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ON TEICHMÜLLER METRIC AND THE LENGTH SPECTRUMS

OF TOPOLOGICALLY INFINITE RIEMANN SURFACES

Erina Kinjo

Abstract

We consider a metric dL on the Teichmüller space TðR0Þ defined by the length

spectrum of Riemann surfaces. H. Shiga proved that dL defines the same topology as

that of the Teichmüller metric dT on TðR0Þ if a Riemann surface R0 can be decomposed

into pairs of pants such that the lengths of all their boundary components except

punctures are uniformly bounded from above and below.

In this paper, we show that there exists a Riemann surface R0 of infinite type such

that R0 cannot be decomposed into such pairs of pants, whereas the two metrics define

the same topology on TðR0Þ. We also give a su‰cient condition for these metrics

to have di¤erent topologies on TðR0Þ, which is a generalization of a result given by

Liu-Sun-Wei.

1. Introduction

Let R0 be a hyperbolic Riemann surface. We consider a pair ðR; f Þ of a
Riemann surface R and a quasiconformal map f : R0 ! R. Two such pairs
ðR1; f1Þ and ðR2; f2Þ are called equivalent if f2 � f �1

1 : R1 ! R2 is homotopic to
a conformal map. We denote the equivalence class of ðR; f Þ by ½R; f �. The set
of all equivalence classes is called the Teichmüller space of R0; we denote it by
TðR0Þ.

The Teichmüller space TðR0Þ has a complete metric dT called the Teich-
müller metric which is defined by

dTð½R1; f1�; ½R2; f2�Þ ¼ inf
f

log Kð f Þ;

where the infimum is taken over all quasiconformal maps f : R1 ! R2 homotopic
to f2 � f �1

1 and Kð f Þ is the maximal dilatation of f .
We introduce another metric on TðR0Þ. Let SR0

be the set of non-trivial
closed geodesics in R0. We define the length spectrum metric dL by

dLð½R1; f1�; ½R2; f2�Þ ¼ log sup
a ASR0

max
lR1

ð f1ðaÞÞ
lR2

ð f2ðaÞÞ
;
lR2

ð f2ðaÞÞ
lR1

ð f1ðaÞÞ

� �
;
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where lRi
ð fiðaÞÞ is the hyperbolic length of the closed geodesic on Ri freely

homotopic to fiðaÞ.

Proposition 1.1 (Thurston [9], Proposition 3.5). Let S 0
R0

be the set of non-
trivial simple closed geodesics in R0. Then

sup
a ASR0

max
lR1

ð f1ðaÞÞ
lR2

ð f2ðaÞÞ
;
lR2

ð f2ðaÞÞ
lR1

ð f1ðaÞÞ

� �
¼ sup

a AS 0
R0

max
lR1

ð f1ðaÞÞ
lR2

ð f2ðaÞÞ
;
lR2

ð f2ðaÞÞ
lR1

ð f1ðaÞÞ

� �
holds.

In 1972, Sorvali [8] defined dL, and showed the following.

Lemma 1.2 ([8]). For any ½R1; f1�; ½R2; f2� A TðR0Þ,

dLð½R1; f1�; ½R2; f2�Þa dTð½R1; f1�; ½R2; f2�Þ
holds.

He conjectured that dL defines the same topolpgy as that of dT on TðR0Þ
if R0 is a topologically finite Riemann surface. In 1986, Li [3] proved that
the statement holds in the case where R0 is a compact Riemann surface with
genusb 2. In 1999, Liu [4] proved that Sorvali’s conjecture is true, and he asked
whether the statement holds for any Riemann surface of infinite type. To this
question, Shiga [7] gave a negative answer, that is, he showed that there exists
a Riemann surface R0 of infinite type such that dL and dT do not define the
same topology on TðR0Þ. Also, he gave a su‰cient condition for these metrics
to define the same topology on TðR0Þ.

Theorem 1.3 ([7]). Let R0 be a Riemann surface. Assume that there exists a
pants decomposition R0 ¼ 6y

k¼1
Pk satisfying the following conditions.

(1) Each connected component of qPk ðk ¼ 1; 2; 3 . . .Þ is either a puncture or a
simple closed geodesic of R0.

(2) There exists a constant M > 0 such that if a is a boundary curve of some
Pk then

0 < M�1 < lR0
ðaÞ < M

holds.
Then dL defines the same topology as that of dT on TðR0Þ.

