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AN EXTRINSIC RIGIDITY THEOREM FOR SUBMANIFOLDS
WITH PARALLEL MEAN CURVATURE IN A SPHERE

HoNG-WEI Xu, Fe1 HuANG AND FEI XIANG

Abstract

Let M be an n-dimensional closed submanifold with parallel mean curvature in
S™7 h the trace free part of the second fundamental form, and &(u) = ||h(u, u)||* for
any unit vector u € TM. We prove that there exists a positive constant C(n, p, H) (2 %)
such that if (u) < C(n, p, H), then either 6(u) =0 and M is a totally umbilical sphere,
or 6(u) = C(n,p,H). A geometrical classification of closed submanifolds with parallel
mean curvature satisfying 6(u) = C(n, p, H) is also given. Our main result is an exten-
sion of the Gauchman theorem [4].

1. Introduction

Let M be an n-dimensional closed Riemannian manifold isometrically
immersed in a unit sphere S"*”. Simons [10], Lawson [5], Chern, do Carmo
and Kobayashi [3] proved a rigidity theorem for closed minimal manifolds in a
sphere with bounded second fundamental form. Later, A. M. Li and J. M. Li
[6] improved Simons’ pinching constant to max{n/(2 — 1/p),2n/3}.

It was extended to submanifolds with parallel mean curvature in a sphere,
first by Okumura [7] and Yau [16, 17], then by Xu [11], and finally by Cheng and
Nakagawa [2] in codimension 1, and by Xu [12, 13] in codimension p inde-
pendently. Later, Shiohama and Xu [9, 14] generalized the rigidity theorem to
the case where the ambient space is a pinched Riemannian manifold.

Set o(u) = ||h(u,u)||* for any ue UM, where h is the second fundamental
form of the immersion, UM is the unit tangent bundle over M. Gauchman [4]
proved that if M is an n-dimensional closed minimal submanifold in S’l’ﬂ’ , and if

o(u) < 1 for any unit vector u e TM, then either o(u) =0 or o(u) = {. More-

over he gave a geometrical classification of closed minimal submanifolds satisfy-

ing o(u) =1%.
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We give the following

DEerINITION 1.1, Choose a local orthonormal frame field {ei,... e, ,} on
S™7 such that ey,...,e, are tangent to M and let {w,...,®»,} be the dual frame
field of {ej,...,e,}. Denote by h = Z“,i‘jhg-co,- ® w; ® e, the second fundamen-
tal form of M. We define the trace free second fundamental form of M by

h = E h;a)i@wj@em
1<i,j<n
n+l<oa<n+p

Jo o 1 o
where hj} = h} — (E Do hii)éif'

From the above definition it is easy to see that tr(h}) = S, k% =0 for any
o and that /4 is a symmetric bilinear mapping TxM x TxM — T -M for xe M,
where T, M is the tangent space of M at x and T-M is the normal space to M

at x. Define the squared norm of A(u,u) by
G(u) = ||h(u,u)|*.

If 6(u) =0 for any ue UM, then S = nH?, and M" is a totally umbilical sphere
in ™7,
The following examples will help us to state our result precisely.

Example 1.2. Let S™(r) be an m-dimensional sphere of radius r in R™*!.
We imbed S”(a) x S”(b) in S?"*! as follows. Let ue S™(a) and ve S™(b) be
the vectors of length a and b in R™"!'. If 4> +b% =1, then we can consider
(u,v) as a unit vector in R*"2 = R™*1 5 R"™*! Ttis easy to see that $"(a) ><2S’”(b)

. . . b* —
is a submanifold of S?"*!(1) with parallel mean curvature H = 3 ba In
particular, a
Sn'l 1 X SIT[ 1
V201 + H2 4 BT D) V21 + H? - BT D)

is an isoparametric hypersurface of S?"*+! with parallel mean curvature H and
max,cyy 6(u) =1+ H?.

