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HOPF HYPERSURFACES OF LOW TYPE
IN NON-FLAT COMPLEX SPACE FORMS

Ivko DIMITRIC

Abstract

We classify Hopf hypersurfaces of non-flat complex space forms CP™(4) and
CH"™(—4), denoted jointly by CQ"(4c), that are of 2-type in the sense of B. Y. Chen,
via the embedding into a suitable (pseudo) Euclidean space of Hermitian matrices by
projection operators. This complements and extends earlier classifications by Martinez
and Ros (the minimal case) and Udagawa (the CMC case), who studied only hyper-
surfaces of CP” and assumed them to have constant mean curvature instead of being
Hopf. Moreover, we rectify some claims in Udagawa’s paper to give a complete
classification of constant-mean-curvature-hypersurfaces of 2-type. We also derive a
certain characterization of CMC Hopf hypersurfaces which are of 3-type and mass-
symmetric in a naturally-defined hyperquadric containing the image of CQ™(4c) via
these embeddings. The classification of such hypersurfaces is done in CQ?(4c), under
an additional assumption in the hyperbolic case that the mean curvature is not equal
to +2/3. In the process we show that every standard example of class B in CQ" (4c)
is mass-symmetric and we determine its Chen-type.

1. Introduction

The study of finite-type submanifolds of Euclidean and pseudo-Euclidean
spaces has been an area of flourishing research initiated by B. Y. Chen in the
1980s [9]. Many geometers contributed to the theory and quite a number of
important and interesting results coming from that study have been obtained on
sharp eigenvalue estimates and characterizations of certain submanifolds by
eigenvalue equalities [10]. A Riemannian n-manifold M" isometrically immersed
into a Euclidean or pseudo-Euclidean space by x: M" — E(I1V<) is said to be of
k-type (more precisely of Chen k-type) in E{}’Q if the position vector x can be
decomposed, up to a translation by a constant vector x;, into a sum of k
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nonconstant E(Aé)-valued eigenfunctions of the Laplacian A,, from different
eigenspaces, Viz.

(1) X=X+ x, +---+x,; Xo=const, Ax,=2Ax;,, i=1,...,k,

where x, # const, 1, € R are all different, and the Laplacian acts on a vector-
valued function componentwise. For a compact submanifold, the constant part
Xo is the center of mass and if x immerses M" into a central hyperquadric of a
Euclidean or pseudo-Euclidean space the immersion is said to be mass-symmetric
in that hyperquadric if xo coincides with the center of the said hyperquadric.
Moreover, decomposition (1) also makes sense for noncompact submanifolds,
but xy may not be uniquely determined, namely when one of the eigenvalues
A, above is zero. Such submanifolds are said to be of null k-type, and are,
therefore, per definition mass-symmetric.

The study of finite-type submanifolds therefore treats an interesting ques-
tion: To what extent is the geometric structure of a submanifold determined
by a simple analytic information, that is, by the spectral resolution (1) of the
immersion into finitely many terms? By placing a complex projective or a
complex hyperbolic space into a suitable (pseudo) Euclidean space of Hermitian
matrices using the embedding ® by projectors in the standard way (cf. [31], [28],
[29], [18], [15]), it is possible to study submanifolds, in particular hypersurfaces, of
a complex space form in terms of finite-type property, where the immersion
considered is the composite immersion with ®. It is well-known that a 1-type
submanifold is minimal in an appropriate hyperquadric of the ambient (pseudo)
Euclidean space. 1-Type real hypersurfaces of a complex space form CQ"” were
previously studied in [23], [18], and the present author subsequently classified
I-type submanifolds of these spaces of any dimension (see [14], [15]). In par-
ticular, 1-type hypersurface in CP"(4) is a geodesic hypersphere of radius r =
arctan /2m + 1, which has an interesting stability property [23], [15]. Type-2
(also called bi-order) hypersurfaces in the complex projective space were studied
by Martinez and Ros [23] (the minimal case) and Udagawa [36], who classified
them under the assumption that they have constant mean curvature. However,
Udagawa’s classification is incomplete and has some deficiencies which we rectify
here. First, it was claimed without proof in [36, p. 194] that there are no 2-type
hypersurfaces in CP™ among homogeneous examples of class B. We find a
counterexample to this claim, producing two such hypersurfaces. Second, it was
claimed in the same paper (pp. 192—193) that there are no geodesic hyperspheres
(i.e. class-4; hypersurfaces) in CP™ which are mass-symmetric and of 2-type,
whereas we prove that a geodesic hypersphere of radius cot™!(1/,/m) exactly has
these properties. Because of these erroneous claims, all three theorems of [36]
are deficient in one way or another.

Kéhler submanifolds of CP™(4) of 2-type were successfully studied and
classified in works of Ros [29] and Udagawa [35], whereas Shen [30] produced a
classification of minimal surfaces (real dimension 2) in CP"(4) of 2-type. On the
other hand, there are only scant results so far on 3-type submanifolds of complex
space forms (see [33], [34]) and their further study is warranted. An overview of
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the results on low-type submanifolds of projective and hyperbolic spaces via the
immersion by projectors is presented in [16].

In this paper we further advance the study of hypersurfaces of non-flat
complex space forms (that is, of both complex projective and complex hyperbolic
space) which are of 2- or 3-type and produce some new classification results,
with the starting (weaker) assumption that the hypersurfaces possess some simple
compatibility property between the complex structure of the ambient space and
the second fundamental form. One of the most studied kinds of hypersurfaces in
complex space forms are the so-called Hopf hypersurfaces [3], [11], [25], defined
by the property that the (almost contact) structure vector U := —J¢, where &
is the unit normal, is a principal curvature vector (i.e. proper for the shape
operator). Equivalently, they are defined by integral curves of the structure
vector field U being geodesics and in CP™ they are realized as tubes about
complex submanifolds when the corresponding focal set has constant rank
[8]. The above-mentioned examples of 2-type hypersurfaces studied in [23] and
[36] are in fact certain homogeneous Hopf hypersurfaces. One of our results is
that a 2-type Hopf hypersurface indeed has constant mean curvature, the key
result towards their classification given in Theorems 1 and 2. Kéihler submani-
folds of 3-type in complex projective spaces are studied in [33], [34], where some
examples are given, including compact irreducible Hermitian symmetric sub-
manifolds of degree 3. In this paper we also undertake a study of 3-type Hopf
hypersurfaces with constant mean curvature in non-Euclidean complex space
forms, fulfilling the promise made in [13], based on the study of spherical
hypersurfaces of constant mean curvature which are of 3-type via the second
standard immersion of the unit sphere (see also [17]). Along the way we obtain
a generalization of Nomizu-Smyth’s formula for the trace Laplacian of the shape
operator [26], and Simons’-type formula for the Laplacian of the squared norm
of the second fundamental form, which may be useful in other contexts. For
the background and additional clarification of the notation used in this article a
reader should consult [15]. Excellent references on the geometry of hypersurfaces
of complex space forms are [3], [4], [25], and a brief overview [5].

2. The basic background and relevant formulas

Let CQ™(4c) denote m-dimensional non-flat model complex space form, that
is either the complex projective space CP™(4) or the complex hyperbolic space
CH'(—4) of constant holomorphic sectional curvature 4¢ (¢ = +1). By using
a particular (pseudo) Riemannian submersion one can construct CQ™ and its
embedding @ into a certain (pseudo) Euclidean space of matrices. Consider first
Hermitian form ¥, on C™*! given by W¥.(z,w) = cZowo + Z}il Zw;, z,we C"M!
with the associated (pseudo) Riemannian metric g. = Re ¥, and the quadric
hypersurface N2"t! := {z e C""' | W, (z,z) = ¢}. When ¢ =1, N*"*! is the or-
dinary hypersphere S+ of C"*! = R*"*? and when ¢ = —1, N?"*! is the anti-
de Sitter space lem“ in C{”*l. The orbit space under the natural action of
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the circle group S! on N?"*! defines CQ™(4c), which is then the base space
of a (pseudo) Riemannian submersion with totally geodesic fibers. The standard
embedding @ into the set of W-Hermitian matrices H!)(m + 1) is achieved by
identifying a point, that is a complex line (or a time-like complex line in the
hyperbolic case) with the projection operator onto it. Then one gets the follow-
ing matrix representation of @ at a point p = [z], where z = (z;) e N*"! < Cﬁ;"

|Z()|2 CzoZ1 -+ CZoZpm
— 2 -
21Z0  clz|” - cziZm
(2) O([z]) =
_ _ 2
ZmZo  CZmZl -+ €|z

The second fundamental form ¢ of this embedding is parallel and the image
®(CQ™) of the space form is contained in the hyperquadric of HW(m + 1)
centered at I/(m+ 1) and defined by the equation

cm
2m+1)’

where I denotes the (m+ 1) x (m+ 1) identity matrix. For the fundamental
properties of the embedding ® see [31], [18], [28], [15].

If now x: M"— CQ™(4c) is an isometric immersion of a Riemannian
n-manifold as a real hypersurface of a complex space form (n = 2m — 1) then
we have the associated composite immersion X = ® o x, which realizes M as a
submanifold of the (pseudo) Euclidean space E(’}’Q = HY(m + 1), equipped with

KP=I/im+1),P—-I/(im+1))=

the usual trace metric {4, B) :g tr(4B). In this notation the subscripts and

superscripts in parenthesis are present only in relation to CH™, so that the
superscript 1 in H)(m+ 1) is optional and appears only in the hyperbolic
case, since the construction of the embedding is based on the form ¥ in C"*! of
index 1.

Let ¢ be a local unit vector field normal to M in CQ™, A the shape operator
of the immersion x, and let o = (1/n) tr A be the mean curvature of M in CQ",
so that the mean curvature vector H of the immersion equals H = «£. Further,
let V, A, D, denote respectively the Levi-Civita connection, the shape oper-
ator, and the metric connection in the normal bundle, related to CQ™ and the
embedding ®. Let the same letters without bar denote the respective objects for
a submanifold M and the immersion x, whereas we use the same symbols with
tilde to denote the corresponding objects related to the composite immersion
%:=®ox of M into the (pseudo) Euclidean space H"(m +1). As usual, we
use o for the second fundamental form of CQ™ in E(]}’() via ® and /& for

the second fundamental form of a submanifold M in CQ™. An orthonormal
basis of the tangent space 7,M at a general point will be denoted by {e;},
i=1,2,...,n. In general, indices i, j will range from 1 to n and I" will denote
the set of all (local) smooth sections of a bundle.
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We give first some important formulas which will be repeatedly used
throughout this paper. For a general submanifold M, local tangent fields
X,Y el (TM) and a local normal field ¢ e (T M), the formulas of Gauss
and Weingarten are

(3) VxY =VyY+h(X,Y); Vy&=—A:X + Dyé.

