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ON TEICHMULLER METRIC AND THE LENGTH SPECTRUMS
OF TOPOLOGICALLY INFINITE RIEMANN SURFACES
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Abstract

We consider a metric d; on the Teichmiiller space T(Ry) defined by the length
spectrum of Riemann surfaces. H. Shiga proved that d; defines the same topology as
that of the Teichmiiller metric dy on T(Ry) if a Riemann surface Ry can be decomposed
into pairs of pants such that the lengths of all their boundary components except
punctures are uniformly bounded from above and below.

In this paper, we show that there exists a Riemann surface Ry of infinite type such
that Ry cannot be decomposed into such pairs of pants, whereas the two metrics define
the same topology on T(Ry). We also give a sufficient condition for these metrics
to have different topologies on 7T'(Ry), which is a generalization of a result given by
Liu-Sun-Wei.

1. Introduction

Let Ry be a hyperbolic Riemann surface. We consider a pair (R, f) of a
Riemann surface R and a quasiconformal map f: Ry — R. Two such pairs
(Ry, f1) and (Ry, f5) are called equivalent if f>0 f;"!: Ry — R, is homotopic to
a conformal map. We denote the equivalence class of (R, f) by [R, f]. The set
of all equivalence classes is called the Teichmiiller space of Ry; we denote it by
T(Ry).

The Teichmiiller space T(Ry) has a complete metric dr called the Teich-
miiller metric which is defined by

dr([Ri, i, [Ra, f2]) = ifflf log K(f),

where the infimum is taken over all quasiconformal maps f : Ry — R, homotopic
to fao f;7! and K(f) is the maximal dilatation of f.

We introduce another metric on T'(Ry). Let Xg, be the set of non-trivial
closed geodesics in Ry. We define the length spectrum metric dp by

/r, (1) 7k, (fz(a))}
7R, (f2(2)) " Lry (f1(2)) )

dy([Ry. fil, [Ro, f5]) = log sup max{

162){0
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where /g (fi(2)) is the hyperbolic length of the closed geodesic on R; freely
homotopic to fi(a).

ProposITION 1.1 (Thurston [9], Proposition 3.5). Let Xy be the set of non-
trivial simple closed geodesics in Ry. Then

/Rl (fl (O()) /Rz (fz(OC))
e ma"{/&(ﬁw» i 1<oc>>}

holds.

_ 0, (1)) o (f2(%)
- max{/Rz (A®) 7, (f (oo)}

In 1972, Sorvali [8] defined d;, and showed the following.
Lemma 1.2 ([8]). For any [Ry, fi],[Rz, f2] € T(Ry),

dr([R1; il, [Re, f2]) < dr([Ry, i, [Ra, f2])
holds.

He conjectured that d;, defines the same topolpgy as that of dr on T(Ry)
if Ry is a topologically finite Riemann surface. In 1986, Li [3] proved that
the statement holds in the case where Ry is a compact Riemann surface with
genus > 2. In 1999, Liu [4] proved that Sorvali’s conjecture is true, and he asked
whether the statement holds for any Riemann surface of infinite type. To this
question, Shiga [7] gave a negative answer, that is, he showed that there exists
a Riemann surface Ry of infinite type such that d; and dy do not define the
same topology on T(Rp). Also, he gave a sufficient condition for these metrics
to define the same topology on T(Ry).

THEOREM 1.3 ([7]). Let Ry be a Riemann surface. Assume that there exists a
pants decomposition Ry = UZD:] Py satisfying the following conditions.
(1) Each connected component of 0Py (k=1,2,3...) is either a puncture or a
simple closed geodesic of Ry.
(2) There exists a constant M > 0 such that if o is a boundary curve of some
Py then

0< M <ip(2) <M
holds.
Then d; defines the same topology as that of dr on T(Ry).

On the other hand, Liu-Sun-Wei [5] obtained a sufficient condition for these
metrics to define different topologies on T(Ry).

THEOREM 1.4 ([5]). Let Ry be a Riemann surface with a sequence
{on} oy = Zg, such that /g,(on) — 0 (n— o0). Then dy does not define the
same topology as that of dr on T(Ry).
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The converse of Theorem 1.4 is not true. Indeed, a Rienann surface Shiga
constructed in [7] is a counterexample.

In this paper, we show that the converse of Theorem 1.3 is not true by giving
a counterexample. Also, we give a new sufficient condition for these metrics to
define different topologies on T(Ry) as follows.

