2% + ¢)|326* + 32¢x2 — 2(9 cot?(Ver/2) + 1) q(9p* — ¢?)

{1664 + 16¢x2 — ¢2(3 cot?(yer/2) — 1)}/? (3p2 + ¢2)*?

holds with some relatively prime positive integers p, q satisfying p > q. In
this case its length is given as

478(p, )l 3p2 + ¢2) /{1614 + 16> — ¢2(3 cot?(v/er/2) — 1)},
where d(p,q) =1 when pq is odd and d(p,q) =2 when pq is even.

6. Length spectrum of circular trajectories

In this section we study the length spectrum of circular trajectories on
geodesic spheres in CP”. We first recall the congruence-condition on all trajecto-
ries for Sasakian magnetic fields.

Lemma 1 ([9]). Let y; (i=1,2) be trajectories for Sasakian magnetic fields
F., on G(r) in CP". Then they are congruent to each other if and only if one of
the following conditions holds:

1) |py1| = ‘p"/2| =1

i) p, =p,, =0 and k1| = |K2,

i) 0 < |p, [ =Ip,,| <1 and xip, =rw2p, .

In the rest of this section, we only treat the case ¢ = 4. Since the structure
torsion p, of a circular trajectory y for F, on G(r) in CP"(4) satisfies Kkp, = cotr,
we find the moduli space Z74(G(r)) of circular trajectories on G(r) is set
theoretically identified with the subset (cotr,c0) in R.

In order to study the length spectrum of circular trajectories, we shall give
estimates of lengths of closed circular trajectories. We define two functions
f,9:[cot’> r,0) — R by

(s+2)(2s> +8s—9cot> r — 1) s

9= 2(s2+4s—3cot2r+ 1) g(s):s2+4s—300tzr+1'
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If we put u(p,q) = q(9° — ¢*)(3p* + q2)73/2 for a pair (p,q) of relatively prime
positive integers p, ¢ with p > ¢, by Theorem 1, we see a circular F,-trajectory y
is closed of length 7d(p,q)\/(3p? + ¢?)g(x?) if x (#0) satisfies either f(x?) =
u(p,q) or f(k?) = —u(p,q). Thus, in order to give estimates of lengths of closed
circular trajectories, we need to study those functions. It is easy to find the
following:

i) The function f is monotone increasing, hence satisfies

(cot? r+2)(2 cot? r + 1)(cot® r — 1)
2(cot* r + cot? r + 1)*/?

1> f(s) > f(cot?> r) = —1;

ii) When cot? r > (v/13 — 3)/2, the function g is monotone decreasing and
g(s) < cot? r/(cot* r + cot® r + 1);

iii) When cot? r < (v/13 — 3)/2, the function g is monotone increasing in the
interval [cot? r,V'1 — 3 cot? r) and is monotone decreasing in other part
of its domain, hence g(s) < 1/(4 +2V1 — 3 cot? r).

These show the following estimate on lengths of circular trajectories from above.

LemMma 2. The length of circular F-trajectory y satisfying either f(k?) =
w(p,q) or f(x?) = —u(p,q) is roughly estimated from above as

length(y) < #nd(p.q) cot r\/(3p2 +q?)/(cot* r +cot? r + 1),

if cot’r> %(\/1_—3)7

length(y) < n&(p.q)\/(?spz +¢2)/(4+2V1 =3 cot?r),
if cot’r< %(\/1_— 3).

We note that f(cot? r) > 0 when 0 < r < /4. Next we give an estimate on
lengths of closed circular trajectories from below. We set

ap.qir) = | B2+ NEE —4HGp? +4)"” — g(9p* = 47))
o 3(cot? r 4 1)(3p2 + ¢2)'/? .