In particular, for a hypersurface of a complex space form CQ” with unit
normal vector ¢ and the corresponding shape operator A4, they become

4) VxY =VyY +<AX, Y)Y Vyé=—-AX

Let J be the Kéihler almost complex structure of CQ™, and U be the
distinguished tangent vector field U := —J¢.  Define an endomorphism S of the
tangent space and a normal bundle valued 1-form F by

SX = (JX);, FX =(JX)y=<X,U)¢,

ie for X e(TM), JX = SX + FX is the decomposition of JX into tangential
and normal to submanifold parts. Then the following formulas are well known
3], [25]:
(5) SU=0, SX=JX—(X,U), S’X=-X+<(X,UMU
(6) VxU=S4X, (VxS)Y =(Y,U)AX —<{AX,Y)U.
The curvature tensor of CQ"(4c) is given by
(7) RX,Y)Z =cY,Z)X — (X, ZYY +{JY,Z)JX
—IX,Z)JY = 2{JX, Y)JZ],

and the equations of Codazzi and Gauss for a hypersurface of CQ"(4c) are
respectively given by

(8) (VxA)Y — (VyA)X = ¢[(X, UYSY — (Y, UYSX — 2{SX, Y U],
9) R(X,Y)Z = c[{Y,ZYX —{X,Z)Y +{(SY,Z>SX
— (SX,Z>SY — 2(SX, Y>SZ]
+{AY,ZYAX — (AX,ZDAY.

The following formulas of A. Ros for the shape operator of ® in the
direction of o(X,Y) are also well known, (see, for example, [28], [29] and [18])

(10) (X, Y),a(V, W)y =c[2dX, YIV, WY+ (X, VY, W
+ X, WY, VY +IX, VIJY, WD
+ X, WYY, VY,
(11) Agx. )V =c2{X, YOV + X, V)Y + Y, VDX
+ JX, VITY + JY, VYJX).
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One also verifies
(12) o(JX,JY) =0(X,Y), (o(X,Y),x)=-X,Y), <(o(X,Y),I)=0.

The gradient of a smooth function f is a vector field V/ : =3 .(e;f)e;. The
Hessian of f is a symmetric tensor field defined by

and the Laplacian acting on smooth functions is defined as Af = —tr Hessy. The
Laplace operator can be extended to act on a vector field V along X(M) by
AV = Vv,V = Ve Vo, V1.
i
The product formula for the Laplacian, which will be often used in the ensuing
computations, is

(13) A(fg) = (Af)g + f(Ag) ZZef )(eiq),

for smooth functions f,g € C*(M), and it can then be extended to hold for the
scalar product of vector valued functions, and thus also for product of matrices,
in a natural way. We shall use the notation f; :=tr A¥, and in particular
f:=fi=tr A. For an endomorphism B of the tangent space of M we define
tr(VB) := Y., (Ve,B)e;, We shall assume all manifolds to be smooth and con-
nected, but not necessarily compact.

3. [Iterated Laplacians of a real hypersurface

Recall that
(14) Ax = _nH = _fé Z ehez

where here, and in the following, we understand the Laplacian A of M to be
applied to vector fields along M (viewed as E(N -valued functions, i.e. matrices)
componentwise.

By the product formula above we have

(15) A% := A(AX) = —(Af)E — f(AE) + 20(Vf, &) — 24(Vf) — ZA ale;,e))
Further,
AZ=D 9,08 = VeVed]

= Z A(Veei) + a(Veei, &) + V., (Ae;) + ale;, Ae;)

+ As(e, ¢ — De,(a(ei, €))]
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Using (11), the parallelism of ¢, and the fact that tr(VA) = V(tr 4) = Vf (by
virtue of the Codazzi equation), we obtain

(16) AE=Vf +[fo+c(n— 1)]£—fa(é,§)+2Za(e,»,Aei).

One further computes

(17) Z Ao(eier)) = —4cJAU + 2c(n +3)fE+2¢(n+2) Y ole,e)

i

+2) oldei, der) = 20(E,Vf) = 2c + f2)o(E,€).
Combining formulas (15)—(17) we finally obtain

(18) A’ =—[Af + f(fo+c(B3n+5)) —4cCAU, UD)E + 4cSAU
— [V = 2A(Vf) + 2c+ 26 + f2)o (&, &) + 40 (VS €)
—2c(n+2)z o(ei,e;) 2]2 (ei, Ae;) 2Za(Ae,~,Ae,-).

i

Compare this with formula (2.15) of [36], formula (2.9) of [18], and formula (2.8)
of [13].

Let us now find A’%. The computation is long but straightforward, so we
just outline the main steps. First we shall compute the trace-Laplacian of the
shape operator defined as the endomorphism AA:=3 [Vy, .4 — V. (V,A4)].
This computation is modeled on the computation of Nomizu and Smyth [26] in
the case of constant-mean-curvature-hypersurfaces of a real space form. How-
ever, here we do not assume the mean curvature to be constant and we are
dealing with complex space forms. Let K(X,Y) = Vy,y4 — Vx(VyA4). Then

(19) K(X,Y)=K(Y,X)+[4,R(X, Y)],

where R(X,Y) = VyVy — VyVy — Viy y] is the curvature operator of the hyper-
surface and the bracketed expression on the right hand side denotes the
commutator of the endomorphisms involved. Clearly, A4 =", K(e;,e;). We
compute

(20) D K(X.eei =D [(Vved)ei — (Vu(Ved))el]

*Zw (Ve A)ei + (Ve A)e] — ZVX (Ve A)e;)

= —Vx(Vf),

since the connection 1-forms ! are antisymmetric and the bracketed expression

is symmetric in 7, j. Since all the quantities involved are tensorial, to facilitate
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further computations let us assume that V,e; =0 for all i,j=1,...,n and
moreover V, X =0 at a point where the computations are being carried out. By
the Codazzi equation we have

ZKe,, e ng, (Vyd)e

=— ZV (Vo A)X + ¢({X, UDSe; — (e, UYSX — 2(SX,e;>U)]
—Z (ei, €)X +2¢V,,({SX,e;»U)

— ¢V, ((X,U)Se; — {e;, UYSX)].
Using (5) and (6) we get

D Vo (KSX,enU) =3 ({(Ve,S)X,edU +<(SX, eV, U)

— f(X,UU — {AX,USU + SASX,

and in a similar fashion

D Ve (KX, UpSei — {ei, UYSX) = ) [KX, Ve, UdSe; + <X, UN(V,,S)e]

=Y e Ve UDSX + e, UY(V,,S)X]

= (AX,UDU — f{X,USU — SASX.

Combining these steps we get

(21) ZK ei, X)e; = (AA)X + 3c¢SASX — 3c{AX — fX,UDU.

From (19) and (21) it follows
(AA)X = —3¢SASX + 3c{AX — fX,UNU
+ZK(X,ei)ei—l—Z[A,R(ei,X)]e
By the Gauss equation (9) we have

> [4,R(e;, X ZA (e, X)er) — ZR(e,»,X)(Ae)

i

=cfX + (o — cn)AX — fA’X 4 3cAS*X — 3¢SASX.

From (5) and the above we finally obtain the following extension of the Nomizu-
Smyth formula [26] to hypersurfaces of non-Euclidean complex space forms:
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(22) (AA)X =3¢c[KAU — fU, X>U + (U, XYAU] — 6¢SASX
+ofX + [fo — c(n+3)]AX — fA*X — Vx(Vf).

As in [26], we have A(tr 4%) =2 tr[(A4)A] - 23", tr(V,,A)%, and thus we obtain
the following Simons’-type formula for a hypersurface of CQ"(4c):

1
(23) A A%) = 6¢{AU, AU — 3cf (AU, U — 6¢ tr(SA)* + ¢f 2
F L= e+ 3 — f — VAP = 3 Hessy (e ),
where ||VA|* = > {(VgA)ei, (Ve A)eiy. A similar, but rather long, calculation
using (22) yields
(24)  A(JAU) = [tr(VyA®)|U — fSA2U +2(c+ £)SAU =23 J(V,,A)(SAe;)

— IVy(Vf) = JAS(Vf) + <Vf, AUYU
— [f{APU, Uy = 2(c+ f)<AU, U + 2¢f ¢
+20(47U, U) — f0(&,JAU) =2 a(e;, IV, (AU)).

Note that by the Codazzi equation and formulas (5), (6) we have
(25) V,(AU) = ASAe; + (VyA)e; — cSe;,

and also o(&,SX) =0(U,X) — (X, U)a(&,¢). Additional, somewhat involved,
computations yield the following formulas:

(26) A(0(¢,€)) = 4cJAU +2(c + f2)a(¢, ) + 20(Vf, <)

+2CZ a(e;, e) ZZ (Ae;, Ae;),

i

> A(o(ei, Aei)) = =2¢ > T (Ve A)(Se;) + 2¢fTAU — 4cJA>U + 8cVf

+2(cf? + 2¢fy + 1 — 1)E — da(&,tr(VA?)) — 2f30(E, &)
+20(E ANVS) + > _loler, (A)er) +20(Ae;, A%e;)]
+2¢3 [ folei, ;) + ale;, Ae;) — ale;, JASe;),

and using

Z o((Ve, A)er, der)€f = € tr(VA?) + ¢Vf —(,ZJ V., A%)(Se)),

ij
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also

> A(o(der, Aey)) :—22 (Ve A)ei, (Ve A)ei +2Z (Ae;, (AA)e;)
i

+2 Z[cfza(ei, ¢) + cale;, A%¢;) + a(Aey, A¢))
i

211

—2¢) " o(e;, JASer) — 4o(&, tr(VA?)) + 20(&, A*(V)))

i

—2£10(&,&) 4 4c tr(VA?) 4 4cVhh + 2¢(ffh + 213)¢
+26fJAU — 4cJAPU — 4> J(V,, A%)(Se;).

By a repeated use of the Codazzi equation we may deduce that

(29) tr(VA) = V(tr 4) = Vf,
(30) tr(VA4?) = %Wz + A(Vf) — 3¢SAU,
(31) tr(VA*) = %Vf3 + %A(sz) + A*(Vf) = 3¢SA>U — 3¢ASAU,

and in general, by induction,
A%y = ilAk*’(Vf,) - 3C§A"’1SAI‘”U.
i =1
Additionally, by using the Codazzi equation again one computes

(32) Z(VC,A)(Sel) = (n - 1)

i

and for a symmetric endomorphism B one gets from (12)

(33) > ol(ei, JBej) = 0.

i

Although we can compute A(g(V/f,¢)) in a similar fashion and obtain a formula
for A’% in general, we list this formula only in the special case when the mean
curvature is (locally) constant. Thus assuming f = const, from (18) and (22)-

(33) we obtain
Nz = (A3X)T + (Asfé)Na
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where the component tangent to CQ"” equals
(34)  (A*%)y =8c) J[(Vod®)(Se) — (Vo A)(SAer)] = 2fA(Vf2) — 4cVfr

+12¢{Vf5, UDU + 8¢SA>U + 8(2cfs + n+ 7)SAU
+ [8cC AU, Uy + 8(2¢fs + n + 4){AU, U — f(Af) — 8¢fs
—f(f5 +dc(n+4)fo+4cf* + Tn* + 30n + 19)]¢,

and the normal component is

(35) (A%)Nﬂtz (Vo A)ei, (Vo A)es) + 6/a(E, V1) + 120(E, A(Vf2))

JrgO'(f, Vf3) — 16¢ca(é, ASAU) — 32¢fa(AU, U)

—32c0(AU, U) — 12¢0(AU, AU) + 16¢f Y _ o(e;, SASe;)

+16¢Y " o(e;, SASAe;) +4c D o(ei, SA*Se;)

+ {28¢<A>U, UY + 28¢fCAU, U + 2(Afs) + f2[3f2 + ¢(3n + 13)]
+4f7 +dc(n+4) fo + 4ffs + 4fy + 4n + 2010 (¢, &)
- 4(Cf2 + n2 + 4n + 5) Z a(ei, ei)

i

—4f[fo+c(n+3)] Y ole;, Ae;)

i

_4(c+2f2)z (Ae;, Ae;) 42 2e;, A? e)
i

Compare with formula (2.17) of [13] and a related expression in [17].