Example 1.3 (see [4, 8]). Denote by RP?, CP?, QP? and Cay P? the pro-
jective plane over the real numbers, complex numbers, quaternions and octonions,
Yy @ RP? — S*(1), 4, : CP? — S7(1), y5 : OP? — S3(1) and y, : Cay P> — S>(1)
the corresponding isometric embeddings, and by 7,, :S"(1) — S"™(1) the
inclusion. Let | : S*(v/3) — S*(1) be the isometric immersion defined by
Y| =y, o, where 7 : S?(v/3) — RP? is the canonical projection. We set
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$rp=Tap-10W 1 RP? = S p=2,
$rp=T1p3°Y5: CP* — S%7, p>3,
$3p=T13p-5°VY3: OP* - S¥7 p>5,
P4y =T25p90 Yy : Cay P> — S p>9,
Bp=Tap20¥: S (V3) = ST, p=2.
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Then ¢, , is an isometric minimal embedding and b , 18 an isometric minimal

immersion.

In this paper, we prove a new extrinsic rigidity theorem for submanifold with
parallel mean curvature in a sphere. More precisely, we obtain the following

THEOREM 1.4 (Main Theorem). Let M" be an n-dimensional compact sub-
manifold in a unit sphere S"t?(1) with parallel mean curvature vector field of norm

H I
6(u) < C(n,p,H), for all ue UM,

then M is one of the following: |

(1) the totally umbilical sphere S}, = S" (),

(2) Clifford isoparametric hypersurface V1+H?

1
Sn/2 % Sn/2
V20 + 52+ BT ) V204 52— BT )

(3) one of the embeddings ¢, ,, i =1,2,3,4 or the immersion ¢{p
Here
(1.1)

1+H?> p=1, nis even,
2 _
n +2n 2n—&; 1H2
n—1 2(n—1)
H 2172 _ .
C(n, p, H) = —W\/Qn—l)H +4n(n—1), p=1,nis odd,
1
Pt e md H 0,
4n
1 Tn+1_,
- > = = 0.
3+ o H° p>3o0rp=2and H=0

Noting that

)
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(1.2) Ci(np) = flIanO C(n,p,H)

1, p=1and n is even, or p=2 and H # 0,
42
_ ﬁ, p=1 and n is odd,
= n—
1
3 p=3,0r p=2and H=0,

we have the following corollary.

COROLLARY 1.5. Let M" be an n-dimensional compact submanifold with
parallel mean curvature in a unit sphere S™P(1). If

o(u) < Ci(n,p), forall ue UM,

then M is either a totally umbilical sphere, a Clifford isoparametric hypersurface,
or one of the embeddings ¢, ,,i =1,2,3,4, or the immersion ¢{p

When H = 0, our main theorem reduces to Gauchman’s rigidity theorem for
minimal submanifolds [4].

2. Preliminaries
We shall make the following conventions on the range of indices:
1<A4,B,C,... <n+p;, 1<ijk,...<n n+l1<opy...<n+p.

Choose a local orthonormal frame field {e4} on S”*7 such that e/s are tangent to
M. Let {w4} be the dual frame field of {e4} and {w4p} the connection 1-forms
of S™?  Restricting these forms to M, we have

1
o o o o o
Wy = E hija)j, hij = hﬁ, h= g hijwi Qw®ey, &= p E hje,,
J o,i

o, i, ]

Rijy = 0udjp — b + Y _(hiphii — hijhs,),
o

Ropr = > _(highl) — hihl}).

1

where h, &, Ry, Rypu are the second fundamental form, the mean curvature
vector, the curvature tensor and the normal curvature tensor of M respectively.
We set

1
c,=—1trH,.
n

S=n?, H=l, H.o=(h])

nxn’
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Denoting the first and second covariant derivatives of /47 by hj and hj,
respectively, we have '

Q21) > hhor =dhi+> " hiow+ Y hiop+ > Mo,
k k k B
(2.2) Zk: higer = dhly, + ZI: hitoq + ZI: hy i + ZI: hiou + Zﬁ: hf .

