Z.-X. CHEN
KODAI MATH. 1.
34 (2011), 244-256

ON PROPERTIES OF MEROMORPHIC SOLUTIONS FOR SOME
DIFFERENCE EQUATIONS*

Z0ONG-XUAN CHEN

Abstract

In this paper, we investigate properties of finite order transcendental meromorphic
solutions and rational solutions of difference Painlevé / and II equations.

1. Introduction and results

Painlevé and his colleagues [19] classified all equations of the Painlevé type

of the form
d?y dy
42 (Z, bs E)

where F is rational in y and dy/dz and (locally) analytic in z. The first two of
these are P; and Py
d*y d*y B

—= =6y +z and 72

72 2% +zy+a

where o is a constant. The differential Painlevé equations, discovered since the
beginning of last century, have been an important research subject in the field of
the mathematics and physics.

In the past 15 years, the discrete Painlevé equations became important
research problems (see [1, 8]). For example, discrete Painlevé I equations

on+ f
Y+l + Yn—1 = + Vs
n
on+pg y
Yn+1 + Yn—-1= BOR)
Yn f
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and discrete Painlevé II equation

(on+B)yn+y

yn+l+yn—l = l—y,%

where o, f and y are constants, n € N.

Recently, a number of papers (including [1-7, 9-12, 14-17]) focused on
complex difference equations and difference analogues of Nevanlinna’s theory.
As the difference analogues of Nevanlinna’s theory are being investigated, many
results on the complex difference equations are rapidly obtained.

Some results on existence of meromorphic solutions for certain difference
equations were obtained by Shimomura [20] and Yanagihara [22].

Ablowitz et al [1] looked at difference equations of the type

(L.1) w(z+1)+w(z—1)=R(z,w)
where R is rational in both of its arguments, and showed the following theorem.
THEOREM A ([1]). If the second-order difference equation

a(z) +ai(Z)y + -+ ap(2)y”
bo(2) +b1(2)y + -+ - + by(2) 1

Y+ +yi-1) =

where a; and b; are polynomials, admits a non-rational meromorphic solution of
finite order, then max(p,q) < 2.

Halburd and Korhonen [10-12] used value distribution theory and a rea-
soning related to the singularity confinement to single out the difference Painlevé
I and II equations from difference equation (1.1).

They obtained that if (1.1) has an admissible meromorphic solutions of finite
order, then either w satisfies a difference Riccati equation, or (1.1) can be trans-
formed by a linear change in w to some classical difference equations, which
include difference Painlevé I equations

(1.2) w(z—|—l)+w(z—l)—%+c,
az+b c

1.3 wiz+1)+w(iz—-1)= +

(13) G- =

and difference Painlevé II equation

(1.4) w(z+1)+w(z_1):%.

From the above, we see that difference Painlevé I and II equations are the
development of the differential and discrete Painlevé I and II equations. So they
are an important class of difference equations.
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Chen and Shon [5] investigated some properties of meromorphic solutions
of difference Painlevé I and II equations, and proved the following Theorems B
and C.

In this paper, we assume the reader is familiar with basic notions of
Nevanlinna’s value distribution theory (see e.g. [13, 18, 21]). In addition, we
use the notation o(f) to denote the order of growth of the meromorphic function

f(z), and A(f) and A(}) to denote, respectively, the exponents of convergence
of zeros and poles of f(z).

THEOREM B ([5]). Let a, b, ¢ be constants with a #0. If f(z) is a finite
order transcendental meromorphic solution of the difference Painlevé I equation
(1.2), then

(i) f has at most one non-zero finite Borel exceptional value;

.. 1

i #(5) = 20 = ot

(iii) f(z) has infinitely many fixed points and satisfies ©(f) = a(f).

THeOREM C ([5]). Let a, b, ¢ be constants with ac #0. If f(z) is a finite
order transcendental meromorphic solution of the difference Painlevé II equation
(1.4), then

(i) f has at most one non-zero finite Borel exceptional value;

.. 1

i #(5) = i) = (1)

(iti) f(z) has infinitely many fixed points and satisfies ©(f) = a(f).

In [5], they also consider properties of rational solutions of (1.2) and (1.4).

In this paper, we consider the other form of the difference Painlevé 7
equation, i.e. equation (1.3), and prove the following Theorems 1 and 3. For the
difference Painlevé I equation (1.4), in [5], we consider the case ¢ # 0, in this
paper, we consider the case ¢ =0, i.e. equation

(az + b)w
(15) M/(Z‘Fl)‘i‘ﬂ/(z— 1) :1_714}2,
and prove the following Theorems 2 and 4.