4. Hopf hypersurfaces of 2-type have constant principal curvatures

In this section we study hypersurfaces of complex space forms of Chen-type
2 and classify such hypersurfaces that are also assumed to be Hopf hypersurfaces,
i.e. for which the structure vector field U := —J¢& is principal. We denote by
2+ the 1-dimensional distribution generated by U and by & the holomorphic
distribution which is the orthogonal complement of %' in TM at each point.
By way of notation, ¥V, will denote the eigenspace of the shape operator 4 for
an eigenvalue (principal curvature) ¢ and s(Z), the spectrum of 4|, the set of
all eigenvalues of A4 corresponding to eigenvectors belonging to & at a given
point.
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Let M" =« CQ™, n=2m— 1, be a 2-type hypersurface in H)(m+ 1), i.e.
X = Xo + X, + X, where Xy = const, Ax, = 1,X, and AX, = 4,X,, according to (1).
Then

(36) A% — (Joy + J)AX + AduX = dlXo.

Let L be the vector field in H()(m 4 1) along M", represented by the left hand
side of the equation (36) and let X be an arbitrary tangential vector field of
M". Then

0= <vXLax>:X<La)E>_<LaX>
= X(—Zc + 24 2en(n+2) — (4 Ao)n + giu/lu)

—4c{SAU, X + {fVf +24(Vf), X
= QfVf, X)) —4c{(SAU, X ) + {fVf +24(Vf), X ).
Therefore
(37) 24(Vf) + 3fVf —4cSAU = 0.

Similarly, by considering the ¢(&, £)-component, in combination with (37) we may
obtain

(38) Vs + A(V)) ~ 3 /¥~ [(VuA)U ~ 2AVy A)(AD)
+ XV, UYU = 22XV, UYAU — (AU, UYVf =0,

and the other components are even more complicated. Although it is possible
to characterize 2-type hypersurfaces of CQ™ by a set of equations involving the
structure vector field U, the gradients of f and f;, Af, the shape operator, and
various compositions of S and A, the equations involved are very complicated to
enable the classification of such hypersurfaces without any extra conditions. At
this point it secems beneficial to make some additional assumptions on a hyper-
surface in order to make the situation more tractable. The most facile assump-
tion, which simplifies many terms, is that f := tr 4 = const, immediately leading,
by way of (37), to the conclusion that M is a Hopf hypersurface, since SAU = 0
is equivalent to AU = xU for some function ». Moreover, it is known that in
this case x is (locally) constant [22], [25]. Using this, one can show that the
hypersurface is homogeneous and has at most 5 distinct principal curvatures, all
of which are constant. Using the complete list of such hypersurfaces available in
[32], [24], [20], [3], [4], one obtains a classification of constant-mean-curvature
(CMC) hypersurfaces whose Chen-type is 2. This has been already attempted by
Udagawa [36] for hypersurfaces of CP™(4), and for hypersurfaces of CH™(—4)
see below. Udagawa’s classification in CP™, however, is incomplete (see below).
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On the other hand, instead of assuming the mean curvature to be constant, it
seems more challenging to make a weaker assumption that M is a 2-type Hopf
hypersurface. In that case we have

(39) AU =»U, x =const, and
3
A(Vf) = _vaf'

So we do not get f = const immediately, although that will eventually turn out to
be the case.

Let G be an open set defined by G={pe M| f(p)- - (Vf)(p) #0}. The
Hopf property implies (U, V(> = Uf = 0 [25, p. 253] and thus Vf € Z = (RU)™.
In addition, we have that S(Vf) is also an eigenvector of A4, see [4], [22]. Then,
since the integral curves of U for a Hopf hypersurface are geodesics, (38) reduces
to

(40) Vi = 2f + »)Vf.

Instead of showing more general formula (38), for our purposes it suffices to
prove (40). By using (3) and parallelism of ¢ we have

(41) 0= <(VxL,a(£,&))
= X{L,0(&,8)) + (L, Ay, )X > — <L, Dx(a(&,8))>
= X{L,0(&,E)y +2c(L, X + <X, UpUY + 2{L,a(AX,&)>.
Using AU = xU and Uf =0 we obtain
(A*%,0(E,E)) = 4c[fo — uf — % — en(n+3)],
(N*%, X + (X, UDUY = —{fVf +24(Vf), X,
(N7, 6(AX, &)Y = deCAVS), X .

The metric products of Ax and x with these quantities are either zero or give
constants which disappear after differentiation. Thus putting these together in
(41) we obtain

4¢{Vfy — #Vf XD = 2¢{fVf +2A(Vf), X > + 8c{A(Vf),X ) =0,

so that (40) follows from this and (39).
We now show that f = const. On G let ¢; := Vf/|Vf| be the unit vector of
Vf. Then

0 = (VysL,a(er,e))
= (V)<L aler,e1)) + <Ly Ag(e, )V > = <L, Dyyaler,er))
= (V/)<Laler,en)y +4{L,Vf > = 2L a(Vyser,e1)) + 3 VKL, o (&, 1))
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If AX =pX for X € & then, by the results of Maeda [22] (for the projective
case) and Berndt [4] (for the hyperbolic case), also A(SX) = u*(SX), where u* is
uniquely determined by the condition

. 2¢ .
@2) Qu—n)u' — %) =% +de, ie w =T and (W) =
2 — %
Since <U,Vf)> =0, then e, Se; € 2. When X = Vf, we have u= —3f/2 and
3uf — 4 .
W= g We may assume that 3f + » # 0, for otherwise we may work
203f +x)

on an open subset of G where f # —x/3 and invoke continuity of /. From here
we compute using (11)

(L,o(er,e1)) = —c(5f% +4f u* + 4u*?) + const,
LV = 2f\Vf|2, (L,o(Vyrer,e1)> =0, <L,0(& er)) =4c|VSf].

Substituting in the above equality we get
20/ IVf|* = (VA)(S/? + 41" +4u?) = 0.

Since

: 3(%% 4 4¢) o
(VAO(w") = —3IV/T"
2(3f +%)*
we see that f =tr 4 satisfies on G a polynomial equation of degree 4 with
constant coefficients, viz.

13574 + 10853 + 18212 — 25(5%> + 12¢) f + 16¢3*> + 48 = 0.

Consequently, f is (locally) constant since f is continuous and M is assumed
connected. From (40) we also get f, = const.
Since f = const, (18) reduces to

(43) A% =[dcx — f(fa+c(Bn+3)]E+ (2c+ 26+ [P)a(é, Q)
—2e(n+2)) alene) —2f Y o(dei,er) =2 o(Ae;, Aey).

1

Differentiating (36) with respect to an arbitrary tangent field X e T(TM) we
have

(44) Vx(A’%) = pVx(A%) + ¢X =0,

where p:=1,+ 4, and ¢ := 2,A,. Conversely, if (44) holds then X satisfies the
polynomial equation (36) in the Laplacian of the form P(A)(X — Xy) = 0, with
P(f)=1t> — pt+q. According to a result of Chen and Petrovic [12] if such
polynomial has simple real roots the submanifold is of 2-type (if not already of
lI-type). Let V, = Z be an eigenspace of an eigenvalue y € s(Z) at each point
and let X € 7, be a unit vector. Taking the metric product of (44) with X and
observing that {Ax, X) = (A*%,X> =0 for any tangent vector X, we have
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0 = (Vx(A*%), Xy — p{Vx(A%), X + ¢
= X{(A*%, XY — (AN°%, Vx X +0(X, X))+ pA%, Vx X +0(X, X)) +¢q
= —u(A’%, &) — (A°%,0(X, X)) + pudA%, &) + p{AX,0(X, X)) + q.

Using (10) and the above-mentioned results of Maeda and Berndt that AX = uX
implies A(SX) = u*(SX) where u* is given by (42) we get from here

(45) 0=q+[f(fo+3c(n+3)) — pf —desdu+ 2cf* — 2pe(n + 2)
+4(n+ 1) (n+3) + dep® + def it + et

Substituting the value of u* from (42) and clearing of denominators we get a
fourth degree polynomial equation in x4 with constant coefficients (since f, f>, and
» are all constant). We conclude that 4|, has at most four eigenvalues, i.c. the
hypersurface has at most five distinct principal curvatures, all of them constant.

Hopf hypersurfaces of CP”(4) and CH™(—4) for m >2 with constant
principal curvatures are homogeneous and they are known. By a result of
Takagi [32] (see also [19], [20]) there are six types or six classes of Hopf hyper-
surfaces with constant principal curvatures in CP™(4), given as (possibly open
portions of ) the model hypersurfaces in the following list (the so-called Takagi’s
list): 7\
T[ ) 2> b

(42) A tube of any radius r € 0,§> around a canonically embedded (totally
geodesic) CP* for some ke {l,...,m—2};
T
)
quadric Q"' = SO(m + 1)/SO(2) x SO(m — 1);

(C) A tube of radius r e <O,Z> around the Segre embedding of CP' x CP*
in CP" m=2k+1,

(D) A tube of radius r e (O,%) of dimension 17 in CP° around the Pliicker

(41) A geodesic hypersphere of radius re <O

(B) A tube of any radius r € (0, around a canonically embedded complex

embedding of the complex Grassmannian of 2-planes G,(C°);
(E) A tube of radius r € ((), Z) of dimension 29 in CP'"> around the canonical

embedding of the Hermitian symmetric space SO(10)/U(5).

We call these the standard examples or the model hypersurfaces in CP"™.
To avoid confusion with the notion of Chen-type, these hypersurfaces will be
referred to as being of class A4 (with subclasses Ay, 4,), B, C, D, E, rather than
being of type 4, B, C, D, E, as is customary in the literature. For the example

B we note that a tube of radius r e (0,%) around Q"' in CP” can be regarded

also as the tube of radius g— r around the canonically embedded (totally
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geodesic) RP™ in CP™, which is the other focal submanifold of that hypersurface
5], [8].

These model hypersurfaces have two, three, or five principal curvatures given
by

x=2cot(2r), and g = cot<r—|— (i — 1)%), i=1,2,3,4,
where r is the radius of the tube involved and » the principal curvature of U.

The table of principal curvatures and their multiplicities for these hypersurfaces
is compiled by Takagi [32] and reads as follows (see also [3], [25]):

Table 1. Principal curvatures of the standard examples in CP™ and their
multiplicities
2 cot(2r) cot r cot <r + E) cot <r + E) cot <,~ + 3j>
4 2 4
A 1 2(m—1) — — _
A> 1 2m—k—1) — 2k -
B 1 — m—1 — m—1
C 1 m—3 2 m—3 2
D 1 4 4 4 4
E 1 8 6 8 6

It is known that the almost complex structure J leaves eigenspaces V,, and
V., invariant and interchanges eigenspaces V,, and V.

In the complex hyperbolic space the number of principal curvatures is two
or three. The list (the so-called Montiel’s list after [24], completed by Berndt
[3], [4], see also [25]) of Hopf hypersurfaces with constant principal curvatures in
CH™(—4) consists of (open portions of) the following:

(4o) A horosphere in CH™;

(4]) A geodesic hypersphere of any radius r e Ry;

(4]) A tube of any radius r € Ry over a totally geodesic complex hyperbolic
hyperplane CH”!;

(4;) A tube of any radius r € R, about the canonically embedded CH* in
CH™ for k=1,...,m—2;

(B) A tube of any radius r € R, about the canonically embedded (totally
geodesic, totally real) RH” in CH™.