The Laplacian of /2 is defined by Ahj; = Dk iy Let M be an n-dimensional
submanifold with parallel mean curvature in S"*?. Following [15, 16], we have

(2.3) S hl=0, > hiy; =0, for all k1,
i i
(2.4) AR =" b R + Y IRk + Y g Ry
k,m k,m k,p
(25) Z R“/;k](tr Ha) =0.
o

PropoSITION 2.1.  For any real numbers s, t, x, y, we have

1
(2.6) sx? 4y < 3 (s+ Vs2+ tz)(x2 + )/2)7

and the equality holds if and only if

W+ 2 -9 x=W2+2+9"%,  for 1>0,
(V2 + 22 —9)"Px= (Vs ¥ 2 +5)' %y, for 1<0.

Proof. Notice that

(2.7)

(2.8) (s 4+ Vs2+2)(x* + p?) — 2(sx? + txp)
= (V2412 —5)x? = 2txy + (s + Vs2 + 1)y

When ¢ >0, the RHS of (2.8) can be written as

2.9 V2412 =) Px— (Vs2+ 24922 > 0.
( y
When 7 < 0, the RHS of (2.8) can be written as

2.10 V42— Px+ (Vs + 2+ 92 > 0.
(

Thus we get the desired inequality, and the equality in (2.6) holds if and only if
(2.9) or (2.10) becomes equality. O
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ProPOSITION 2.2. Let f(x) be a function defined by

f(x)=x—V2ex+c2+H? xe|-H, H|.

Then we have

H? , H
———c, for c> —,
(2.11) fx)y =g 2% 13
c—2H, for c< 5
. .. . of .
Proof.  Suppose that xy is a minimum point of f. Then & =0. This
o H? . I .
implies x¢ = TR Noting that xe [—-H,H], we get the desneci) inequality.
O

3. Maximal directions

Let xe M. A vector ue UM, is called a maximal direction of ¢ at x if
6(u) = max,eyy, 6(v).

Choose an adapted orthonormal frame {ej,...,e,;,} at x such that when
restricted to M, the vectors ej,...,e, are tangent to M. Assume that e; is a
. . . hiey,e —<{&e e
maximal direction at x, G(e;) #0, and e, = e e) epin = €= CCr e en

=~ > En+2 —
(e, en)|” €= <& enstensl
(if ¢ is not parallel to e,;;). By our choices of e,.; and e,.>, we have

(3.1) k=0, if a#n+1; and =0 if a#Fn+1,n+2.
Since e; is a maximal direction, at the point x for any ze R we have

(3.2) (e + tes, e + ter)|* < (1+ ) (R ).

Expanding in terms of 7, we obtain

Ath TR + O(2) < 0.
It follows that
(3.3) Rl =0, i=2,...,n

ey

We now choose an adapted frame at x € M such that in addition to (3.1) and
(3.3),

(3.4) At =it =0, i

Once more expanding (3.2) in terms of ¢, we can get

=207 | B R =R =2 Y (k)| + O(F) <0

oa#n+1
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It follows that

(3.5) 2 ) (h YR =B, i=2,0n.

a#n+1

Define a tensor field 7 = (T,-jk;) on M by

r/kl Zh hkl

It is obvious that &(u) = T (u,u,u,u).
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LemMa 3.1.  Let u be a maximal direction at x e M.  Assume that &(u) # 0.

Let ey,...,en, be an adapted frame at x such that
hier, e1) & = <& ens1enss
er=u Cptl = —=—— Cpio =
DI e e T IE= G emvenall”

h;}“ =0 for i # j, and ¢ is not parallel to e,.;. At the point Xx,
(1) If p=1, then

(3.6)

N —

2 If p=2 and H #0, then

(AT)yygy = Ay | ok (1 + H? + b

_ (il{lfl + Cnt1) Z h;z]:rl — Cuin Zhn+1hn+2‘| :
k

(3.7)

N =

B)If p=3, or p=2 and H =0, then

—_—

(3.8) E(Af)ml = ili1l+l [niliﬂ“(l +H’ +Cn+1i1111+1 - (ilﬁl)z)

- (Zil:ll-'—l + Cn+1) Z hn+1 — Cny2 Zh’1+lhn+2] ;

k

and equality holds if and only if
(39) (ilﬁrl thrl) [h?rl(hn+l n+1 Z ] _

and i’flk =0, for any k, o.