THEOREM 1. Let a, b, ¢ be constants such that ac #0. Suppose that w(z)
is a finite order transcendental meromorphic solution of the difference Painlevé I
equation (1.3).  Then

(i) w(z) has no any Borel exceptional value;

(ii) if p(z) is a non-constant polynomial, then w(z) — p(z) has infinitely many
zeros and A(w — p) = a(w).
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THEOREM 2. Let a, b be constants such that |a| + |b| # 0. Suppose that w(z)
is a finite order transcendental meromorphic solution of the difference Painlevé I1

equation (1.5). Then 1
(i) w(z) has infinitely many poles, and satisfies l(;) =a(w);

(i) if p(z) is a non-constant polynomial, then w(z) — p(z) has infinitely many
zeros and A(w —p) = a(w);

(iii) if a # 0, then w(z) assumes every non-zero value d € C infinitely often,
and satisfies A(w —d) = a(w);
if a=0, then the Borel exceptional value of w(z) can only come from a set

PNE

THEOREM 3. Let a, b, ¢ be constants such that ¢ # 0 and |a| + |b| #0. Then
(i) if a =0, then equation (1.3) has nonzero constant solution w(z) = B where
B satisfies
2B* —bB—c=0,

S(z)
H(z)
relatively prime polynomials satisfying deg S(z) < deg H(z);

(i) if a#0 and w(z) = f](zz)

S(iz)=szF s 28 Vs, H(Z)=hz! +h iz by

the other rational solutions w(z) satisfy w(z) = B + where S(z) and H(z) are

is a rational solution of (1.3), where

where S,Sk_1,...,80 and h,h;_y,..., hy are constants such that sh # 0, then

t=k+1 and s:—%.
a

THEOREM 4. Consider rational solutions of difference Painlevé II equation
(1.5) with a, b are constants.

(i) If a#0, then (1.5) has no non-zero rational solution.

(i) If a=0 and b =2, then a non-zero rational solution of (1.5) is of the
S(z)
H(z)
deg S(z) < deg H(z).

(iii) If a=0 and b # 2 (and b # 0), then a non-zero rational solution of (1.5)

is of the form
B\'?  8i(2)
W(Z) = (1 — 5) —|—H1(Z),

where S\(z) and H\(z) are relatively prime polynomials satisfying deg S)(z) <

Sform w(z) = , where S(z) and H(z) are relatively prime polynomials satisfying

12
deg H,(z). (1 2) are nonzero constant solutions of (1.5).
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Example 1. The constant solution w(z) = B =1 satisfies the difference Pain-
levé I equation

1
wiz+1)+w(z—1)= ! 4

and

2B —bB—¢=0.

Example 2. The meromorphic function w(z) = tan <Zz) satisfies the dif-
ference Painlevé II equation
4w

M/’(Z“‘ 1) —‘rM/(Z— 1) :m,

| . .
where a(w) = A(w —p) = /1(;) =1, and where p(z) is non-constant polynomial.

1
Example 3. The rational function f(z)= and the transcendental
V4

+1

meromorphic function fi(z) = 5————— satisfy the difference Painlevé /I equa-
tion ezl
2f
fe+ D)+ f(z-1)= e

The solution f; has infinitely many poles, but has no zero, and satisfies
1
/1(7) =o0(fi) =1 and A(f1) =0. This shows the Borel exceptional value of f;
1
is in E.
2. Proof of Theorem 1

We need the following lemmas for the proof of Theorem 1.

Lemma 2.1 (|9, 17)). Let f be a transcendental meromorphic solution of finite
order o of a difference equation of the form

H(Z7f)P(Zaf) = Q(Zaf)

where H(z, ) is a difference product of total degree n in f(z) and its shifts, and
where P(z, f), O(z, f) are difference polynomials so that the total degree of Q(z, f)
is <n. Then, for each ¢ >0,

m(r, P(z, f)) = O(r" %) + S(r, /),

possibly outside of an exceptional set of finite logarithmic measure.
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In the remark of [10, P.15], it is pointed out that the following Lemma 2.2
holds. Or using the same reasoning as in the proof of Lemma 2.1 in [11], we
can prove the following Lemma 2.2.

LemMMA 2.2. Let f be a non-constant finite order meromorphic function.
Then

N@r+1,1)=N(r,[)+ S, f)

outside of a possible exceptional set of finite logarithmic measure.