We note that a canonically embedded RH” < CH™ is of 1-type in
H'(m+1), [15]. In a recent work Berndt and Diaz-Ramos [6], [7] classified
hypersurfaces of CH™ with three constant principal curvatures, without assuming
them to be Hopf.
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The table of principal curvatures », u, v and their multiplicities m,, m,, m, i3
as follows [3], [4], [25]:

Table 2. Principal curvatures of the standard examples in CH™ and
their multiplicities

% u v m, my, m,
Aoy 2 — 1 1 — 2m—2
Aj | 2coth(2r) | cothr — 1 2(m—1) —
A{ | 2 coth(2r) — tanhr | 1 — 2(m—1)
A, | 2coth(2r) | cothr | tanhr | 1 2m—k—1) 2k
B | 2tanh(2r) | cothr | tanhr | 1 m—1 m—1

It is known that the eigenspaces V, and V, are interchanged by the action
of J for a class-B hypersurface and they are J-invariant (holomorphic) for any
of the class-4 hypersurfaces. A hypersurface of class 4, has three principal
curvatures and so does a hypersurface of class B, except in one case, namely
when the radius of the tube is r =1 In(2+V/3) and then u=x= /3.

In both settings, » is the principal curvature corresponding to U := —J¢.
These classifications enable us to prove our results for 2-type Hopf hypersurfaces.
In the subsequent investigation of 2-type Hopf hypersurfaces of CQ"(4c) we may
assume we are dealing with Hopf hypersurfaces with constant principal curvatures
and therefore with one from the Takagi’s list in the projective space or one from
the Montiel’s list in the hyperbolic space.

5. The classification of 2-type Hopf hypersurfaces of CQ"(4c)

We begin by analyzing various components of equation (44). Let X e
I['(TM). Then using the Gauss and Weingarten formulas (3) and the fact that ¢
is parallel, we get from (14)

(46)  Vx(AX) =2c(n+2)X 4 fAX —2c{X,UDU — fo(X, &) — 20(AX, &)
and from (43)
Vx(A’%) = 2¢f? +4(n+ 1)(n+3)]X — [dex — f(fr + 3c(n+3))]AX
+4cA?X = 2c[2fs + £+ 2¢(n + 3)KX, UYU — d¢fJASX
—4cJA*SX + [dex — f(fo + c(3n 4+ 5))]o(X, &)
— 2026 + £+ 2¢(n+ 3)|o(AX, &) — df o (A2 X, €)
—4o(A3X &) — 2fz ((VyA)e;,e) 42 ((VyA)e;, Ae;).
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Therefore, separating the part of equation (44) that is tangent to CQ™ we get
(47) 0= —2¢c[2f» + 2+ 2¢(n+3) — plKX, UDU — 4cfJASX
— 4eJA*SX + [4(n+ 1)(n+3) + 2¢f? — 2pe(n +2) + q|X
— [dex — f(fo +3c(n+3) — p)|AX + 4eA’X
and the part normal to CQ” yields
(48) fdex — [(fs+ c(3n+5) = pllo(X. &) — da(47X, &)
—A4fG(A*X, &) =212/ + f2 + 2c(n + 3) — plo(AX, &)
—ZfZ (VxA)eie) 42 (VxA)e;, Ae;) = 0.

These expressions are linear in X. Further separation of parts relative to the
splitting 2 @ RU @ R¢ of the tangent space of CQ™ yields the following

LemmA 1. Let M"™ be a Hopf hypersurface (not necessarily compact) of
CQO™(4c) im=2,n=2m—1). If M is of 2-type via X satisfying 2-type condition
(44) then M has at most five distinct principal curvatures, all of which are constant,
and the following relations hold.

(E1) Re(n+1)+%f]p=q+xf[fo+3c(n+3)] —4cfs + 4n(n + 3);

(E2)

2e(n+2) + uflp = g+ 2¢f +dcf i + dep”? + deil?
+ [/ (f2+3c(n+3)) = dexfu+4(n+1)(n+3),

for any principal curvature p e s(9);
(E3)
(f +21)p = ~den +4u(fp+ 4 + fu" + %)
+2ul2fs + 2+ 2e(n+3) = 2f . — 2] + ffo + c(Bn+ 5)],
Sfor any pes(9);
(Es)
SVxA) Y, Z) + f{(VxA)(SY),SZ)
+{(VxA?)Y, Z) +(VxA%)(SY),SZ) = 0,
for every X, Y,Z e'(2).
Conversely, if (E\)—(Es) hold for a Hopf hypersurface with constant principal
curvatures, where p and q are constants and e s(2) is an arbitrary principal
curvature on 9, then the formula (44) holds and the submanifold is of type <2

if the corresponding monic polynomial P(t) = t> — pt+q has two distinct real
roots.
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Proof. From the above discussion it follows that M has constant principal
curvatures. (E;) follows from (47) when X = U. (E,) is the formula (45), and
it follows from (47) when X € V,, ¢ & is chosen to be a principal direction of
a principal curvature u e s(2). Note that (47) is linear in X, so it suffices to
consider X to be one of the principal directions.

(E3) and (E4) follow from the normal part (48). Recall that the normal
space of CQ™ in H(m+ 1) is spanned by % and the values of ¢ on various
pairs of tangent vectors to CQ™, namely o(&,¢), o(&, X), o(X,Y) for X,Y €
I'(2), see e.g. [15]. Note that by (12) ¢(&,U) =0, o(U,U) =0(&E) and
o(U,X)=0(&,JX) for X € 2. By (12) and the constancy of f and f;, from
(48) we conclude that the equation (44) has no X-component.

Let L denote the left-hand side of (48). Then A; =0. Conversely, if
A; =0, for some Le T+CQ™ then L =kI is a multiple of the identity, but
since L is a linear combination of terms of the form o(V, W) then by (12)
L =0. Consider first A4;¢=0. The condition {A;& EY =0 gives no infor-
mation since by (10) (L,a(&,&)> =0 is trivially satisfied and the same holds
for (A; &, UY=0. Now take Y € & and consider {A;¢, Y) = <{L,a(&, Y)) = 0.
Using

Ay, o€ = c(X =X, UDU), Y Agvyayeepé = 2cxJSAX — 2cJASAX,

and > Ag(v,a)e, e)E = X JSAX — cJA’SAX,
i

from (48) it follows

(49) A(SA’SAX, Y >+ 4f (SASAX,Y> —4{A>X, Y> — 4f (A*X, Y
— 22+ [P+ 2c(n+3) — p—2fn— 24 JKAX, YD
+dex+ fp— (L +c(Bn+5)KX,Y)>=0.

Since A2 =« 9, S = %, and the expression is linear in X, Y € & we can drop
Y and take X € V, = Z to get (E3). Considering 4, U = 0 gives no additional
information beyond (E3;) by virtue of (A U, Y)Y = {A & JY ), returning it to
the case above. Next we exploit the condition A, Y =0 for Y € 2. By (11) we
have

Z Ap(vyayeren Y =2¢(VxA)Y — 2¢J(Vy A)(SY)

> Ao(vyarene)Y = c(VxA®)Y — cJ(Vy A*)(SY).
i
In particular, when X = U by the Codazzi equation and formula (6) we have

> Ag(vyre,e)Y =4SY + 2c[4SAY + xASY — ASAY + (SA)*SY]
i
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and a similar, somewhat longer, expression is obtained for ), /I(;«VUA)eh 4e) Y.
Then taking Y € V, and using 2uu* = 2¢ + »(u + u*), by way of (42), we see that
ArY =0 reduces to a trivial identity when X = U. Thus consider as the last
condition to check {A;Y,Z»=0. Choosing Z=¢ or Z= U gives back (E;3)
and when X,Y,Z € 9 from (L,0(Y,Z)) =0 we get (E4). Conversely, since we
considered all possible components, the conditions (E;)—(E;) are equivalent to
(47) and (48) by linearity and thus we get (44), from which it follows that a
hypersurface is of type < 2, provided that the corresponding polynomial has two
distinct real roots.

Note that by a result of Niebergall and Ryan [25, p. 264] any of the class-4
hypersurfaces in CQ™ from either list is characterized by

(VxA)Y = —c[(SX, YYU + (U, Y SX],

so that the condition (Ej) is trivially satisfied for those hypersurfaces. Further,
by eliminating ¢ from (E)) and (E;) we get

(50) [2¢+ f(u—2)]p = de(u® + 1*?) + def " — dexp + 4(n + 3)
+dch + 207 + f(u— %) fo +3e(n +3)],

and if p can be uniquely determined from this condition (regardless of the choice
of © and consistent with (F3)) then ¢ is uniquely determined from (E)).

We now examine which of the Hopf hypersurfaces with constant principal
curvatures are of 2-type. This has been already considered by Udagawa for
hypersurfaces of CP™ [36]. Although our argument is different from Udagawa’s
and relies on the analysis of the conditions (£;)—(Es), rather than on the matrix
representation of the immersion in H)(m + 1), it partly overlaps Udagawa’s
investigation and reaches the same classification for 2-type CMC real hypersur-
faces in CP™ of class A. However, Udagawa’s paper contains errors regard-
ing mass-symmetric hypersurfaces and in particular hypersurfaces of class B, as
a result of which the three theorems in that work contain inaccuracies and
incomplete classifications. Moreover, our more detailed analysis clearly exhibits
the manner of 2-type decompositions involved. Also, the benefit of our uniform
approach is that it produces results for hypersurfaces of CH™ at the same time,
the case which is not treated in earlier papers, and the same technique will be
used to study 3-type submanifolds.

First we note that a horosphere in CH™ is not of any finite type since, as
shown in [18], it satisfies A’X = const # 0 and therefore cannot satisfy equation
(1), for otherwise equation (44) would hold for some constants p and ¢, which
would force p and ¢, and thus also A’%, to be zero or pVx(AX) to be a multiple
of X, contradicting (46). For hypersurfaces of class 4; (geodesic spheres, equi-
distant hypersurfaces) we have

LemMa 2. (i) A geodesic hypersphere in CP"(4) of any radius r e (0,7/2),
r#cot™' \/1/2m+1) is of 2-type in Hm+1). A geodesic hypersphere in
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CH'™(—4) of arbitrary radius r > 0 is of 2-type in H'(m + 1) via X and the same
holds true for a tube of an arbitrary radius r > 0 about a totally geodesic complex
hyperbolic hyperplane CH™'(—4) =« CH™(—4). These statements are also valid
for any open portion of the respective submanifolds.

(i) The only complete mass-symmetric hypersurfaces of class Ay are geodesic
hyperspheres of radius r = cot™" \/1/m in CP"(4).

Proof. (i) For a geodesic sphere (class 4, in CP™ and A{ in CH"™) define

cote(r) = cotr, when ¢=1 (projective case)
““7 " lcothr, when ¢= —1 (hyperbolic case)

and let x4 = cot.(r) be the principal curvature of multiplicity 2(m — 1) =n — 1 and
» = 2 cot.(2r) the principal curvature (of U) of multiplicity 1, whereas x = tanh r,
% = 2 coth(2r) for a tube about a complex hyperbolic hyperplane CH"~!(—4) of
class A{. Then

c ¢ 1
(51) Wo=p x=p——, f=mu——, fr=m’+—-2c
u Jz Jz
From (50) we get
2n+1 1
(52) [(n+2)e—pp=cBn+2)(n+2)u*+ 3n* +6n+4) - % A
We may assume that (n+ 2)c # 1/u?, certainly true when ¢ = —1, and when

¢ =1 the equality would lead to = +/1/(n+2) ie. to r=cot™' \/1/2m+ 1).