(AT)yyyy = R kSN (1 + H? + e — (R + 1) Zh"“ ]
k
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Proof. We have

(3.10) (AT),yy, = ili’flﬂh”?l + Z(Wu)z

N —

. 1
From (2.3), it is easy to see that Ac, | = Ezk’ih,’;‘;} =0. From (2.4), (3.1) and
(3.4), noting that 3, A% =0 for any o, we have
Ailﬁtl — Ahnﬂ

= thm mllk + thl mk1k + Zhlk on+1, 1k

k,m
— Z(hﬁtl n+1 lelk + Zh hllhn+1 hlkthrl)
k

_ 2 thrl n+l
k

_ 2 thrl n+l
k

= ki (1 + H? + e i) = (B + ) Y ()
k

_CnJrZZthrlh]?]jz Z hn+l hn+l Z (~1“k)2~
k

a#n+1

L= @)’ + Do~ 23 W]

1+hn+1hn+l_|_cn+2hn+2 2 Z ( fk)2‘|

a#n+1

(1) If p=1, then ¢,1» =0, and the last two terms above vanish.

(2) If p=2 and H # 0, it follows from (2.5) and (3.1) that R, 1)42x = 0.
Hence the last term above vanishes again.

(3)If p=3, or p=2 and H=0, by (3.5), we get

AR = b (1 4+ H? + cpn B — (iﬂ“)z)

_ (2h111+1 + Cn+1) Z n+1 — Cuy2 Zthrlhn;Z.
k

Substituting this into (3.10), we get the desired results. O

Lemma 3.2, Let {ei,...,enp} be an adapted frame at x € M as in Lemma
3.1.  Assume &(u) # 0.
() If p=1, n(=2m) is even, 6(u) <1+ H? for any ue UM, then
(AT )y = 0. If equality (AT),y;; =0 holds, after suitable rearrangement of
€, ...,ey, we have

(311) hn+1 = hr’;;l - ilnnirll,erl == _ilgt:;.IZm =vi+ H?2.
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2 If p=1, n(=2m+1) is odd and

no 2n*-2n+1 _, H 2
a(u) < + H — 2n—1)"H? +4n(n— 1),
) = g+ T 2@_1)2%( ) (n—1)
for any u e UMy, then (AT),y,, = 0. If equality (AT),,,, = 0 holds, after suitable
rearrangement of ey, ..., €y, €1 We have
(312) hﬁrl == hfnj;l = _h;l:rll,mﬁ% == _hgnt,IZm

—H+ \/(2}1 —1)’H? +4n(n — 1)
2(n—1) ’

pn+l _ . _
h:;ln = O, Cptl1 = —H.

(3 If p=2 and H#0, 6(u) <1+ . H? for any ue UM,, then
(AT)yyy; > 0. 1 Tn+1

3n+1
4

@ If p=3, or p=2 and H=0, and if&(u)sg—f— i H? for any
ue UM,, then (AT),y, =0. If equality (AT),,,, =0 holds, then n(= 2m) must
be even and H =0, after suitable rearrangement of ey, ..., ey,, we have

V3
(313) h;,lJrl == hs;;zl = 7h;l1i11,m+1 == 7h;;;,12m = T

Proof. First we prove assertions (1) and (2). Since e¢; is a maximal
direction of &, we have

(3.14) —hN <RV <R i=2,000n

By Definition 1.1 we have

(3.15) hitt = —hi.

i=2
It is easy to see that the convex function f(hlf', ... A" =", (h2*1)? sub-
ject to the linear constraints (3.14) and (3.15) attains its maximal value f.x =
(n—1)(h} 2 when (after suitable rearrangement of ey, ..., e,
(316) il?lJrl == /jl:/;;l - 7}~l;}1:rllﬂn+l == 7%3;_12"1, if n= 2m’

and fiu = (n — 2)(?1{’1“)2 when

(317) il?l-H == il;;j;ql = _ilil;:ll,m-&-l

==L B =0, if n=2m+ 1.

2m,2m> "*nn



94 HONG-WEI XU, FEI HUANG AND FEI XIANG

Thus, by Lemma 3.1(1) we get

(3.18) | n(h1Y (1 + H? = 6(ey)), if p=1,n=2m,
§<AT)1111 >4 (h Hl) (14 H?) + cupr bl
(3.19) —(n— 1) (A5, if p=1,n=2m+1.