THEOREM 1.5. Let Ry be a Riemann surface. Suppose that there exists a
sequence {a,},_ < Xp such that for an arbitrary sequence {f,},~, < Xy with
wu NP, #0 (n=1,2,...),

/Ro(ﬂn)
#(fxn ﬂ ﬁn)/Ro(Cx")

Then d; does not define the same topology as that of dr on T(Ry).

— o0 (n— ).

We will explain in Section 3 that the above theorem is a generalization of
Theorem 1.4.

Acknowledgment. The author would like to thank Professor Katsuhiko
Matsuzaki and Professor Hiroshige Shiga for their valuable comments and
suggestions.

2. A counterexample

In this section, we show that the converse of Theorem 1.3 is not true. We
use the following lemmas due to Bishop [2].

Lemma 2.1 (2], Lemma 3.1). Let T1,T, < D (the unit disk) be two hyper-
bolic triangles with sides (ay,by,c\) and (ay, by, ;) respectively.  Suppose all their
angles are bounded below by 0 > 0 and

) < 4.

&= max(

Then there is a constant C = C(0,4) and a (1+ Ce)-quasiconformal map
o : T, — T, such that ¢ maps each vertex to the corresponding vertex and ¢ is
affine on the edge of T).

) )

a
log —
a

b] C1
log b log o

Lemma 2.2 ([2], Corollary 3.3). Let H,H' =D be two hyperbolic hexa-
gons with sides (ay,...,as) and (by,... bs) respectively. Suppose ai,...,as and
bi,...,bg are < B and are comparable with a constant B. Also assume that
three alternating angles of H and the corresponding angles of H' are m/2 and
the remaining angles are bounded below by 0 >0 and above by nw—0. If
¢ = max;|log a;/b;| <2, then there is a constant C = C(0,B) and a (1 + Ce)-
quasiconformal map ¢ : H — H' such that ¢ maps each vertex to the corresponding
vertex and ¢ is affine on the edge of H.
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Lemma 2.3 ([2], Lemma 6.2). Let Py and P, be pants with boundary lengths
(a1,b1,¢1) and (a2, by, c1) respectively.  Suppose ay,az, by, c; < L (punctures count
as length zero). Assume that ¢ := |log ai/az| < 2, where we define |log a;/az| =0
if g =a,=0 and |loga)/ay| = +o0 if one is zero and the other is not. Then
there is a constant C = C(L) and a (1 + Cg)-quasiconformal map ¢ : Py — P, such
that ¢ is affine on each of the boundary components.

Also we note the following lemma (cf. Beardon [1]).

Lemma 2.4 ([1]). For a hyperbolic right hexagon with the edge lengths ay, bs,
az, by, as, by (in counterclockwise direction),

cosh a; + cosh a; cosh a3
sinh a; sinh a3

cosh b, = )

sinh g; sinha, sinh a;
sinh b, ~ sinh b, sinh b3’

Especially, a right hexagon is determined by the lengths of three alternating sides.

Now we give a counterexample to the converse of Theorem 1.3.

Example. Let T be a hyperbolic triangle group of signature (2,4,8) acting
on D and let P be a fundamental domain for I with angles (7, 7/4,7/4,7/4).
Let O, a, b, ¢ denote the vertices of P, where the angle at O is = (as in Figure 1).

FIGURE 1. Tessellation by the (2,4,8) group.

Now, take a sufficiently small number ¢ > 0. Let b’ the point on the
segment [Ob] whose hyperbolic distance from b is ¢. Similarly, we take ¢’ and ¢’
in P. See Figure 2.

We define a Riemann surface Ry by removing the I'-orbits of a’, b’, ¢’ from
the unit disk D. See Figure 3.

It is clear that Ry does not satisfy the assumption of Theorem 1.3. Indeed,
for an arbitrary pants decomposition Ry = U;f:] Py, there is a sequence {oy}
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FIGURE 3. Ry :=D— {y(a’),y(d"),y(c")|yeT}.

of simple closed curves in {dP;},~, such that /p(ay) — oo (N — o). Since
/p(oy) < /r,(2y) by Schwarz Lemma, we have /g, (ony) — o0 (N — o0).

We show that d; defines the same topology as that of dr on T(Rj). From
Lemma 1.2, it suffices to show that for any sequence {p,},—, = T(Ry) with
dr(pn, po) — 0 (n — o0), dr(pn, po) converges to 0 as n — oo.