However, the geodesic hypersphere of this radius in CP™(4) is of 1-type (see e.g.
[23], [15]). Thus dividing (52) by (n+2)c — x> we get

1
(53) P=(3n+2),uz+3c(n+1)+u2:(ﬂz+c)<3n+2+;2>.
Then from (E;) we find
(54) g=2n+1) n,u4+c(2n+1),u2+l%+(n+2)],

Solving (E3) for p gives the same value as in (53), so the conditions (E;)—(E3) are
consistent and satisfied by the above values of p and ¢, the condition (E4) being
trivially satisfied. According to Lemma 1, the equation (44) then holds, hence
also (36). Moreover, the polynomial P(1) = A? — pl+q¢ has two distinct real
1
roots A, =2(n+1)(g*>+c¢) and A, = —2(/12 + ¢)(nu® + ¢), which are the two
u
eigenvalues of the Laplacian from the 2-type decomposition of X.
(i) Let 2 be the holomorphic distribution in TM as before and choose
an orthonormal basis {¢;} of the tangent space so that ¢, = U and ¢; € 9 for
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i=1,2,....,n—1. To see which hypersurfaces of class A; are mass-symmetric
first we find from (14), (18), and (43)

A% = (nﬂ - ;)5 — (&8 - olere), and

e, €YD

2n—1
A% = —[nz/ﬁ +c(3n* 4+ 2n —4)u — n,u :3]

+ [(n2 — ) —2cn — i] a(&,E) =2+ 1)(p? +¢) Z a(e;, e;)

2
K e, €Y

and then compute, using 4, — 4, = (1/u?)(p® + ¢)[(n + 2)u® — ¢, that

(55) %y = ﬁ (A*% — J,AR)

= #‘jdz {—4wf + %la(£, &) — ‘;2 - f;@a(a, e»}
(56) % =y (A%~ %) = e o e o)
From Lemma 1 of [15] we have
(57) )z:mi 1 —z(m: () —MT:I)L;ZU(@,@).

Now the center of mass can be found as Xy = x — X, — X, to yield

I mu® — ¢

58 X0 =
( ) 0 m+1 m(ﬂ2+c)

1 - I

2 ﬂé+§a(f7é) + (ﬂz +C) (x—m—_H>]

We observe that the same formula applies also for the center of mass of a 1-type
hypersphere in CP(4) for an appropriate value of 4. Note that by our definition
of mass-symmetry, any null 2-type hypersurface is per force mass-symmetric,
since the constant part Xy can be manipulated and changed to be equal to
I/(m+ 1), and the existing constant X, moved to be a part of the 0-eigenfunction.
However, in our case, for 4; hypersurface both 4, and A, as given above are
nonzero, because (in the hyperbolic case) u = coth r > 1. Since the ¢-component
of the right hand side of (58) is the only part tangent to CQ™ and x = cot,. r # 0,
a class-4; hypersurface is mass-symmetric, i.e. Xy =1/(m+ 1) if and only if
mu*> = c. This is possible only when ¢=1 and u=cotr=+/1/m. Thus a
geodesic hypersphere in CP™(4) of radius r = cot™' y/1/m is the only complete
mass-symmetric hypersurface of class 4;. We observe that this hypersphere with
the given radius does satisfy the equation (3.14) of [36], but it is completely
overlooked in that paper.
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LemMa 3. (i) There are no 2-type hypersurfaces in CH™(—4) of class Aj,
i.e. no 2-type tubes about canonically embedded CH* <« CH”, 1 <k <m—2. A
hypersurface of class A, in CP™(4) is of 2-type if and only if it is an open portion

of either (a) the tube of radius r = cot™! ket o (b) the tube of radius r =
2k +1
1 . : P/c 4
cot 1 =1 about a canonically embedded, totally geodesic CP*(4) <

CP™(4), for any k=1,2,...,m—2.
(i) The only complete mass-symmetric 2-type hypersurfaces of class A, are
those in the first series of tubes (a) above.

1
Proof. (i) Let y; = cotr, u3 = cot (r + g) =— /l_ for model hypersurface of
1
class 4, in CP™ and p; = p=cothr, yy; = v =tanh r = — for model hypersur-

S|
face of class 4, in CH™. Then y,, p; have respective multiplicities 2/ and 2k for
some positive integers k, [ with /=m—k —1 i.e. n=2/4+2k+ 1. Moreover,

* * 4
(59) MU= R = i fafly = 6 K =
1

(60) f =Luy+Kuy, f*=Lui+Ku;—2KL, fo=Lui+Kp; -2,

where K :=2k+1 and L :=2/+1. Our goal is to examine when the equations
(E1)—(E») are consistent and when constants p and ¢ can be found to satisfy them
(Once again, the condition (Ej) is satisfied by every class-4, hypersurface). That
comes down to the pair of equations consisting of (E3) and (50), having the same
solution for p for either value of pe{y;,;3}. Consider the equation (50) in
which g = g, multiplied by [2¢ + f(u3 — %)] = (2¢ — f,) and the same equation
with g = y; multiplied by (2¢ — fp3). Subtract the two multiplied equations to
eliminate p. We get

(61) Fh+ ) +24f ([ +%) — c(n+3)f —4ex = 0.

This is a necessary and sufficient condition for p to have the same value from
(50), regardless of the choice of u. On the other hand subtracting the two
equations obtained from (50) for u = u;,u,, gives

(62) of = ffr+ c(3n+13)f + 4cx.

Similarly, from the two equations contained in (E3) for u = y;, 3 by subtracting
we get

(63) P =2+ 2+ 2%(f + %)+ 2¢(n+5),

and by eliminating p from these two equations we get exactly the same condition
(61) as before. Moreover, assuming (61), we check that (62) and (63) are con-
sistent, so there is only one condition, namely (61), to be satisfied in order to
make (E;)—(E3) consistent, regardless of the choice of x, and enable us to solve
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for p and ¢q. Replacing the values from (59) and (60) into (61), using » = u; + 3
we get

0=L(L+1)(L+2)u +KK+1)(K+2)m3
— ey (BLPK 4 3L + 6LK + 8L + 2K + 4)
— cus(3LK* 4+ 3K* 4+ 6LK + 8K + 2L +4),
or
(64)  [(L+1uj — (K +1)]
X [L(L+2)u} —2¢(LK + K+ L+ 2)u} + K(K +2)] =0,

which has the following three solutions

»  (K+1)c ,»  Ke »  (K+2)c
Clearly, when ¢ = —1 none of them is possible, so there are no 2-type hypersur-

faces of CH™(—4) among A,-hypersurfaces. When ¢ =1 the last two possibil-
ities generate the same set of examples. From (63) we find

p=(L*+4L +2)u} + (K> + 4K 4+ 2)u3 — 2LK

and we can also compute ¢ from (E;) in terms of u;, 3. Then using these we
find the two eigenvalues of the Laplacian from the 2-type decomposition to be

(65) b= (L+1)(L+2)ud+ (K +1)(K+2)u3 — (L+K +2LK),

/IU:L,ulZ—l—K,ug—&—L—f—K, W =cotr, 3 = —tanr. 5
-k
In the case (a), we get A4,=2(n+3), iv:2(n+l)—¥:

(I+1)(k+1)
4(("2 ‘:_ 11))((LKK++1’;1) , Ju> 7y, so the hypersurface is of 2-type. Since ui =

cot? r:KT—H, from Takagi’s list it follows that the hypersurface is an open

L+1
. . K+1 [k+1 .
portion of the tube of radius r = cot™! Al cot™! el about a canoni-
L+1 m—k

cally embedded CP*(4) = CP™(4), for any k=1,...,m—2; see also [8], [25].
For case (b), (65) yields
Ak+1)(n+3)

/Lu7T:4(H’Z+1)

K+1 4(l+1)n+3) L+1

A e w L) s B

——, we identify such hypersurface as an open
L+2
2k +1

portion of the tube of radius r = cot™! I+3= cot™! om K 11 about a

canonically embedded CP*(4) = CP"(4), for any k=1,...,m —2.

Ju >y Since 1f = cot? r =
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(i) For an Aj-hypersurface we have from (65)
(66) Ay — Ay = (L + 2L +2)p + (K* + 2K +2)uf — 2(L + K + LK).

Note that from Tables 1 and 2 and the accompanying discussion, in addition to
principal curvature x = 2 cot.(2r) an A,-hypersurface has also two more principal
curvatures y; = cot, r and u; = —c tan, r, with corresponding principal subspaces
Vi:=V, and V;:=V,, being J-invariant and & = V; @ V3. Then from (14)
and (43) for a basis of principal directions {e;} in & we get

A% = —(Liy + Ki)e = 0(6,6) = Y alene) = Y alej.e)),

e, el é’/GVB
A*% = — L% + K213 + (L 4 4mL — &)y + (K* + 4mK — 4)ps)é
+ (L7 = 2)uf + (K* = 2)p5 — 2LK]a (¢, €)
—2L+1)(5 +1) Y olere) = 2K+ 115 +1) > ale,e).

e, el eel;
Then X, and X, can be computed as in (55)—(56). Since the hypersurface of
CQ™ is mass-symmetric via X we have X = X — (X, + X,) = I/(m+1). Because
I and x are normal to X(CQ™), a necessary condition for mass-symmetry in
H <1)(m + 1) is that the &-component of %, + X, be zero. The &-component of %,
equals

—4
7 mL =1 K—1
iu(lu - ;“v) [(m )'ul + (m )ﬂ3]
and the &-component of X, is

+ K(K* 42K 4+ 2)u3 — [8mK + LK (3K +2) + 2L — 4)u5}.

Observing the corresponding values of 4,, 4, in each of the cases we see that
the &-component of X, + X, for hypersurfaces in (b) is never zero, whereas
for hypersurfaces of case (a) this component is identically equal to zero. An
additional computation verifies that for any hypersurface of case (a) other com-
ponents a(&,¢), Y., (e, e;) on both sides of mass-symmetric 2-type decom-
position are matched.

The two families of tubes referred to in Lemma 3 have also another
representation. Let

Moyir.2041(r) == S*H(cos r) x S (sinr), 0<r<n/2,

be the family of generalized Clifford tori in an odd-dimensional sphere S"*2 —
C"1! n=2m—1. By choosing the two spheres (with the indicated radii) in
the above product to lie in complex subspaces we get the fibration S! —
Moy 2041 (r) — M,f (1) == (Moss1,21+1(r)) compatible with the Hopf fibration
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7 : 8" — CP"(4), which submerses Mays1,211(r) onto M, (r) [21].  Cecil and
Ryan have shown [8] that MkC ,(r) is a tube of radius r about totally geodesic
CPk(4) with principal curvatures cotr, —tanr, 2cot(2r) of respective multi-
plicities 2/, 2k, and 1. Accordingly, the family of hypersurfaces corresponding to
the case (a) is given as open portions of

K+1 L+1 K—+1
M,Sl(r)zn<SK< ni3>XSL< n+3>>’ cotzr:L—Il,

and the family of hypersurfaces corresponding to the case (b) is

K L+2 K
M,E,(r)zn(SK< _n+3>XSL< n—|—3>>’ COtzr:—L+2’

where for both families n +3 =2(m+1) and K =2k + 1 and L =2/ + 1 are odd
positive integers with K + L =2m. It is in exactly this form that they appear in
Udagawa’s paper. The family of hypersurfaces corresponding to the case (c) is
the same family as in (b), with the roles of K and L interchanged and the factors
reversed. Hypersurfaces of case (c) can be also described as tubes over CP*(4)
2k +3
2m—k) -1’
a separate case since they constitute the same family as the one under case (b).
Namely, the tube about CP¥(4) of this radius p is the same as the tube over the
2[+1
2m—=10)+1

of radius p = cot™! for k=1,2,...,m— 2, but are not listed as

other focal variety CP’(4) of radius g— p=cot! , which appears

within family (b).