LemMA 3. If f(x?) = u(p,q) holds, the length of a circular F,-trajectory 7y is
roughly estimated from below as

length(y) > 76(p.q)(p, ¢:1), if cot’ rz (VI3 -3)

length(y) > nd(p.q)

. (3p2 + ¢?) cot? r y 1
X min a(p’q;r)’\/cot4r+cot2r+l , If c0t2r<§(\/1_—3).
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LemMA 4. If f(x?) = —u(p,q) holds, the length of a circular F,-trajectory y
is roughly estimated from below as follows: If (\/T —3)/2 < cot’r < 1, we have

(3p2 4+ ¢2){3(2 cot? r+2)'* — 4}
3(cot> r+ 1)

)

length(y) > né(p.q)\/
and if cot’ r < (V13 —3)/2, we have

length(y) > nd(p.q)\/3p* + ¢*

. \/3(200t2r+2)1/2—4 cot r
X min > , .
3(cot? r+ 1) Veot* 1+ cot? r + 1

Proof of Lemma 3, 4. For given t with 0 < || < 1 we estimate the solution
s; of the equation f(s) =t from above. As f is monotone increasing, in the
case r < /4, we have f(s) = f(cot> r) > 0. Thus, when 7 <0, we need r > r/4
and 252+ 8s;, — 9 cot? r — 1 < 0, hence we see s; < (31/2(cot?> r+1) —4)/2 < 1.
When 7 > 0, we need 252 + 85, —9 cot> r — 1 > 0. In the domain {s|2s? + 8s—
9 cot? r — 1 >0} N (cot? r, 00), we have

252+ 85 —9cot?r—1

> .
/s 2(s2 +4s—3cot’>r+1)

If we set u,=—-2+4+/3(3—27)(1+cot?r)/{2(1 —1)} (>cot?r), which is
the positive solution of the equation
25> 4+ 85— 9 cot? r — 1 = 27(s* +4s — 3 cot?> r + 1),

we find f(u;) > 7. As this function f is monotone increasing, we get s, < u;.
We now estimate ¢g(s;) from below. When cot® r > (v/13 —3)/2, as ¢ is
monotone decreasing, we have

g(s:) > g((3\/m_ 4)/2) = 3v2(cot?’ r 1) — 4

3(cot?> r+ 1)

for 7 <0, and

2(1 = t)u, 3\/ 2(1 +cot? r) —4)(1 — 1)

3(cot? r + 1) 3(cot? r+ 1)

g(sc) > g(uc) =

)

for ©>0. When cot? r < (\/_ —3) /2, we have to consider the influence of
glcot?r). As we have (3p%+¢?)(1—u(p,q)) = (3p* +q*) "*{(3p* + 4% -

q(9p° — ¢*)}, we can estimate lengths for the case t=u(p,q) and get the
conclusions. O

Proof of Theorem 2. We consider the number
27p%(p* — ¢*)°
V30 + 2 + 90> — P}

B(p.q) = 3p* +¢*)(1 — u(p,q) =
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One can easily see that lim,_.., f(¢+2,9)=oc0. Since we have
lim, ., u(q+2,q) =1, for sufficiently large odd ¢ we have x with f(x?) =
u(g+2,q) and with |x| >cotr. Thus Lemma 3 leads us to the conclusion.

O

As was mentioned in section 2, Theorems 1, 2 guarantee that there are
infinitely many open circular trajectories and infinitely many closed circular
trajectories for Sasakian magnetic fields. This property does not depend on
radii of geodesic spheres. It is known that a geodesic sphere G(z/4) in CP"(4)
has constant ¢-sectional curvature 5 hence is a Sasakian space form (see [8] for
example). Thus even if we restrict ourselves on circular trajectories, properties of
trajectories for Sasakian magnetic fields and those of Kdhler magnetic fields on a
complex projective space are different: On CP”"(4) every trajectory for a Kéhler
magnetic field B, is closed of length 27/v/x% + 4, hence the length spectrum of all
trajectories for Kdhler magnetic fields is (0,7) and is a bounded set ([1]).

We call the infimum /o(G(r)) of the elements of LSpec,(G(r)) the bottom of
the length spectrum. We here give a rough estimate of this bottom.