We assume that py = [Ro,id]. Put p, =Ry, fu]-

We divide Ry into punctured disks and right hexagons. For ae P <D
(in Figure 1), take ;€' (i=1,...,8) such that y;(P)N{a} #0. Let a, be the
shortest geodesic in Xy that surrounds eight punctures y;(a’). Take o, and o,
similarly. Next, let o, be the shortest geodesic in Zjeo that surrounds o, and op.
Take op. and o, similarly.

Now we consider a pair of pants P, whose boundaries are o, op and oyp.
There are three lines which divide P, into two isometric right hexagons. Let S,
be a line connecting o, and o, in those. (See Figure 4.) Note that the length of
B depends only on the lengths of o, o5, 0 from Lemma 2.4. Take f,,. and .,
similarly.

Then we obtain a right hexagon bounded by S, f;., f., and subarcs of «,,
op, o.. Note that the lengths of subarcs of a,, o, . depends only on the lengths



184 ERINA KINJO

FIGURE 4. f, is one of lines dividing P, into two isometric right hexagons.

of By, Pre> Peo from Lemma 2.4. Hence the right hexagon is determined by the
lengths of oy, ap, . and ou, e, %

Continue to take right hexagons as above, then Ry is divided into eight-times
punctured disks and right hexagons.

Next, we consider the division of R,. For any « eE}zo, there is a simple
closed geodesic in R, homotopic to f,(x). We denote it by [f,(«)].

Take points e, € o, N f,, and e, € o, N B,,. Let f,(e,)’ be a point on [f;(a,)]
corresponding to f,(e,) € fu(2,) about the continuous map ®, giving homotopy
from f, (o) to [fu(otq)], that is, for the homotopy map @, : [0,1] x [0,1] — R, with
®,(0,2) = fules), we put fy(e,) := ®.(1,10). Take f,(ep) € [fn(2)] similarly.
(See Figure 5.) Connect f,(e,) and fy(e,) by a curve {®,(s, )0 <s < 1}.
Similarly connect f;(e;) and f,(ep)’. Let f,(B,,) denote a curve from f;(e,)" to

fu(er)' given by connecting them. Take the shortest geodesic segment | nfﬁ\ab)]
homotopic to f,(fB,), where the homotopy map moves endpoints f;(e,)’ and

fulep)' on [fn(x,)] and [f,(x)] respectively.

FIGURE 5. fu(eq)" € [fu(a)]. fulen)" € [fu(on)].

On the other hand, we consider a pair of pants P/, bounded by [f, ()],
[fu(op)] and [fy(2ap)]. There are three lines which divide P/, into two isometric
right hexagons. Let f, be a line connecting [f,(o,)] and [f,(a)] in those.

iy

Then [fu(Ba)] = Bip-
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—

__Indeed, we consider a closed curve C:=[fu(ow)] - [fa(Buw)] - [fu(ew)] -
[fu(Bs)]"". Since f, is a homeomorphism, C is freely homotopic to f; (o).
On the other hand, if we consider another closed curve C':=[f,(a)]- B, -
[fa(ow)] - (ﬁ;’b)fl, then C’, also, is freely homotopic to f,(xw). Hence C is freely
homotopic to C’. Since both [f,(f,,)] and ), are the shortest of all the curves

—

connecting [fy(o,)] and [f,(2)], we have [fo(fus)] = B

By the definition of f,, the length of f!, depends only on the lengths of
[fu(oa)], [fu(ow)] and [fu(awp)].  Since dp(pa, po) < & for sufficiently large number
n, the lengths of g, and ), = [f.(B},)] are almost the same.

Let H,, be a right hexagon in Ry bounded by S, B b, and subarcs
of o4, ap, o (See Figure 4). On the other hand, let H), be a right hexagon

b abc

in R, bounded by [/u(B.s)]: [fo(Bse)l, [fo(Be)] and subarcs of [fo(aa)), [fo()],
[fu(oe)]. By Lemma 2.2, we obtain a quasiconformal map from H,. to HJ .

Let {H;}Z; = Ry be the set of all the right hexagons. For each H; = Ry,
we take a right hexagon H/' = R, in the same way we took HJ, for Hy.. Put
Ry =), H; and R, := () H]

By Lemma 2.2, we obtain a quasiconformal map g, : R) — R). We claim
that f, is homotopic to g, on Rj, where the homotopy map does not necessarily
keep points of dR, fixed.