Remark. Note that according to a result of Barbosa et al. [1], tubes over

2k +3 <7 < cot-! 2k +1
2m—k)y—1—" = 2m—k)+1
are stable with respect to normal variations preserving the enclosed volume.

.. 2k +1
Hence the 2-type tubes over CPK(4) of radii cot™! _ckrl and

2m—k)+1
2k +3 o . . . .
Wm—k =1 are distinguished by being maximal, respectively minimal,

stable tubes over CP*, for each k = 1,2,...,m — 2, i.e. the values of radii in cases
(b) and (c) are precisely the endpoints of the stability interval for r.

CPK(4) of radius r satisfying cot™!

cot™!

LemMMA 4. There are no 2-type hypersurfaces in CH™(—4) among hyper-
surfaces of class B. A class-B hypersurface of CP™(4) is of Chen 2-type if and
only if it is an open portion of either the tube of radius ri = cot™ (v/m +vm + 1)
or the tube of radius r, = cot™! \/\/2m2 —14+V2m? =2, r| < ry, about a complex
quadric Q™' = CP™(4). In both instances, these tubes are also mass-symmetric
1 m
DA 2(m + 1)

in the hypersphere SIA/’ of EN = H(m+1) that contains them.
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3
Proof. Let p, = cot (r + g) and p, = cot (r + f), % =2 cot(2r) for the

standard examples B through E in CP™(4) and u, =cothr, y, =tanhr, x =
2 tanh(2r) for an example of class B in CH™(—4). For all of these hypersurfaces
we have

4c B .
(67) oy = —C, Ho +1u4 = _77 Hy = Uy, Hy = Hyp.

Setting u = u,, 4y in (50) produces two equations, from which by eliminating p
we get

(63) 2%2+c(m—3)—i—g]f+2<%+%>f2—f(f2+f2)—4cx:0.

The same condition is obtained from (Ej3) by setting x4 = u,, 1, and eliminating p
and is also a necessary condition for the values of p obtained from (50) and (E3)
to be equal for any hypersurface of class B. For class-B hypersurface in either
setting the common multiplicity of u,, u4 is m —1 and we have

4c(m —1) 16(m—1)

(69) f=r—— h=x st 2e(m 1),
From (68) and (69) we get
(70) %8 —de(m — 1) — 8(m* 4+ 2m — 1)%® + 32em(m® — 1) = 0.

Thus, for hypersurfaces of class B, (70) represents a necessary and sufficient
condition for p to have the same value from (50) and (Es), regardless of the
choice of u = u,, 1y, and also for p and ¢ to be uniquely determined from
the conditions (E;)—(E3) in Lemma 1. One needs to check also condition (Ej)
by computing the connection coefficients of the hypersurface considered or by
invoking the #-parallelism of the shape operator for hypersurfaces of class B, [20],
[25]. We shall work instead with condition (44), which is a necessary and
sufficient condition for type < 2, provided that the roots of the corresponding
quadratic equation are real and distinct, and obtain expressions for AX and A’x
that will enable us to find the explicit 2-type decomposition of x for certain
hypersurfaces of class B. Let M be such hypersurface in either CP™(4) or
CH™(—4). With u,, u4 as above, for the corresponding eigenspaces V :=V,,
and V,, we have V,, =JV and =V ® SV. In the case of tube of radius
r=4%In(2+ V/3) in CH"(—4) which has only two constant principal curvatures
(since » = u,), we consider V,, to consists of eigenvectors of u, belonging to
2 only, thus not including U. Note that o(U,U) =a(&, &) and o(Je;, Je;) =
a(ei,e;) by (12).

The fact that J interchanges V), and V,, for every hypersurface of class B is
crucial here and will enable us to find suitable expressions for A%, A%% and later
A’%. Let {e;} = {ej,Se;} be a J-basis of the holomorphic distribution & (where
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e;eV, j=1,2,...,m—1), which is the basis of principal directions of 4|, with
Ae; = pye; and A(Se;) = u; Se;, where ;, p1 satisfy relation (42), or equivalently

(71) 2e+n(p + 1) =2 = —2c.
Then we have

(72) > (e, Aei) = Zﬂ, olene) = Y [wolese) + 1 o(Se;, Sep)]

e, €YD eV
2c
- Z + 1 )o(e, ) = - a(ei,e;), and
eel e, €Y
(73) > aldende) = 3 siotene) = 3205 + 1 oter )
eed eV
8
={a+c Z a(ei, e).
e €Y
Then using (67) and (69), formulas (14) and (18) become respectively
(74) Ax = |: %:| é (eia ei)a
e, €Y

(75) —2c(n+1)x—2x3|¢

_|16e(n=1)*  8n(n—1)
A% =
* [ %3 + %

+ {4(’1_1%)2("” —4¢ — xz} o(&,&) —2(n+ 1)<:2+ c> z ale;,e;).

e, €Y

For X e I'(TM) we get the following using (3) and (11):

(76) Vxé=—AX +0(X,&), Vy(o(£ &) = —2c¢X —2c{X,UMU — 26(AX, &),
(77) Vx <Z ale;, e,-)> = 2c(n+ )X +4c(X,UNU 4 45(4X, &).

Therefore, differentiating AX and A?% with respect to X we substitute in (44)
using (72)—(77) to get

(78) {160(11 —1)? +Z(n —1)(4n — ¢p)

3 » +[p—2c(n+ 1)]%—%3}[—AX+G(X,5)]

[8c(n2 +2n+35)
Jr e

> +4(n 421+ 3) 4 2cx> +q26(n+2)P]X

4n*+6n+1)
2

+2[p+x2—4cn— (<X, UpU +a(AX,&)] =0
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Equate with zero the normal to CQ™ component of (78), which is a linear
combination of ¢(X,&) and a(4X,¢), and take respectively X € V,, and X € V),
to get two equations, from which by subtracting and solving for p we get

4(n* +6 1

(79)
Thus the last line of equation (78) drops out and the coefficient of (X, &) on the
top line would have to be zero. With the value of p from (79), equating that
coefficient with 0 yields

(80) %% —2c(n— 1)x* —2(n* +6n+ 1)x* +4c(n—1)(n+ 1)(n+3) = 0.

Under this condition the AX-component is also zero and then the X-component
in the middle line of (78) must be zero, which gives the following value of g¢:

2 _
(81) q=2c(n+3) 4(’12#—#20@—1)—%2 .

Thus under the condition (80) it is possible to satisfy equation (78), that is the
equation (44), for the values of p and ¢ as in (79) and (81). This means that
a class-B hypersurface satisfying (80) is of 2-type. The equation (80) is, not
surprisingly, the compatibility condition (70), which we now see is also a sufficient
condition for a hypersurface of class B to be of 2-type. Moreover, that condition
is equivalent to the equation

(82) (%% = 2c(n+ 1)]|[x* + 4cx® —2(n— 1)(n+ 3)] = 0,
which has three roots %> = 2c(n+ 1) and »*> = —2c¢ + ¢\/2(n2 +2n—1). When
¢=—1, none of them is possible since 0 < x> <4. For ¢ =1 (the case of a

hypersurface of class B in CP™(4)) we have the following two possibilities:

(a) x> =2(n+1) and (b) %> =/2(n>+2n—1) - 2.

In case (a) we find p = 4, + 4, ¢ = 4,4, from (79) and (81) and the two eigen-
values A, < 4, to be

2
(83) :4n(n+3)7 _4n—=1)(n+3)
n+1 n+1
2(n—1
84) = w —Am—1/m), Jy=2(n+3)=4(m+1).
The corresponding hypersurface is a tube of radius r about the complex quadric

x+vVx2+4
f:\/ﬁ—i—\/rn—kl.

0"-!, where cotr —tanr =%, i.e. cotr=
In case (b) we find

1
@) r=G DT

(86) ¢ :%[2(;«3 +4n® +5n—2) 4+ (> + 6n+ 1), /2(n? +2n — 1)],

[2(2n° + Tn?® 4+ 8n — 1) + (n* + 101 + 5)4/2(n2 + 2n — 1)],
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(87) iu:ni3[2\/2(n2+2n—1)+(n+1)2},
A :Zt?[\/Z(nz—&—Zn— 1) + 2n).

The corresponding hypersurface is a tube about Q”~! of radius r, with cot r =
VV2mZI =1+ v2mZ—2. These two tubes are therefore of 2-type in H(m+1).
Moreover, they are also mass-symmetric in the hypersphere containing ®(CP™),
which means that the center of mass is X =1/(m+ 1) =2I/(n+3). Indeed by
a Lemma of [15] we have the expression

(88) I=(m+ 1)x+§a(¢, &) +£Za(e,~,e,~).

e, €Y
Then it is a straightforward verification using (74), (75), (79), (81) and (88) that
any class-B hypersurface satisfying condition (80) is of 2-type since it satisfies the
equation

25 ac S
(89) A°x pr+q(x o =0,

and it is, obviously, not of 1-type. Specifically, for the two tubes about Q!
discussed above, (89) holds for the indicated values of p and ¢ from (83),
respectively (85)—(86). The corresponding vector-eigenfunctions X, and X, of 4,
and 4, in 2-type decomposition of X can be found from

- 1 - - 1 - 1 - - 1
(90) xu—)\’u_;‘lv |:Axib<xn/l_|_1>:|, xv—iu_/lu {Axlu<xm+1>}

For example, for the tube of radius r; = cot™!(y/m+ vm+1) we get
2
%, = (n+1>f— n+1
2(n+3) 4(n+3)
. 2m+1) n—3 1
%= T3 f+4(n+ 3)0(575) *mz (e, ei).

¢, €YD

a(¢,¢), and

It can be also directly verified, using (16), (26) and (17), that X,, X, are indeed
eigenfunctions of A for the indicated eigenvalues. Incidental to this finding, we
obtain two simple eigenvalue estimates for the first two non-zero eigenvalues 1, 4,
for the hypersurface for which (a) holds: 4} <4(m —1/m) and A, < 4(m+1).

LemMA 5. There are no 2-type hypersurfaces in CP"(4) among any of the
standard examples of class C, D, or E.

Proof. This was shown in [36]. For the sake of completeness we include a
different proof here using our approach. In addition to principal curvatures w,,
Uy and formulas (67)—(68), we have also principal curvatures y,, s, for which the
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relations (59) hold (¢ =1 throughout). If we substitute u = g, =y in (Ej3)
and subtract the two resulting equations we get

(91) P =2+ f1+24f +24° +2(n+5).