On the other hand, Liu-Sun-Wei [5] obtained a su‰cient condition for these
metrics to define di¤erent topologies on TðR0Þ.

Theorem 1.4 ([5]). Let R0 be a Riemann surface with a sequence
fangyn¼1 HS 0

R0
such that lR0

ðanÞ ! 0 ðn ! yÞ. Then dL does not define the
same topology as that of dT on TðR0Þ.

180 erina kinjo



The converse of Theorem 1.4 is not true. Indeed, a Rienann surface Shiga
constructed in [7] is a counterexample.

In this paper, we show that the converse of Theorem 1.3 is not true by giving
a counterexample. Also, we give a new su‰cient condition for these metrics to
define di¤erent topologies on TðR0Þ as follows.

Theorem 1.5. Let R0 be a Riemann surface. Suppose that there exists a
sequence fangyn¼1 HS 0

R0
such that for an arbitrary sequence fbng

y
n¼1 HS 0

R0
with

an V bn 0j ðn ¼ 1; 2; . . .Þ,
lR0

ðbnÞ
aðan V bnÞlR0

ðanÞ
! y ðn ! yÞ:

Then dL does not define the same topology as that of dT on TðR0Þ.

We will explain in Section 3 that the above theorem is a generalization of
Theorem 1.4.

Acknowledgment. The author would like to thank Professor Katsuhiko
Matsuzaki and Professor Hiroshige Shiga for their valuable comments and
suggestions.

2. A counterexample

In this section, we show that the converse of Theorem 1.3 is not true. We
use the following lemmas due to Bishop [2].

Lemma 2.1 ([2], Lemma 3.1). Let T1;T2 HD (the unit disk) be two hyper-
bolic triangles with sides ða1; b1; c1Þ and ða2; b2; c2Þ respectively. Suppose all their
angles are bounded below by y > 0 and

e :¼ max log
a1

a2

���� ����; log
b1

b2

���� ����; log
c1

c2

���� ����� �
aA:

Then there is a constant C ¼ Cðy;AÞ and a ð1þ CeÞ-quasiconformal map
j : T1 ! T2 such that j maps each vertex to the corresponding vertex and j is
a‰ne on the edge of T1.

Lemma 2.2 ([2], Corollary 3.3). Let H;H 0 HD be two hyperbolic hexa-
gons with sides ða1; . . . ; a6Þ and ðb1; . . . ; b6Þ respectively. Suppose a1; . . . ; a6 and
b1; . . . ; b6 are aB and are comparable with a constant B. Also assume that
three alternating angles of H and the corresponding angles of H 0 are p=2 and
the remaining angles are bounded below by y > 0 and above by p� y. If
e ¼ maxijlog ai=bija 2, then there is a constant C ¼ Cðy;BÞ and a ð1þ CeÞ-
quasiconformal map j : H ! H 0 such that j maps each vertex to the corresponding
vertex and j is a‰ne on the edge of H.
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Lemma 2.3 ([2], Lemma 6.2). Let P1 and P2 be pants with boundary lengths
ða1; b1; c1Þ and ða2; b1; c1Þ respectively. Suppose a1; a2; b1; c1 aL (punctures count
as length zero). Assume that e :¼ jlog a1=a2ja 2, where we define jlog a1=a2j ¼ 0
if a1 ¼ a2 ¼ 0 and jlog a1=a2j ¼ þy if one is zero and the other is not. Then
there is a constant C ¼ CðLÞ and a ð1þ CeÞ-quasiconformal map j : P1 ! P2 such
that j is a‰ne on each of the boundary components.

Also we note the following lemma (cf. Beardon [1]).

Lemma 2.4 ([1]). For a hyperbolic right hexagon with the edge lengths a1, b3,
a2, b1, a3, b2 (in counterclockwise direction),

cosh b2 ¼
cosh a2 þ cosh a1 cosh a3

sinh a1 sinh a3
;

sinh a1

sinh b1
¼ sinh a2

sinh b2
¼ sinh a3

sinh b3
:

Especially, a right hexagon is determined by the lengths of three alternating sides.

Now we give a counterexample to the converse of Theorem 1.3.

Example. Let G be a hyperbolic triangle group of signature ð2; 4; 8Þ acting
on D and let P be a fundamental domain for G with angles ðp; p=4; p=4; p=4Þ.
Let O, a, b, c denote the vertices of P, where the angle at O is p (as in Figure 1).