Assertion (1) follows from (3.16) and (3.18) immediately.
If p=1, n=2m+1, we have ¢,y = +H, and if

—H + /(20— 1*H> +4n(n — 1)

7n+1 <
hiv < 2(n—1) ’

then
n(1+ H?) + et i — (n = D)(RIFH? > 0.

So assertion (2) follows from (3.17) and (3.19).

_Secondly we prove assertion (3). We take the following steps: first prove
(AT) ;1 = 0, then show that the equality can not attain. Since e; is a maximal
direction of &, we have

(3.20) (R (R < (RY?, i=2,....n.
Therefore, by Proposition 2.1, we have

(3.21) (A + o) (RSN + coahl R

1 - -
< S G + e + VY 26,0 h + H, k=2,

Substituting this into (3.7), we obtain

(3.22) (R

- = n+1
(AT )y = (hn“)z{n(l +H?) - >

1
2

1- = =
1 (s =\ )+ 2eunhl ! + H?)|.

By Proposition 2.2, the function

flent1) = cps1 — \/(ilﬂ“)z + 2, kS 4+ H2,  cpyi € [-H, HI,

satisfies
H? s H
—Tﬂ—h?il, lf h?rl 2 ?,
flen) =4 2 Jn
hﬁ“—ZH7 ifhf’f1<?.
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Substituting the above into (3.22), we have

. 3n+1 - H
323) | (h;’r‘)z{m "4+ H?* — né(er)|, hitt > 5
E(AT)IIII =9 _ - - H
(3.24) (il + H2) = (0= DHB (iYL <
Assume izfl“ < H—MH2 as in assertion (3). If a <h <
4n 2
1+%H2, from (3.23) we obtain (AT),,, =0. If Aff! < g, then
. . —1 H?
n(L+ 1) = (n = DHB = () > (1 + 1) == 2 =
2 1
=n+ n: H? > 0.

Thus from (3.24), (AT);;;; > 0. In summary, it follows that (AT);;;, > 0.
If (AT),;;; =0, then (3.20)—(3.24) all become equalities. By Proposition
2.1, (3.21) becomes equality if and only if (after suitable rearrangement of ¢;)

(3.25) Wyt = =Rt = _hﬁll sHl =T = —hpt = Gl e, H),
h512+2 ’ hn+2 _hsnjlz sH1 = hﬁz G (hfl ; Cntl, H)7

where

Ci (ki ,cn+1,H>h"“\/ [ Gi !+ a2 + 20! + H2),
(hffrlacn—HaH)

1 -
= sgn(cy) - h”+1\/ [1— (RS + conr) /\/ RN 4 2e, R0 + H2),

and sgn(c,2) is the sign function of ¢,,>. On the other hand, by Definition 1.1
and (3.1) we have

n n

629 S =, S0
k=2 =
Hence, by substituting (3.25) into (3.26), we have
(3.27) B+ (25— 0= )R nn, H) =0,
(28_ n-— 1)C2(h11 y Cnt+1, ) =0.
Noting hn“ # 0, we have

CZ(il{liH7 cn+l7H) = Oa
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which is equivalent to

(328) Cpyl = iH, Cpy2 = 0.
Since (3.23) becomes equality, we have
~ 3n+1 H
2 = 1+=——H*(>>).
(3.29) hi + i (> 2)

Together with Proposition 2.2, we get

H2
———(<0).
2nH!

From (3.28)—(3.30), we obtain H = 0, which is a contradiction with the assump-
tion H #0. So (AT);;; #0. This proves assertion (3).
Finally we prove assertion (4). From Proposition 2.1 and (3.20) we have

(330) Cntl =

(3.31) AN+ ) + curahl B

1
< —
2

(R QR + o+ 4R + deaur T + H),
k=2,...,n.