The same manipulation with u = u,, u, yields

4 32
(92) p=2f2+f2—2(%+;>f—|—2(n+5)+%—2—2x2.
On the other hand, substituting u = u;,u; into (50) and subtracting we get
(93) fo =1+ Bn+13)f +4x,
and the same procedure using u = i, u, leads to
(94) fp=fHh+Bn+5)f — b

Combining (93) and (94) we get /' = —x and subtracting (91) and (92) leads to
(¢ +2/%)f + %> — 8/x* = 0, which is incompatible with f = —x.

Now we can formulate our main classification results for 2-type Hopf hyper-
surfaces of CQ™. In the complex projective space we have

THEOREM 1.  Let M?>"~' be a Hopf hypersurface of CP™(4), (m >2). Then
M* =1 is of 2-type in H(m + 1) via ® if and only if it is an open portion of one of
the following .

(i) A geodesic hypersphere of any radius re (0, E) , except for r=

1
-1

2m+1° I

(i) The tube of radius r= cot™!

cot

about a canonically embedded

totally geodesic CP*(4) = CP™(4), for any k=1,...,m —2;
2k +1
2m—k)+1

CPk(4) = CP™(4), for any k=1,...,m—2.
(iv) The tube of radius r= cot™'(\/m+/m+1) about a complex quadric
mel c CPm(4)
(v) The tube of radius r = cot™! VV2mE — 1+ V2m2 — 2 about a complex
quadric Q"' = CP™(4).

(iii) The tube of radius r = cot™! about a canonically embedded

Proof. As shown before, a 2-type Hopf hypersurface must have constant
principal curvatures and therefore must be one from the Takagi’s list in CP™(4).
The rest follows from Lemmas 1-5.

As commented before, the same classification holds when M is assumed to
have constant mean curvature (CMC) instead of being Hopf. In that regard
Theorems 1 and 2 in [36] are deficient and incomplete, since Udagawa’s list
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contains examples (i)—(iii) only. The list of items (i)—(v) is the correct and
complete classification of CMC hypersurfaces of 2-type in CP™(4). Likewise, a
previous announcement of our theorem in [16] is incomplete, since it was
anticipated based on Udagawa’s classification.

In the same manner, since being a Hopf hypersurface and having constant
mean curvature imply each other for hypersurfaces of 2-type, Lemmas 1-5 yield

THEOREM 2. Let M*"~' be a real hypersurface of CH™(—4), (m > 2) for
which we assume that it is a Hopf hypersurface or has constant mean curvature.
Then M~ is of 2-type in H'(m + 1) via @ if and only if it is (an open portion
of ) either a geodesic hypersphere of arbitrary radius r > 0 or a tube of arbitrary
radius r > 0 about a canonically embedded totally geodesic complex hyperbolic
hyperplane CH™'(—4).

Regarding mass-symmetric hypersurfaces, from the analysis above we have

COROLLARY 1. A complete Hopf (or CMC) hypersurface of CP™(4) is of
2-type and mass-symmetric in the hypersphere of H(m+ 1) containing ®(CP™) if
and only if it is one of the hypersurfaces (tubes) in (ii), (iv) and (v) or the geodesic
hypersphere of radius cot™'(1/y/m). There exists no 2-type mass-symmetric (in
particular, no null 2-type) hypersurface of CH™(—4).

This rectifies the claim made in Theorem 2 of [36].

6. CMC Hopf hypersurfaces of 3-type

It is not difficult to see that the hypersurfaces of class A, are, generally
speaking, of 3-type (except for those two families of tubes in CP” given in
Theorem 1 (ii), (iii), which are or 2-type). Consider p e M < CQ"(4c) where
p =[{] is represented by a column vector

Ce n_—l(p) - N2m+1 p— CE?]?)+1 — Cécﬁl ) Cl+1.

Let z = (z) = (o, -, &) " and w = (w,) = (Ces,---,Gn) | and consider in Cfj}'
the quadric N?**1(r;) (the sphere or anti-de Sitter space of radius r;) and in
C’™! the sphere S?*!(r,) so that 1} +cr3 = 1. In the projective case we have
¢=1 and we set r; =cosr, r, =sinr, whereas in the hyperbolic case ¢ = —1,
rp =coshr, r, =sinhr. The corresponding class-4, hypersurfaces which are
the tubes of radius r about totally geodesic CQ*(4c) are obtained as the Hopf
projections, defining the submersion: 7(S%**!(cosr) x S¥*!(sinr)) in CP™(4)
and n(H*!(cosh r) x S¥*!(sinh r)) in CH"(—4), k+1=m —1. According to
(2), the coordinate representation of X(p) in H)(m + 1) has the matrix block
form

x<aﬁ biﬁ>’ 0<i,j<k k+1<of<m,
C%/ dx[)’
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where, for example, d,y = cwiw?, by = czw?, and a; = (+z;z;) is formed by the
signed products, plus in the first column minus otherwise in CH"™-case, all plus
in CP™-case. Then using the fact that z is a (pseudo) Riemannian submer-
sion with totally geodesic fibers [2], one can compute the iterated Laplacians of
n(N*+1(r)) x S?*1(ry)) as follows, see [23], [36], [18]:

2¢(K +1 cK L
%aij — A4l (_2 + _2) big
- i noon
Ax =
cK 2(L+1) ’
o + - Coj 72d1/3 - 4CI]+1
noon )
and in general for an integer s > 1
2eS(K 1) 2K+ 1) K LY
(r2s ) &j — (2(s71) ) L1 (,7 + 7) big
Ag— i r i 2
¢k LY 25(L+1)° 25H (L + 1)
P + 2 Coj 2 af — -0 I
1 2 2 ¥

2
Then one checks that the following equation is satisfied

(95) A%+ pA’% + gAZ + (X — %) =0

p:_[c(3K+2) 3L+2]7 r:_4c(K+1)(L+1)<§ 5)’

r? r3 rir3 23
K(K+1) L(L+1) (KL + 3K +3L+2)
q=2 e 7 T 22 ;
'y Ty )
and
2r?
1<+111’(+1 0
(96) Xo = ) . k+l=m—1.
2cr; I}
L1l

This means that any A,-hypersurface is of 3-type if the polynomial 4> + pA +
g2+ r has simple real roots (and the hypersurface is not already of lower type).
Those roots are found to be

¢k L 2c¢(K+1) 2(L+1)
}~u=r—2+r—2, lu:r—z’ iwzr—z-
i N ] 2

When ¢ = 1, the equality of any two among these three roots leads to 2-type
examples (ii) and (iii) in Theorem 1. If we look for mass-symmetric examples of

. . K+1 . .
class A, then Xy = I/(m+ 1), which gives cot? r = L——tl’ thus again leading to
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the example (ii), which is of 2-type. So there are no mass-symmetric 3-type
examples among A,-hypersurfaces in CP™. On the other hand, when ¢ = —1 no
equality between the roots 4,, 4,, 4,, is possible and we know from Lemma 3 that
no example of class 4, in CH™(—4) is of 2-type, they are all, therefore, of
3-type. Since the constant part Xy in 3-type decomposition has the form given in
(96) and cannot clearly equal I/(m + 1), the only way such hypersurface can be
mass-symmetric, according to our definition, is that the hypersurface is of null
3-type, i.e. the eigenvalue 1, =0, in which case Xy can be changed to equal
I/(m+1). This gives the condition coth? r = K/L, i.e. the radius of the tube

k . _ —1 2k + 1
about CH*(—4) is r = coth TR
that case we get a mass-symmetric null 3-type hypersurface in CH™(—4):

S GV (C )

Additional examples of mass-symmetric 3-type hypersurfaces have to be searched
for among classes B, C, D, and E. We derive next certain necessary conditions
for hypersurface with tr 4 = const to be mass-symmetric and of 3-type.

Let M" be a CMC Hopf hypersurface of CQ™(4c), (n =2m — 1) which is
of 3-type via X and mass-symmetric in the hyperquadric centered at I/(m + 1)

I 1 cm
.. @ m ﬁ P _ P — = . Th
containing ®(CQ™) and defined by < mr1 m+ 1> 2(m+1) et

I<l<k<m-2 k+l=m-1 TIn

(97) A%+ pA’X + gAZ + (X —T/(m+1)) =0,

where p, ¢, r are the (signed) elementary symmetric functions of the eigenvalues
Aus Av, 2y associated with a 3-type decomposition of X. We will consider various
components of this equation to derive a set of necessary conditions for a Hopf
hypersurface with constant tr 4 to be mass-symmetric and of 3-type. Those will
include the conditions tr 4¥ = const, 1 <k <4. Recall that the normal space
TpCQ™ in HW(m+1) is spanned by the position vector P and vectors of the
form o(Z, W), Z, W € TpCQ™ [15]. Using (12) and (23) we get from (14), (18),
and (34) respectively

(98) (AX, %y =n, (A*%,%) = f2+2c(n*+2n—1),
(99) (A%, %> = f2fr+ 5c(n—1)] — 8cx® + 4n(n +2)* — 20
+ 16¢xf — 16¢f tr(SAS) — 4c tr(SA%S) + 8¢ tr(S4)*.
Further, choosing a J-basis {e;, Se;} of & and using (42) in the form pu’ =

I *
cts (4; +147), we compute

tr(SAS) = x — f, tr(SA%S) =x> — fo, tr(SA) = —nf —(n—1)c.
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Substituting in (99) we obtain (A*%,%> as a sum of several terms, one of which
is (f? +4c)f> and the others are constants depending only on %, f, ¢, n. There-
fore taking the metric product of (97) with x and using the above information,
we see that if f2 4 4c¢ # 0 (this condition is always satisfied in the projective case)
it follows that f» = tr A? is constant. Thus we will subsequently assume that
f? #4 in the hyperbolic case to ensure the constancy of f.

Next, we look at the &-component of (97). From (5) we compute

> TUVed)(Sei) = (Ve A)(SAei)], &) = 2°f — s,

so that the &-component of A’% equals

(100) (A%, &> = 8c(of — ufs) + 8¢ + 8(2cfr + n+ 4)x
— 8¢f3 ff[f22+4c(n+4)f2+4cf2 +7Tn% 4+ 30n + 19].