Now, take a su‰ciently small number e > 0. Let b 0 the point on the
segment ½Ob� whose hyperbolic distance from b is e. Similarly, we take a 0 and c 0

in P. See Figure 2.
We define a Riemann surface R0 by removing the G-orbits of a 0, b 0, c 0 from

the unit disk D. See Figure 3.
It is clear that R0 does not satisfy the assumption of Theorem 1.3. Indeed,

for an arbitrary pants decomposition R0 ¼ 6y
k¼1

Pk, there is a sequence faNg

Figure 1. Tessellation by the ð2; 4; 8Þ group.
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of simple closed curves in fqPkgyk¼1 such that lDðaNÞ ! y ðN ! yÞ: Since
lDðaNÞa lR0

ðaNÞ by Schwarz Lemma, we have lR0
ðaNÞ ! y ðN ! yÞ.

We show that dL defines the same topology as that of dT on TðR0Þ. From
Lemma 1.2, it su‰ces to show that for any sequence fpngyn¼o HTðR0Þ with
dLðpn; p0Þ ! 0 ðn ! yÞ, dTðpn; p0Þ converges to 0 as n ! y.

We assume that p0 ¼ ½R0; id�. Put pn ¼ ½Rn; fn�.
We divide R0 into punctured disks and right hexagons. For a A PHD

(in Figure 1), take gi A G ði ¼ 1; . . . ; 8Þ such that giðPÞV fag0j. Let aa be the
shortest geodesic in S 0

R0
that surrounds eight punctures giða 0Þ. Take ab and ac

similarly. Next, let aab be the shortest geodesic in S 0
R0

that surrounds aa and ab.
Take abc and aca similarly.

Now we consider a pair of pants Pab whose boundaries are aa, ab and aab.
There are three lines which divide Pab into two isometric right hexagons. Let bab
be a line connecting aa and ab in those. (See Figure 4.) Note that the length of
bab depends only on the lengths of aa; ab, aab from Lemma 2.4. Take bbc and bca
similarly.

Then we obtain a right hexagon bounded by bab, bbc, bca and subarcs of aa,
ab, ac. Note that the lengths of subarcs of aa, ab, ac depends only on the lengths

Figure 2. b 0 A ½Ob�. rDðb; b 0Þ ¼ e.

Figure 3. R0 :¼ D� fgða 0Þ; gðb 0Þ; gðc 0Þ j g A Gg.
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of bab, bbc, bca from Lemma 2.4. Hence the right hexagon is determined by the
lengths of aa, ab, ac and aab, abc, aca.

Continue to take right hexagons as above, then R0 is divided into eight-times
punctured disks and right hexagons.

Next, we consider the division of Rn. For any a A S 0
R0
, there is a simple

closed geodesic in Rn homotopic to fnðaÞ. We denote it by ½ fnðaÞ�.
Take points ea A aa V bab and eb A ab V bab. Let fnðeaÞ0 be a point on ½ fnðaaÞ�

corresponding to fnðeaÞ A fnðaaÞ about the continuous map Fa giving homotopy
from fnðaaÞ to ½ fnðaaÞ�, that is, for the homotopy map Fa : ½0; 1� � ½0; 1� ! Rn with
Fað0; t0Þ ¼ fnðeaÞ, we put fnðeaÞ0 :¼ Fað1; t0Þ. Take fnðebÞ0 A ½ fnðabÞ� similarly.
(See Figure 5.) Connect fnðeaÞ and fnðeaÞ0 by a curve fFaðs; t0Þ j 0a sa 1g.
Similarly connect fnðebÞ and fnðebÞ0. Let dfnðbabÞfnðbabÞ denote a curve from fnðeaÞ0 to
fnðebÞ0 given by connecting them. Take the shortest geodesic segment ½ dfnðbabÞfnðbabÞ�
homotopic to dfnðbabÞfnðbabÞ, where the homotopy map moves endpoints fnðeaÞ0 and
fnðebÞ0 on ½ fnðaaÞ� and ½ fnðabÞ� respectively.

On the other hand, we consider a pair of pants Pn
ab bounded by ½ fnðaaÞ�,

½ fnðabÞ� and ½ fnðaabÞ�. There are three lines which divide Pn
ab into two isometric

right hexagons. Let bn
ab be a line connecting ½ fnðaaÞ� and ½ fnðabÞ� in those.

Then ½ dfnðbabÞfnðbabÞ� ¼ b n
ab.

Figure 4. bab is one of lines dividing Pab into two isometric right hexagons.