Substituting this into (3.8), we obtain

(332) (AT = GVl + H?) — n+ DY

n—1

+ R (s — AR + daniT + H))

By Proposition 2.2, the function

9lenst) = curt — VAR + deuahit + H2, oy € [-H, H],

satisfies
H> ... - H
—W—zhlrl, h?TIZZ’
g(ens1) = n I
2h —2H, htt < T
Substituting this into (3.32), we get
(3.33)
= Tn+1 ~ = H
L (B2 |+ 2 2 = () W=
E(AT)IIII = o
(ki) [n(1 4+ H?) = (n = DHA = (0 +2) (R, i <
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. 1 Tn+1 . . H -
Aslsum7e hlfl+1 <\/37 ’;:;1 H? as in assertion (4). If 7= Ii;fr <
\/§+ ’;; H?, then from (3.33) we obtain (AT);;, =0. If A®! <o we
have

= - Iln+2
w1+ H) = (n = DHB = 0+ 2) (1) > o+ == H? > 0,
It's seen from (3.33) that (AT);;;; >0. In summary, we have (AT);; > 0.
If (AT);;;; =0, then (3.31)—(3.33) all become equalities. By Proposition

2.1, (3.31) becomes equality if and only if (after suitable rearrangement of e;)
(3.34) {lgzﬂ == {‘zntJrl = _{’ﬁll,tﬂ == _{lrrzlzjl = Cll({lﬁlvan»H)a

hyy? == bt = iR == =l = G e, H),
where

- ~ 1 ~ = =
Cl(h, cusr, H) = i \/5 [+ 2hf + Cn+1)/\/4(hi’1+])2 + e hi ™+ HY,

Cé(hffrla Cn+laH)

= sgn(caya) - A \/% (1 — A + eupr) /\/4(;};11“)2 +de, k' + H).
Substituting (3.34) into (3.26) we obtain
(335) {ilffw(zz—nt1)c;(il;q+1,cn+1,H)—o,
(2t —n—1)C5(hI 1, cpir, H) = 0.
Noting A7 # 0, we have
Cy(hii, cupr, H) =0,

which is equivalent to

(3.36) Chp1 =*H, ¢ =0.

Substituting (3.36) into the first identity of (3.35), we obtain

(3.37) n=2t.

Combining (3.34), (3.36), (3.37), we get that n(=2m) is even and

B
==t = b ==, = 0

Since (3.33) becomes equality, we get

~ 1 Tn+1 H
n+l1 __ - 2
(3.39) it =3+ H <>4>.
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Together with Proposition 2.1, we have

H2

3.40 g = — 17
( ) +1 4h;l1+1

(<0).

From (3.36), (3.39) and (3.40), we obtain H =0, and Af' = A/l = \/% As-
sertion (4) is proved. O

Let L(x) be a function defined by L(x) = max,cy, 6(u) on M. We have

LeEmMMA 3.3. Let M be an n-dimensional compact submanifold with parallel
mean curvature in a unit sphere S"TP(1). Assume that one of the following
conditions is satisfied.

(1) If p=1, n(=2m) is even, 6(u) <1+ H? for all ue UM,

2 If p=1, n(=2m+1) is odd,

n 2n* —2n+1

o) < Tyt Ty

H
- 1)2 \/(2” - 1)2H2 +4n(n—1), for all ue UM.

2(n—
3 1
(3) If p=2, H#0, &(u)£1+%H2for all ue UM,
1 7 1
@ If p=3, or p=2 and H=0, and if&(u)£§+ Z;; H? for all

ueUM.
Then L(x) is a constant function on M.

Proof. L(x) is obviously a continuous function. Using the maximum
principle, it suffices to show that L(x) is a subharmonic function in the gen-
eralized sense. Fix xe M and let ¢ be a maximal direction of &(u) at x. In
an open neighborhood U, of x within the cut-locus of x, we denote by u, the
tangent vector to M obtained by parallel transport of ¢; = u(x) along the unique
geodesic connecting x and y. Define g,(y) =6(u(y)) on U,, then

(3.41) Ag(x) = AT ((y), u(y) u(y), u(y))],_
= Z(V?T)(el ,€1,€1, 61)

1

= (AT)yyy,(x).