Remark 2.1. 1In [7], Chiang and Feng prove that let /' be a meromorphic
function with exponent of convergence of poles A(1/f) =1 < o0, n # 0 be fixed,
then for each ¢ > 0,

N(r, f(z+n)) = N(r, f) + O(*'**) + O(log ).
Lemma 2.3 ([9, 17]). Let w(z) be a non-constant finite order meromorphic
solution of
P(z,w)=0

where P(z,w) is a difference polynomial in w(z). If P(z,a) # 0 for a meromorphic
I(r,a)

T(r,w)

1
m <r, o a) = S(r,w)

outside of a possible exceptional set of finite logarithmic measure.

Sfunction a satisfying lim,_. =0, then

Proof of Theorem 1. Assume that w(z) is a finite order transcendental
meromorphic solution of (1.3).

1
(i) First, we prove (;) =ag(w). By (1.3), we obtain that

(2.1) w(z){[w(z+ 1) +w(z = Dw(z)} = (az + b)w(z) + c.

Applying Lemma 2.1 to (2.1), we see that for any given ¢ > 0, there is a subset
E < (1,00) having finite logarithmic measure such that for |z| =r ¢ [0,1JUE,

(2.2) m(r, w(z+ 1) + w(z — D]w(z)) = 0" 1*%) + S(r,w),
where ¢ = g(w). On the other hand, by (1.3), we have
(2.3) w(z + 1)+ w(z = D]w(z) = w(2) "fv(t)b ﬁ]

=(az+b)+——.
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By Valiron-Mohon’ko lemma (see [18]) and (2.3), we see that

(2.4) T(rywiz+1)+w(z—=1))w(z)) = T(r,w) + S(r,w).
Hence, by (2.2) and (2.4), we have that

(2.5) N, wiz+1) +wiz—Dw) = T(r,w) + S(r,w) + 0" '),

If w(z) has a pole of multiplicity k at zyp and |z9| < r— 1, then w(z + 1) and
w(z — 1) have poles at zp — 1, zo + 1 of multiplicity k respectively. Hence

(2.6) N(r,[w(iz+ 1) +w(z — D)]w(z)) <3N+ 1, w(z2)).
By Lemma 2.2, we have

(2.7 N+ 1,w(z)) = N(@r,w(z)) + S(r,w).

Thus, by (2.5)—(2.7) we obtain that

(2.8) z(l) = a(w).

w

Secondly, we show that for any finite value o, we have A(w — o) = g(w). Set
g(z) = w(z) —a. Substituting w(z) = g(z) + o into (1.3), we obtain that
az+b ¢

29 N CETaE

It follows from (2.9) that
(2.10) P(z,9) = lg(z+ 1)+ g(z — 1) + 20)(g(z) + )’
—(az+b)(g(z) +a) —c=0.

By (2.10), we have

(2.11) P(z,0) = 20° + a(az + b) — c.

If o =0, then P(z,0) = —c # 0 since ¢ # 0; if o # 0, then
P(z,0) =20 4 a(az +b) —c#0

since @ # 0. Thus by Lemma (2.3), we see that

or8)-sem

outside of a possible exceptional set of finite logarithmic measure. Thus

(2.12) N(r,wl_a> :N(r%)

— T(r,g) + S(r,g) = T(r,w) + S(r, w)
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outside of a possible exceptional set of finite logarithmic measure. Hence, by
(2.12) we have A(w —a) = o(w). Combing with (2.8), we see that w(z) has no
any Borel exceptional value.

(i) Suppose that p(z) is a non-constant polynomial. We use a similar
method as above to prove A(w—p)=a(w). Set p(z) =diz" +---+dy where
di,...,dy are constants, dy # 0 and k > 1, and ¢;(z) = w(z) — p(z). Substituting
w(z) = g1(z) + p(z) into (1.3), we obtain that
(213)  Pi(z91) = g1+ D+ g1z = 1)+ plz+ 1) + p(z = D)(91 () + p(2))*

—(az+b)(91(2) + p(2)) —c =0.
Thus, since d; # 0 and k > 1, it follows from (2.13) that
Pi(2,0) = (p(z+ 1)+ p(z = 1))p(z)* = (az + b)p(z) — ¢
=2} 4+ #£0.
Continuing to use the same method as above, we obtain that A(w — p) = a(w).

Thus Theorem 1 is proved.

3. Proof of Theorem 2

Assume that w(z) is a transcendental solution of (1.5) with a(w) < 0. We
use a similar method as in the proof of Theorem 1.
(i) By (1.5), we obtain that

3.1) wi){w@wz+1)+wiz-1D]}=wz+1)+w(z-1)— (az+ b)w(z).