Figure 5. fnðeaÞ 0 A ½ fnðaaÞ�. fnðebÞ 0 A ½ fnðabÞ�.
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Indeed, we consider a closed curve C :¼ ½ fnðaaÞ� � ½ dfnðbabÞfnðbabÞ� � ½ fnðabÞ� �
½ dfnðbabÞfnðbabÞ�

�1. Since fn is a homeomorphism, C is freely homotopic to fnðaabÞ.
On the other hand, if we consider another closed curve C 0 :¼ ½ fnðaaÞ� � b n

ab �
½ fnðabÞ� � ðb n

abÞ
�1, then C 0, also, is freely homotopic to fnðaabÞ. Hence C is freely

homotopic to C 0. Since both ½ dfnðbabÞfnðbabÞ� and bn
ab are the shortest of all the curves

connecting ½ fnðaaÞ� and ½ fnðabÞ�, we have ½ dfnðbabÞfnðbabÞ� ¼ bn
ab.

By the definition of bn
ab, the length of b n

ab depends only on the lengths of

½ fnðaaÞ�, ½ fnðabÞ� and ½ fnðaabÞ�. Since dLðpn; p0Þ < e for su‰ciently large number

n, the lengths of bab and b n
ab ¼ ½ dfnðbn

abÞfnðbn
abÞ� are almost the same.

Let Habc be a right hexagon in R0 bounded by bab, bbc, bca and subarcs
of aa, ab, ac (See Figure 4). On the other hand, let Hn

abc be a right hexagon

in Rn bounded by d½ fnðbabÞ�½ fnðbabÞ�, d½ fnðbbcÞ�½ fnðbbcÞ�, d½ fnðbcaÞ�½ fnðbcaÞ� and subarcs of ½ fnðaaÞ�, ½ fnðabÞ�,
½ fnðacÞ�. By Lemma 2.2, we obtain a quasiconformal map from Habc to Hn

abc.
Let fHigyi¼1 HR0 be the set of all the right hexagons. For each Hi HR0,

we take a right hexagon Hn
i HRn in the same way we took Hn

abc for Habc. Put
R 0

0 :¼ 6y
i¼1

Hi and R 0
n :¼ 6y

i¼1
Hn

i .
By Lemma 2.2, we obtain a quasiconformal map gn : R

0
0 ! R 0

n. We claim
that fn is homotopic to gn on R 0

0, where the homotopy map does not necessarily
keep points of qR0 fixed.

For an arbitrary simple closed geodesic aHR 0
0, we consider fnðaÞ and gnðaÞ.

Let fHið jÞgj A J HR 0
0 be the set of all the right hexagons such that Hið jÞ V a0j.

Then for each j A J, a curve gnðaVHið jÞÞ is homotopic to a curve ½ fnðaÞ�VHn
ið jÞ

in Hn
ið jÞ, where the homotopy map does not necessarily fix endpoints. Hence

fnðaÞ is homotopic to gnðaÞ, so we verified the claim.
Next, we consider a quasiconformal map of the connected set Ra

0 HR0 � R 0
0

bounded by aa with eight punctures. We decompose Ra
0 into seven pairs of

pants as in Figure 6.

Let a1a and a2a be simple closed geodesics in Ra
0 surrounding four punctures

(See Figure 6), and let Da i
a
be an interior of a i

a (i ¼ 1; 2). By the lemmas of
Bishop, we obtain quasiconformal maps gn on Da i

a
(i ¼ 1; 2). However, gn on R 0

0
is locally a‰ne on aa, so we will construct a quasiconformal map on a pair of
pants Paa bounded by a1a , a2a and aa.

Figure 6. The pants decomposition of Ra
0 .
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Let a1; . . . ; a8 A aa be eight vertices of right-hexagons outside aa, and let
A; . . . ;F A qPaa be the vertices of two symmetric right-hexagons constructing
Paa (See Figure 7). Suppose that A is on the segment ½a1a2�, and F is on the
segment ½a5a6�. Let x12 be the length of ½a1a2� and let x1A be the length of the
½a1A�. Then there is a number t0 A ½0; 1� such that x1A ¼ t0x12. Similarly there
is a number s0 A ½0; 1� such that x5F ¼ s0x56.

On the other hand, let an
1 ; . . . ; a

n
8 A ½ fnðaaÞ�HRn be eight vertices of right-

hexagons outside ½ fnðaaÞ�. We take the points gnðAÞ; . . . ; gnðFÞ on the geodesics
½ fnðaaÞ�, ½ fnða1aÞ� and ½ fnða2aÞ�.