We also have that (A%X,¢EY=—f and (A%%, &) =4dex — fIfa+c¢(Bn+5)] are
constant. Thus taking the metric product of (97) with & we get f3 = const.
In finding the o(&, &)-component of (97) note that

(0(£,9),0(6,)> =4, Y (oler, SASe)),a(&,¢)) = =2¢(f = %),
Z (a(er, SASe;), a(¢,E)> = —2c(f> — %),

Z (olei, (SA)%e),0(E,8)> = =2(n— 1) = 2ex(f — x),

and

> Ko((VyA)ei, (Vo A)ei), (&, E))
i,j

= 2¢||VA|* +2¢ ) (Ve AU, (Vo A) U
J

= 2¢||VA||* — 2¢x® tr(AS>A) + dex tr(ASASA) — 2c¢ tr(ASA)?
=2¢c[fa —c(n+3)]fr = 2¢ffs + 14(n — 1)c
+ 212 4 6uf + cx’fo — (n— 1)5* — cx’f,
by way of (23) and (71). Now, when the inner product of (97) with (¢, &) is
taken we get a sum of several terms equal to zero. The only term in this sum
containing f4 is 8¢fy and the other terms depend only on x, f, f, f3, p, ¢, 1, ¢,

n, and are thus constant. It follows, therefore, that f; = const. We note that
o(U,&) =0 by (12) and considering o(X, &)-component of (97) for X € ['(2) we
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compute using the Codazzi equation that tr((VyA) o [4,S]) =0. For the part of
(97) normal to CQ™(4c) it remains to consider o(X, Y)-component for X € I'(Z)
and Y eI'(TM). We compute

(0(£,€),0(X, Y)) = 2eX, Yy +2e{X, UNY, U,
Z<o Fei, A'er),a(X, Y))

= 2cftr(A"(X, Y)Y + A XYY — (SAMTISX, YY),

with k, / integers > 0, and A° =1. Further,
3 (oler SASe;),6(X, ¥)) = 2¢(x — )X, Y = 2eCAX, ¥y +2c(SASX, Y,
> <oler, SASe;), 0(X, Y))

=2c(3* — L)X, YD —2¢{A*X, YD + 2c¢(SA*SX, Y,
> <o(dei,SASe;),a(X, Y)> =Y <aler, SASAer),0(X, Y))

=2 —uf — (n— DKX, YD
+2¢¢[(S4)* + (48)]X, YD,
> <ol(VgA)ei, (Vo A)er), o(X, ¥))

= 2¢||VA||*¢X, Y + 2¢{BX, Y >+ 2¢{B(SX),SY,

where B := 3 ,(V,, A)* is a well-defined endomorphism of 7'M, independent of the
choice of the  basis {e;}. Next, we compute

(A%, 0(X, Y)Y = =2e(n+2){X, Y,
(A*%,0(X,Y)> = —4¢(ASX, ASY Y — 4cf (ASX,SY> — 4c{AX, AY
—def(AX, Y)Y — [d(n+ 1)(n+3) + 2cf KX, Y,

(A3%,6(X,Y)> = 8c(BX, Y+ 8c(BSX,SY) + 32{[(S4)* + (45)"]X, ¥
+8f(cfr +n+T7)(SASX, Y> + 16(1 + cf>){(SA*SX, Y
+8c(SA*SX, Y — 8c(A*X, Y — 16(1 + cf2){A*X, Y
—8f(cr +n+T)<AX, Y + [8% + 16xf — 8f> — 2¢f*f3
—2(5n+19) f2 — 8c(n® + 6n* + 10n + 7)|<X, Y.
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Thus taking the inner product of (97) with ¢(X,Y) and dropping Y we get
(101)  BX — SBSX = A*X — SA*SX + a(A>X — SA>SX)

+ b(AX — SASX) — 4c[(SA)* + (AS)]X + dX,

where X € ['(2), a= (p/2) +2(c+ f2), b= (pf/2) +cf(c/» +n+7), and
d:n3+6n2+10n+7+§(5n+19)f2+%f2f2+cf2—2cxf—cxz
[26(n+1)(n+3)+f2]+%(n+2)+%.

P

*y

There remains the part of (97) tangent to M to be considered. Relation (97) has
no U-component and for X € ¥ we have by the Codazzi equation

Z (Ve A?)(Sei) = (Ve A)(SAe;)], X = tr((VsxA) o [S, A]).

The right-hand side of this is also the result of the metric product of the left-
hand side of (97) with X and therefore must be equal to zero, which is the same
piece of information contained in the o(X,&)-component. Hence we have the
following

LEmMMA 6. Let M" < CQ"(4c) be a Hopf hypersurface (n=2m — 1) with
constant mean curvature (in the hyperbolic case we assume, additionally, that
(tr A)* #4). If M" is mass-symmetric and of 3-type in HYV (m + 1) then we have

(i) tr A¥ =const, for k =1,2,3,4;
(ii) tr((VxA4)o[4,S]) =0, for every X e T(2);
(iii)
BX — SBSX = A*X — SA*SX + a(A*X — SA*SX)
+b(AX — SASX) — 4c[(SA)* + (AS)*|X + dX,
where B := Zj(VelA)z, Xel(2), c==1, and a, b, d are constants.

Essentially, the conditions (i)—(iii) are also sufficient conditions for such M to
be mass-symmetric and of type < 3 since we obtained these conditions by con-
sidering all of the components of equation (97), provided that the constants a, b,
¢, d and tr A¥ are such to enable p, ¢, r to be real and the polynomial equation
£* + pt* + qt +r=0 to have simple roots [12]. Note that the condition (ii) is
automatically satisfied when M is a Hopf hypersurface whose induced Hopf
foliation is a Riemannian foliation [3, p. 64] since then U is a Killing vector field
and AS = SA4. See also [27], characterizing class-4 hypersurfaces by the con-
dition A4S = SA4.
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COROLLARY 2. Let M be a CMC Hopf hypersurface of CQ™ satisfying
(tr A)2 # —4c¢ and having at most four distinct principal curvatures at each point.
If M is mass-symmetric and of 3-type via X then M has constant principal
curvatures.

We show next that every hypersurface of class B is mass-symmetric in the
corresponding hyperquadric and, apart from those two tubes in Lemma 4, of
3-type. Using the information from Lemma 4, we get respectively from (16),
(26), (17) and (67) the following

(100 AE= [t eln— DJE+ (2%~ /1060 3 ofer e,

(103)  A(0(&,¢&)) =4exl+2 [8(’1}; D +ce(n+ 1)] a(&,§) _;14_? ale;, e;),
e, €YD
16
(104) ZA(G(ehei)) 22[;'*‘0(”4‘3)] Za(eiaei)
eied €Y
2l - ot

+2c{(n - 1)K_M}g.

Ve

The third iterated Laplacian A% for a hypersurface of class B can be
computed from (34)—(35) but that would require finding the connection coef-
ficients of the hypersurface. It seems easier to find A’% directly by applying the
Laplacian to (75) and using (102)-(104). We get

128¢(n—1)° 128(n—1)(n2+1) 8c(n—1)(3n%+2n + 3)
5 + 3 +
x s s

(105) A%—[

— 16mx — 4c(n+ 1)%° — %51 ¢

. l3z(n - 1)(n; 3)(@n+1) , Se(n - 1)(322 + 14n + 3)

+8(n* —4n+1) —2¢(3n+ 1)%* — %4] a(&, )

[128(114— 12 48¢(n+1)2
o 4 + 2
X V4

+4mn—-1)(n+3)— 40%2‘| Z (e e;).

e €Y

Then using (74), (75), and (105) we have
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LEMMA 7. Every class-B Hopf hypersurface with constant principal curvatures
in CH™(—4) is mass-symmetric and of 3-type via X. The same is true for hyper-
surfaces of class B in CP™(4), with the exception of those two tubes about Q™!
referred to in Lemma 4, which are mass-symmetric and of 2-type.

Proof. These hypersurfaces are not of 1-type and the only 2-type examples
are given in Lemma 4. We show that they satisfy the 3-type equation (97) and
that the polynomial P(f) = > + pt> + qt +r has three distinct real roots except
for one value of %, so that for other values of » the result of [12] proves it then to
be mass-symmetric and of type < 3. Moreover, they will be exactly of 3-type
if P(¢) is the minimal polynomial of the immersion X — Xy, i.e. the hypersurface
does not satisfy a lower-degree polynomial in the Laplacian. Indeed, using the
Gauss elimination with

1
p= _;(%2 +4¢)[#* + 2c(3n + 1)],

qg= %(%2 +4c)[e(n+ D)x* + (30 + 6n — 1) + 8c¢(n* — 1)], and

4(n—1 3
r= —%(%2 +4¢) [ 4+ 2¢(n + 1)]
we can verify that (97) holds by equating all components with zero. Note that
the normal space to CQ™ in H)(m + 1) at a point P e M" is spanned by vectors
of the form X, o(X, Y),0(X,¢&),a(&, &), for X, Y € 9. Moreover, the roots of the
cubic equation 3> + pr*> + gt +r =0 are real and they are found to be

2¢(n —1)(3% + 4c)
Ay = P )

%

(2> +4c) x> +de(n+1)] + \/(xz +4¢)[#6 — 12¢x* + 64c(n + 1)?]
2%? )

}vm w =

Note that %2 +4c # 0 for a class-B hypersurface. Equality of any two roots is
possible only when ¢ =1 and 1, = 4, (with minus sign at the radical), where
x> =2(v2m? — 1 — 1), identifying it as the 2-type example of Theorem 1 (v).
For the example given in Theorem 1 (iv) we have x> = 4m and

4m+1)(2m—1) (m—1)(m+1)?
m

P(t) = |1 — - t+16

[t —8(m+1)],

where the quadratic trinomial in the first pair of brackets is the minimal poly-
nomial of that 2-type hypersurface according to (83), (84).

Now we are in a position to prove our classification result for 3-dimensional
Hopf hypersurfaces of CQ?(4c¢):
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THEOREM 3. Let M* be a Hopf hypersurface of CP*(4) with constant mean
curvature. Then M? is mass-symmetric and of 3-type in H(3) if and only if M3 is
a class-B hypersurface, that is, an open portion of a tube of any radius r € (0,7/4)

about the complex quadric Q' (equivalently the tube of radius %— r about a canon-

ically embedded RP?), except when cotr = V2 + /3 and cotr =/ V6 +1.

Proof.  According to Corollary 2 such hypersurface has constant principal
curvatures and thus it is one from the Takagi’s list in CP2. Earlier analysis
shows that it cannot be a hypersurface of class A4, which is of 2-type when mass-
symmetric nor any of geodesic spheres, which are of 1- and 2-type. Standard
examples of class C, D, and E need not be considered because of dimension
restriction. Then Lemma 7 proves that class-B examples are in fact the only
ones, excluding the two 2-type tubes referred to in Lemma 4.

THEOREM 4. Let M?® be a Hopf hypersurface of CH?*(—4) with constant
mean curvature and (tr A)2 #4. Then M3 is mass-symmetric and of 3-type in
H'(3) if and only if M is a class-B hypersurface, that is, an open portion of a
tube of any radius r > 0 about a canonically embedded, totally real, totally geodesic
RH? = CH?(4).

Proof. We know by Corollary 1 that the principal curvatures are constant
and therefore examples are to be found among the standard ones from the
Montiel’s list. Every example of class B is mass-symmetric and of 3-type by
Lemma 7. Moreover, by (67), (69), with ¢ = —1, m =2, we see that tr 4 # 2
for these hypersurfaces. A class-4y hypersurface in CH™ (a horosphere) is not
of finite type since it satisfies A% = const # 0 [18]. Class-4; hypersurfaces
(geodesic spheres and tubes about the complex hyperbolic hyperplane) are of
2-type. Class-A4, hypersurfaces i.e. tubes about totally geodesic CH¥(—4), 1 <
k <m — 2, are of 3-type as shown before and among them there are some mass-
symmetric ones. But because m =2 here, these examples are not possible.
Note that an A)-hypersurface degenerates into an A;-hypersurface when /=0
or k=0. O

The case of 3-type hypersurfaces of CH?2(—4) with (tr A)> =4 is also
interesting, but a different analysis is needed to study them. Because of this
property, they are akin to the so-called Bryant surfaces in RH?, see [17]. Also
it would be interesting to determine the Chen-type of the standard examples of
class C, D and E in CP™(4) and, generally, study CMC Hopf hypersurfaces of
3-type in CQ™(4c) when m > 3. The techniques developed here can be modified
to study curvature-adapted hypersurfaces of low type in quaternionic space forms
and partly also in octonion planes, the topic that will be treated in our subsequent
papers.
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