THEOREM 4. The bottom J0(G(r)) of LSpec,(G(r)) on a geodesic sphere G(r)
in CP"(4) is positive. It is roughly estimated from below as follows:

Jo(G(r) > 21,/ (49 — 10v/7) sin r(3v/2 — 4 sin r)/21, if cot? r> (VI3 - 3)/2.
20(G(r)) > 2 cot ry/7/(cot* r + cot? r + 1), if cot?> r < (V13 —3)/2.
When r > 1/4, it is estimated from above as Ao(G(r)) < 271\/2 sin #(3v/2 — 4 sin 7).

Proof. We first study the estimate of Ao(G(r)) from below. We use the
same notation as in the proof of Theorem 2. We find that f(p + 1,q) > f(p,q)
for arbitrary (p,q) and that f(g + 1,¢q) is monotone increasing. In the case 0 <
r < m/4, though f(cot? r) may be larger than u(3,1), considering the influence
of 5(p, q), we can conclude that 1o(G(r)) is estimated from below by the estimate
in Lemma 3 corresponding to x(3,1). In the case (v13—3)/2 <cot’>r < 1, we
also have to take in account of lengths of circular trajectories satisfying f(x?) =
—u(p,q) and that of trajectories satisfying f(x?) =0. We can get the same
estimate as for the case 0 <r <n/4 by Lemma 4. In the case of cot’r <
(v/13 — 3)/2, we need to additionally consider 7d(p,q)/(3p% + ¢?)g(cot® r) by
Lemmas 3 and 4. Comparing +/7g(cot? r), which corresponds to the case
(p,q) = (3,1), with the estimate in the case (v/13 —3)/2 < cot? r < 1, we obtain
our estimate from below.

We next study an estimate of the bottom 2yo(G(r)) from above in the case
n/4 <r<m/2. In this case as f(cot’r) <0, we have trajectories satisfying
f(x?) =pu(3,1). We hence obtain our estimate by Lemma 2. O

When we consider circular trajectories, we omit geodesic trajectories. This
is because every trajectory for the trivial magnetic field is a geodesic. But it
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might be natural to treat geodesics with structure torsion +1 as ‘“‘circular”
trajectories because they are trajectories for an arbitrary Sasakian magnetic
field. As we mentioned in Proposition 2, their length is 7z sin 2r. It is known
that the length of trajectories with structure torsion +1 gives the minimal length
of geodesics on this sphere. Since our estimate on Ay(G(r)) is too rough, we
can only conclude that =z sin 2r is smaller than 1o(G(r)) in the case cot? r <
(V13 =3)/2.

Before closing our paper we make mention of another aspect of trajectories
for Sasakian magnetic fields. Let  : CP"(c) — S""*2~1((n+ 1)c/(2n)) denote
the first standard minimal embedding. We then have a parallel isometric embed-
ding Y o1: G(r) — S""2=1((n + 1)¢/(2n)) with the inclusion 7 : G(r) — CP"(c).
From the viewpoint of submanifold-theory, it is also interesting to consider
shapes of trajectories through : and y oi1. According to [2, 11], the extrinsic
shape 10y of a trajectory y for F, on G(r) in CP"(4) is a circle of positive
geodesic curvature if and only if either xp, = cot r — pf, tan r or k¥ = p, tan r, and
the shape Y o1oy is a circle of positive geodesic curvature if and only if the
former condition holds. Thus shapes of circular trajectories through / o 1 are not
circles of positive geodesic curvature on S”*2~1 We may hence say that our
study on circular trajectories and that on trajectories from the viewpoint of
submanifold-theory give different clues to the study of homogeneous curves on
Sasakian space forms.

We also mention that we can discuss the similar argument for circular
trajectories on geodesic spheres in a complex hyperbolic space. As these geodesic
spheres are not “Berger spheres” and we have other good example of homo-
geneous submanifolds having two principal curvatures, we shall leave it for the
next occasion.
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