Applying Lemma 2.1 to (3.1), we see that for any given ¢ > 0, there is a subset
< (1,00) having finite logarithmic measure such that for |z| =r ¢ [0,1]UE,

(3.2) m(r,w(z)(w(z + 1) +w(z — 1)) = 07 %) + S(r,w),

where ¢ = g(w). By Valiron-Mohon’ko lemma (see [18]) and (1.5), obtain that

(3.3) T(rw(z)(wiz+1)+w(z—-1)) ( alzj-ll;}v)

W)+ S(r,w).
Thus, by (3.2) and (3.3), we have
(3.4)  N(r,w(iE)(wiz+1) +w(z—1))) =2T(r,w) + S(r,w) + O(r°1+%).

On the other hand, if w(z) has a pole of multiplicity m at zy and |zo| <r — 1,
then w(z + 1) and w(z — 1) have poles at zy — 1, zp + 1 of multiplicity m respec-
tively. Thus, by Lemma 2.2 and (3.4), we obtain that
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3N(r,w(z)) =3N(r+ 1,w(z)) + S(r,w)
> Nrw(z)(w(z+ 1) +w(z—1))+ S(r,w)
=2T(r,w(2)) + S(r,w) + O(r°~1*%).
Hence i(%) =a(w).

(i) Use the same method as the proof of Theorem 1(ii), we get A(w —p) =
a(w).
(iii) By (1.5), we derive that

(3.5) Py(z,w) = —w(2)*(w(z + 1) + w(z — 1))
—(az+b)w(z)+(w(z+1)+w(z—-1))=0.

For a non-zero value d € C, by (3.5), we have that

(3.6) Ps(z,d) = —2d* — azd + (2 — b)d.

We divide it into two cases to prove.
(@) If a #0, then by d # 0 we have

Pi(z,d) = —2d* —azd + (2 — b)d # 0.

Using a similar method as above, we obtain that A(w —d) = a(w).
(b) If a=0 and d ¢ E, then we obtain that

Ps(z,d) = =2d° + (2 — b)d £ 0.
Using a similar method as above we obtain A(w —d) = o(w). Hence, the Borel
. P2
exceptional of w(z) can only come from a set E = {0, <1 —2) .
Thus Theorem 2 is proved.

4. Proof of Theorem 3

Assume that w(z) is a rational solution of (1.3), and has poles 7,..., .
Consequently, we suppose that
dis, d;
B 4. J (j=1,....k)
(z—1)” z-y
are the principal parts of w at # respectively, where dj,...,d;; are constants,
dj; #0. Thus, w(z) can be represented as
k d; d;
) 1 .
(4.1) w(z) = Z[(z _”;j)sj --~+Z-_’Zj +ag+arz 4+ auz",

J=1

where ay,...,a, are constants.
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We affirm that a,=---=a; =0. Assume a, #0 (m>1). For suffi-
ciently large z, by (4.1), we have

{w(z) = anz™(1 4+ 0(1))
wiz+ 1) =au(z £ D)™ +o0(1)) = a,z™(1 + o(1))

By (1.3), we obtain that

(4.2)

(4.3) (w(z + 1) 4+ w(z — 1)w(z)* = (az + b)w(z) + ¢
Substituting (4.2) into (4.3), we obtain that
(4.4) 2a2 23" (1 + o(1)) = (az + b)auz" (1 + o(1)) +c.

Clearly, (4.4) is a contradiction since a,, # 0. Hence a,, =0 (m > 1).

(i) Suppose that a =0. By observation for (1.3), we see that w(z) = B,
where B satisfies 2B3 — bB — ¢ = 0, is a nonzero constant solution of (1.3). Since
am =0 (m>1), w(z) can be rewritten by (4.1) as

(4.5) w(z) =

where
(4.6) S(z) =sz"+ 512" "+ 45 and H(z) =hz'+h_1z" o+ ho,

where s,8¢_1,...,8 and h,h,_1,...,t) are constants, sh # 0 and k <t Suppose
that k < ¢. Then substituting (4.5) into (1.3), we obtain that

47) S+ DH(z—1)S(z)* +S(z— )H(z + 1)S(z)*
= bS(z)H(z2)H(z+ 1)H(z — 1)+ cH(z)*H(z + 1)H(z — 1).

Thus, in (4.7) there only exists one term ¢H(z)>H(z+ 1)H(z — 1) such that it’s
degree is highest. This contradiction show k =¢. Thus, by (4.6) and (4.7), we
obtain that

k k=1 k k=1
sz+ )" +s-1(z+ 1) +~-~+so+s(zfl) +s1(z=1D"" 4+ 5
W+ +h G+ by hz=1) +h (2= 1)+ hy

Cb(hz' bz e ho) | e(hzt A bz A )
SZk+Sk712k71+"'+S0 (Szk+sk_lzk71+...+so)2 .