We consider a hyperbolic hexagon with vertices gnðAÞ; . . . ; gnðFÞ. We claim
that the angle formed by ½gnðCÞgnðDÞ� and ½gnðDÞgnðEÞ� is about p=2.

Indeed, let Rab
0 HR0 be a connected set bounded by aab HS 0

R0
and let dRab

0Rab
0

be the Nielsen extension of Rab
0 . We consider the Fenchel-Nielsen coordinates of

the Teichmüller space TðdRab
0Rab
0 Þ. Then the twist parameter along ½ fnða1aÞ� ¼ gnða1aÞ

is almost the same as that along a1a (cf. Shiga [7], Lemma 4.1). Hence we verify
the claim. The remaining angles are about p=2, similarly.

Let xn
ij be the hyperbolic length of the segment ½an

i a
n
j � ð1a i; ja 8Þ, and

let xn
i� be the hyperbolic length of the segment ½an

i gnð�Þ� ð� ¼ A;FÞ. Then, for
t0 A ½0; 1� and s0 A ½0; 1� we took above, xn

1gnðAÞ ¼ t0x
n
12 and xn

5gnðFÞ ¼ s0x
n
56 hold,

because gn of R 0
0 is locally a‰ne on aa. Moreover, since for each i ¼ 1; 2, gn of

Da i
a
is a‰ne on a i

a, the lengths of six sides ½AB�; . . . ; ½FA� and the lengths of six

sides ½gnðAÞgnðBÞ�; . . . ; ½gnðF ÞgnðAÞ� are almost the same respectively. Hence the
right-hexagon A; . . . ;F and the hexagon gnðAÞ; . . . ; gnðF Þ are almost congruous.

We triangulate these hexagons as in Figure 8.

Figure 7. The division of Paa .

Figure 8. Triangulation.
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From the First Cosine Rule (for hyperbolic geometry), the length of the new
sides are determined by the sides and angles of the hexagon. Quasiconformal
maps of the triangles BCD, DEF , BDF are obtained from Lemma 2.1.

We consider a quasiconformal map of the triangle ABF . In the triangle
ABF , connect the points a2; . . . ; a5 by geodesics segments to B. Similarly, in the
triangle gnðAÞgnðBÞgnðFÞ, connect the points an

2 ; . . . ; a
n
5 by geodesics segments

to gnðBÞ. Then we obtain a quasiconformal map of the triangle ABF from
Lemma 2.1.

Hence we obtain a quasiconformal map gn of the whole of R0 such that gn
is homotopic to fn and KðgnÞ ! 1 ðn ! yÞ. Thus dTðpn; p0Þ ! 0 ðn ! yÞ.

In the case where p0 0 ½R0; id�, we can show that dT ðpn; p0Þ ! 0 ðn ! yÞ
similarly. Indeed, K-quasiconformal map f ð1aK < yÞ does not crush any
triangle with the sides of bounded lengths. Since any right hexagon in R0 can be
divided into such triangles, any Riemann surface f ðR0Þ in TðR0Þ can be divided
into punctured regions and hexagons whose the lengths of the sides are uniformly
bounded by a constant depending on K . r

3. Examples and proof of Theorem 1.5

First, we give examples of Riemann surfaces satisfying the assumption of
Theorem 1.5.

Examples. (a) Any Riemann surface R0 satisfying the assumption of The-
orem 1.4 satisfies the assumption of Theorem 1.5. Indeed, let fangyn¼1 HS 0

R0
be a

sequence such that lR0
ðanÞ ! 0 ðn ! yÞ. Then for any sequence fbng

y
n¼1 HS 0

R0

with an V bn 0j ðn ¼ 1; 2; . . .Þ, we have lR0
ðbnÞ ! y ðn ! yÞ by the collar

lemma. Hence Theorem 1.5 extends Theorem 1.4.
(b) The Riemann surface R0 constructed by Shiga ([7], pp. 317–319) satisfies

the assumption of Theorem 1.5. (The Riemann surface does not satisfy the
assumption of Theorem 1.4.) In this case, some sequence fangyn¼1 HS 0

R0
with

lR0
ðanÞ ! y ðn ! yÞ satisfies the condition.
(c) We construct a Riemann surface R0 such that R0 satisfies the assumption

of Theorem 1.5 and the lengths of fangyn¼1 HS 0
R0

are uniformly bounded from
above and below.