For an arbitrary simple closed geodesic « = R, we consider f,(«) and g, ().
Let {H;()};c; = R; be the set of all the right hexagons such that H;; No # 0.
Then for each jeJ, a curve g,(«N Hy ;) is homotopic to a curve [f,(a)] NHY,
in H l.’(’j), where the homotopy map does not necessarily fix endpoints. Hence
fu() is homotopic to g,(a), so we verified the claim.

Next, we consider a quasiconformal map of the connected set Rj = Ry — R,
bounded by «, with eight punctures. We decompose R§ into seven pairs of
pants as in Figure 6.

FIGURE 6. The pants decomposition of Rg.

Let occl, and ocaz be simple closed geodesics in R§ surrounding four punctures
(See Figure 6), and let D,; be an interior of «) (i=1,2). By the lemmas of
Bishop, we obtain quasiconformal maps g, on D,; (i = 1,2). However, g, on R
is locally affine on o,, so we will construct a quasiconformal map on a pair of
pants P,, bounded by «!, «> and «,.
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FIGURE 7. The division of P,,.

Let ay,...,as €0, be eight vertices of right-hexagons outside «,, and let
A,...,FedP, be the vertices of two symmetric right-hexagons constructing
P, (See Figure 7). Suppose that 4 is on the segment [a1a;], and F is on the
segment [asag]. Let xjo be the length of [a;a;] and let x;4 be the length of the
[a1A4]. Then there is a number fy € [0, 1] such that x;4 = fox;,. Similarly there
is a number sy € [0, 1] such that xsp = spXs6.

On the other hand, let af,...,a{ € [fy(x,)] = R, be eight vertices of right-
hexagons outside [f,(x,)]. We take the points g,(A),...,g,(F) on the geodesics
Un(e)ls ()] and [fo(o2)]:

We consider a hyperbolic hexagon with vertices g,(A4),...,g.(F). We claim
that the angle formed by [g,(C)g,(D)] and [g,(D)g.(E)] is about x/2.

Indeed, let R“” < Ry be a connected set bounded by o, = X r, and let R
be the Nielsen extens10n of A R, We consider the Fenchel-Nielsen coordinates of
the Teichmiiller space T (R“b). Then the twist parameter along [f, ()] = gn(e})
is almost the same as that along o) (cf. Shiga [7], Lemma 4.1). Hence we verify
the claim. The remaining angles are about 7/2, similarly.

Let xj; be the hyperbolic length of the segment [a/a]] (1 <i,j <38), and
let x]. be the hyperbolic length of the segment [a]'g,(*)] (* = A, F). Then, for
to€[0,1] and s € [0,1] we took above, xy, , = tox7, and x5, = sox§g hold,
because g, of R} is locally affine on o,. Moreover, since for each i = 1,2, g, of
D,; is affine on o, the lengths of six sides [4B],...,[FA] and the lengths of six
sides [92(A)gn(B)], ..., [gn(F)gn(A)] are almost the same respectively. Hence the
right-hexagon 4, .. .,F and the hexagon ¢,(4),...,¢g,(F) are almost congruous.

We triangulate these hexagons as in Figure 8.

a an n
F 5 azA 2.(F) 5 azg"(A)
8a(E)
E B 2(B)

D C g.(D)  g(C)

FiGUure 8. Triangulation.
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From the First Cosine Rule (for hyperbolic geometry), the length of the new
sides are determined by the sides and angles of the hexagon. Quasiconformal
maps of the triangles BCD, DEF, BDF are obtained from Lemma 2.1.

We consider a quasiconformal map of the triangle ABF. In the triangle
ABF, connect the points ay,...,as by geodesics segments to B. Similarly, in the
triangle ¢,(A4)g,(B)g,(F), connect the points af,...,a? by geodesics segments
to g,(B). Then we obtain a quasiconformal map of the triangle ABF from
Lemma 2.1.

Hence we obtain a quasiconformal map g, of the whole of Ry such that g,
is homotopic to f, and K(g,) — 1 (n — o). Thus d7(p,, po) =0 (n — o).

In the case where py # [Ry,id], we can show that dr(p,, po) — 0 (n — o0)
similarly. Indeed, K-quasiconformal map f (1 < K < o0) does not crush any
triangle with the sides of bounded lengths. Since any right hexagon in Ry can be
divided into such triangles, any Riemann surface f(Ry) in T(Ry) can be divided
into punctured regions and hexagons whose the lengths of the sides are uniformly
bounded by a constant depending on K. O

3. Examples and proof of Theorem 1.5

First, we give examples of Riemann surfaces satisfying the assumption of
Theorem 1.5.