(4.8)

By (4.8), we obtain that as z — oo
2B*—bB—c=0
where B = % Hence, w(z) can be rewritten as

S1(2)
Hi(z)

w(z) = B+
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where S)(z) and H;(z) are polynomials with deg S|(z) < deg H(z), B is a con-
stant satisfying 2B — hB — ¢ = 0.

(i) Suppose that @ # 0. Above we have got a,, =0 (m >1). Now assume
ap # 0. Then for sufficiently large z, by (4.1), we see that

(49)  w(E)=ay+o0(l), wiz+1)=ay+o(l), wiz—-1)=ay+o(l).
By (4.3) and (4.9), we obtain that
(4.10) (2a0 + 0(1)) (a0 + 0(1))?* = (az + b)(ap + o(1)) + c.
This is a contradiction since a # 0. Hence ap = 0. Thus, f(z) can be rewritten
as (4.5) with deg S(z) = k < deg H(z) = ¢. Substituting (4.5) into (1.3), we obtain
that
4.7) S+ 1)H(z—1)S(z)*+ Sz — DH(z + 1)S(z)?
= (az+b)S(Z)H(z)H(z+ )H(z — 1)+ cH(z)*H(z + )H(z — 1).

By observation for (4.7), we get
_ch

.

t=k+1 and s=

Thus Theorem 3 is proved.

5. Proof of Theorem 4

We use a similar method as in the proof of Theorem 2 in the proof.

(i) Assume that w(z) is a rational solution of (1.5), and has poles #,..., .
Thus, w(z) can be represented as (4.1). Using the same method as in the proof
of Theorem 2, we obtain that a, =0 (m > 1).

Now we prove ap = 0. If gy # 0, then for sufficiently large z, (4.9) holds.
Substituting (4.9) into (1.5), we get

(5.1) (az + b)(ap + o(1)) = — (a3 + o(1))(2ag + o(1)) + (2ag + o(1)).

Since a #0 and ap # 0, we see that (5.1) is a contradiction. Hence ay = 0.
Thus, w(z) can be rewritten by (4.1) as the form (4.5), and S(z), H(z) satisfy (4.6)
with k& <t Substituting (4.5) into (1.5), we obtain that

(5.2) (az+b)H(z + 1)H(z — 1)H(2)S(z)
=S(z+ 1)H(z— 1)H(2)* = S(z+ )H(z — 1)S(2)*
+8S(z—1DH(z+ 1)H(z)? = S(z— 1)H(z + 1)S(2)*.

Thus, since k <t and a # 0, we see that the degree of the right side of (5.2)
< 3¢+ k; but the degree of the left side of (5.2) is equal to 3+ k+ 1. This is a
contradiction. Hence, if a # 0, then (1.5) has no non-zero rational solution.
(i) Suppose that @ =0, » =2 and w(z) is a non-zero rational solution of
(1.5) and w(z) can be represented as (4.1). Using the same method as above,
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S(z)

we get that @, =0 (m>=1) and ay=0. Hence w(z) = e with deg § <
deg H. (2)

(iii) Suppose that @ =0, b # 2, 0 and w(z) is a non-zero rational solution of
(1.5) and w(z) can be represented as (4.1). Using the same method as above, we
obtain that @, =0 (m >1). p\/2

By observation for (1.5), we easily see |1 — 3 are nonzero constant

solutions of (1.5). Since a, =0 (m > 1), w(z) can be rewritten by (4.1) as the
form (4.5), where S(z) and H(z) satisty (4.6) with k < t.
We affirm &k = ¢ =m in (4.6). Suppose that k < 7. By (4.5), we obtain that

(5.2)' bH(z+ 1)H(z — 1)H(2)S(z)
= S(z+ 1)H(z— 1)H(2)* = S(z+ )H(z — 1)S(2)*
+8S(z—DH(z+ 1)H(2)? = S(z— 1)H(z+ 1)S(2)*.

Comparing coefficients and degrees of all terms of (5.2)', by k < ¢, (4.6) and
(5.2)', we obtain that

bsh® = 2sh>.

Sine hs #0, we have b=2. This contradicts the fact that b # 2. Hence
k=t=m.

When k =t = m, again comparing coefficients of the highest degree terms
(i.e. containing z*") of (5.2)', we obtain that

(2 —b)h*s — 25°h =0,

1/2
5_ (1 é) ,
h 2
Hence w(z) is of the form
b\'"?  Hi(2)
w(z) = (1 - 5) + )

where H,(z), Gi(z) are polynomials satisfying deg H; < deg G;. Thus Theorem
4 is proved.

ie.
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