First, let P0 be a pair of pants with boundary lengths ða0; b0; b0Þ. Make
countable copies of P0 and glue them along the boundaries of length b0.

Next, we take a monotone divergent sequence fangyn¼1 of positive numbers.
Let Pn be a pair of pants with boundary lengths ða0; an; anÞ. Make two copies of
Pn and glue each copy with the union of the copies of P0 along the boundaries
of length a0 as in Figure 9. Let R 0

0 denote a Riemann surface with boundary
we have obtained.

Let R0 be the Nielsen extension of R 0
0 and put an :¼ P0 VPn. Then R0

satisfies the assumption of Theorem 1.5. Also, if we take some pants fQmgym¼1

and define R0 :¼ R 0
0 U6y

m¼1
Qm, then R0 satisfies the assumption of Theorem 1.5.

r
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To prove Theorem 1.5, we use the following theorem, which is a partial
result of Theorem 1 in Matsuzaki [6].

Theorem 3.1 ([6]). Let a be a simple closed geodesic on a Riemann surface
R0 and let f : R0 ! R0 be the n-times Dehn twist along a. Then the maximal
dilatation Kð f Þ of an extremal quasiconformal automorphism of f satisfies

Kð f Þb ð2jnj � 1ÞlR0
ðaÞ

p

� �2

þ 1

( )1=2

:

Proof of Theorem 1.5. First, suppose that there exists a constant c > 0
such that lR0

ðanÞ > c for all n A N. Let fn be a Dehn twist along an. Then we
have

lR0
ð fnðbnÞÞa lR0

ðbnÞ þaðan V bnÞlR0
ðanÞ:

Thus,

lR0
ð fnðbnÞÞ
lR0

ðbnÞ
a 1þaðan V bnÞlR0

ðanÞ
lR0

ðbnÞ
! 1 ðn ! yÞ:

Since f �1
n is also a Dehn twist, from the same argument as above, we have

lR0
ðbnÞ

lR0
ð fnðbnÞÞ

a
lR0

ðbnÞ
lR0

ðbnÞ �aðan V bnÞlR0
ðanÞ

! 1 ðn ! yÞ:

Hence

lim
n!y

dLð½R0; fn�; ½R0; id�Þ ¼ 0:

Figure 9. R 0
0 ¼ P0 UP0 U � � �UP1 UP1 U � � �UPn UPn U � � � .
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On the other hand, from Theorem 3.1 the maximal dilatation Kð fnÞ of an
extremal quasiconformal map of fn satisfies

Kð fnÞb
lR0

ðanÞ
p

� �2

þ 1

( )1=2

>
c

p

� �2

þ 1

( )1=2

:

Hence

lim
n!y

dTð½R0; fn�; ½R0; id�Þ > 0:

Next, suppose that lR0
ðanÞ ! 0 ðn ! yÞ. We note that lR0

ðbnÞ ! y
ðn ! yÞ by the collar lemma. Let fn be the ½1=lR0

ðanÞ þ 1�-times Dehn twist
along an. Then, we have

lR0
ð fnðbnÞÞ
lR0

ðbnÞ
a

lR0
ðbnÞ þaðan V bnÞ

1

lR0
ðanÞ

þ 1

� �
lR0

ðanÞ

lR0
ðbnÞ

a 1þ
aðan V bnÞ

1

lR0
ðanÞ

þ 1

� �
lR0

ðanÞ

lR0
ðbnÞ

a 1þaðan V bnÞð1þ lR0
ðanÞÞ

lR0
ðbnÞ

! 1 ðn ! yÞ;

and

lR0
ðbnÞ

lR0
ð fnðbnÞÞ

a
lR0

ðbnÞ

lR0
ðbnÞ �aðan V bnÞ

1

lR0
ðanÞ

þ 1

� �
lR0

ðanÞ
! 1 ðn ! yÞ:

Hence

lim
n!y

dLð½R0; fn�; ½R0; id�Þ ¼ 0:

On the other hand, from Theorem 3.1 the maximal dilatation Kð fnÞ of an
extremal quasiconformal map of fn satisfies

Kð fnÞb
2 � 1

lR0
ðanÞ

� 1

� �
lR0

ðanÞ

p

0BBB@
1CCCA
2

þ 1

8>>><>>>:
9>>>=>>>;
1=2

! 2

p

� �2

þ 1

( )1=2

as n ! y. Hence

lim
n!y

dTð½R0; fn�; ½R0; id�Þ > 0: r
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