Examples. (a) Any Riemann surface R, satisfying the assumption of The-
orem 1.4 satisfies the assumption of Theorem 1.5. Indeed, let {o,},~; = X% be a
sequence such that /g (2,) — 0 (n — o00). Then for any sequence {f,},~; < Zp
with o, NG, #0 (n=1,2,...), we have /g,(f,) — o0 (n— o0) by the collar
lemma. Hence Theorem 1.5 extends Theorem 1.4.

(b) The Riemann surface Ry constructed by Shiga ([7], pp. 317-319) satisfies
the assumption of Theorem 1.5. (The Riemann surface does not satisfy the
assumption of Theorem 1.4.) In this case, some sequence {o,},_;  Xp Wwith
/R, (ay) — o0 (n — o0) satisfies the condition.

(c) We construct a Riemann surface Ry such that Ry satisfies the assumption
of Theorem 1.5 and the lengths of {a,},”, = X} are uniformly bounded from
above and below.

First, let Py be a pair of pants with boundary lengths (ao,bo,by). Make
countable copies of Py and glue them along the boundaries of length b.

Next, we take a monotone divergent sequence {a,},—, of positive numbers.
Let P, be a pair of pants with boundary lengths (ay,a,,a,). Make two copies of
P, and glue each copy with the union of the copies of Py along the boundaries
of length ay as in Figure 9. Let R; denote a Riemann surface with boundary
we have obtained.

Let Ry be the Nielsen extension of R and put o, := PyNP, Then R
satisfies the assumption of Theorem 1.5. Also, if we take some pants {Q},._,
and define Ry := Ry U U;:1 O, then Ry satisfies the assumption of Theorem 1.5.

Ul
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FIGURE 9. Rj=PyUPyU---UP UPU---UP,UP,U---.

To prove Theorem 1.5, we use the following theorem, which is a partial
result of Theorem 1 in Matsuzaki [6].

THEOREM 3.1 ([6]). Let o be a simple closed geodesic on a Riemann surface
Ry and let f: Ry — Ry be the n-times Dehn twist along o. Then the maximal
dilatation K(f) of an extremal quasiconformal automorphism of f satisfies

By 1/2
K(f) > { <<2|n| - i)/Rm)) N 1} ‘

Proof of Theorem 1.5. First, suppose that there exists a constant ¢ > 0
such that /g, (a,) > ¢ for all ne N. Let f, be a Dehn twist along «,. Then we
have

R (Jn(Bn)) < LRy (Bn) + #(0n 0 ) /R, (o).

Thus,
R, (Ju(Bn)) #(0tn N B,,) /R, (0tn)
— L <+ =1 (n— ).
‘u(h,) ‘u(h,) "=
Since f;! is also a Dehn twist, from the same argument as above, we have
/Ro(ﬁn) /Ro(ﬁn)
< —1 (n— o0).
b B = B = #on OB G T
Hence

lim dr([Ro, fu], [Ro, id]) = 0.
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On the other hand, from Theorem 3.1 the maximal dilatation K(f,) of an
extremal quasiconformal map of f, satisfies

K(fn)2{(@):1}”1{(;):1}

m dT([ROafn]a [Ro,l'd}) > 0.

n— o0

1/2

Hence

Next, suppose that /g (o) — 0 (n— o0). We note that /g, (f,) — o
(n — o0) by the collar lemma. Let f, be the [1//g,(a,) + 1]-times Dehn twist
along o,. Then, we have

1
/Ro(fn('gn)) 3 /Ro(ﬁn) + #(OCn mﬂn) |:/R0(5xn) -+ 1:|/R0(05n)
ln(B) /ra(Br)
#(an ﬂﬂn) (m + 1)/]{0((1”)
= 1 + /Ro(ﬁn)
#(an mﬁn)(l + /RO (0(,1)) — n—
<L B L
and
(B _ ‘o (Br) =1 (n— o).
fRo(fn(,Bn)) (g, (B,) — #(, N B,) 7 2“ ) + 1]/R0(06n)
Hence

lim dL([Ro, ful, [Ro, id]) = 0.

n— oo

On the other hand, from Theorem 3.1 the maximal dilatation K(f,) of an
extremal quasiconformal map of f, satisfies

2 1/2

K(f,) > (lm_ 1)/Ro(un) » H{(%)2+1}1/2

T

as n — oo. Hence

lim dT([R(),fnL [Ro, ld]) > 0. ]

n—oo
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