If ||h(e1,e1)|| # 0, by Lemma 3.2, we have (AT),,,;(x) =0. If [|h(e;,e1)|| =0,

then A =0 at x, ie.,

h} =c,, for any a,i,
hi =0, for any a,i# j.
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Substituting quantities above into (2.4), it is easy to see that Ahj =0 for any
o, i, j. Therefore,

(AT) 111 ( *22 hixu

Thus, we have in any case Ag.(x) = (AT),;;;(x) = 0.
For the Laplacian of continuous functions, we have the generalized definition

- 1 - -
AL=C lim — J L/J 1-L(x) |,
r=0r B(x,r) B(x,r)

where C is a positive constant and B(x,r) denotes the geodesic ball of radius
r centered at x. With this definition L is subharmonic on M if and only if
AL(x) > 0 at each point xe M. Since g,(x) = L(x) and g, < L on U,, we have
AL(x) = Ag,(x) = 0. Thus, L(x) is subharmonic and hence constant on M.

4. Proof of Main Theorem

To prove Theorem 1.4 (Main Theorem), we need to prove the following
results.

Lemma 4.1. Let M be an n-dimensional compact submanifold with parallel
mean curvature in a unit sphere S"TP(1). Assume that one of the following is
satisfied:

(1) If p=1, n(=2m) is even, 6(u) <1+ H? for all ue UM,

2) If p=1, n(=2m+1) is odd,

n 22 —2n+1

~ H2
o) < T 2o
—Lz\/(zn— 1)’H?+4n(n—1), for all ue UM,
2(n—1)
_ 3n+1_,
B Ifp=2 H#0, 6(u) <1 +—— 1, H~< for all ue UM,
@ If p=3, or p=2 and H=0, and if &(u )<%+7;:;11H2 for all

ue UM, 1
then M is the totally umbilical sphere S"| ———].
g r (\/ 1 +H2)

Proof. Let e; be a maximal direction of ¢ at xe M. Assume that M
is not an umbilical submanifold, i.e., 6(e;) #0. Define g.(y) =é(u(y)) as in
the proof of Lemma 3.3. By Lemma 3.3, g,(x) is a maximum of g, thus
(AT) i1 = £gy(x) <0.

On the other hand, by Lemma 3.2, we have (AT),;; >0, for p=2 and
H#0; (AT),y, =0, for p#2,0or p=2and H=0. In case (3), we already
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have the contradiction. In the other cases, we obtain (AT),;;; =0 on M. By
Lemma 3.2, we have

1+H? if p=1, nis even,
n 2n? —2n+1
+
n—1 2(n—1)

H 5 . .
———————\/C2n—-1)"H?*>+4n(n—-1), if p=1, nis odd,
sV (n—1), if p

H2

(4.1) d(er) =

1.
3 if p>3,or p=2and H=0.

This contradicts to assumptions in (1) and (2) respectively. Moreover, if p >3
and (AT);;;;(x)=0 on M, from Lemma 3.2 we have H =0. Hence (4.1)
contradicts to the assumption in (4). Therefore, 6(u) =0 for any ue UM, and
M is totally umbilical in S"7, O

THEOREM 4.2. Let M be a compact hypersurface with constant mean cur-
vature in S"™\.  Assume that n(=2m) is even.
(1) If 6(u) < 1+ H? for any ue UM, then M is the totally umbilic sphere
1

S ——==;
V14 H?
(2) If max,cpa 6(u) =1+ H?, then M is the Clifford isoparametric hyper-
surface
S’Tl 1 X S’Tl 1
V20 + B+ BYTH V20 + B2~ HVTT 1)

Proof. The assertion of (1) follows from Lemma 4.1. We prove (2). As
in Lemma 4.1, we get (AT);;; =0.
From (3.11) we obtain

(42) AU =k =1+ H?2, fora=1,....mr=m+1,...,n.
Correspondingly,

(4.3) Wt = VI H? B = — V1 4+ H?,
where ¢,,1 = +H is a constant.
By Lemma 3.1, hﬁkl = In this case every ¢; is a maximal direction, so

we have hrtt =0 for any i, k. From (2.3) we have R = V(b)) =
Vk(h P yepnn) = hl’j,jl = 0. By polarization, we get hl/k =0 for any i, j, k.
From (2.1) and (3.4), we obtain

0= Zh:jz;rlwk _ thl+lw/j + Zh +1 _ hn+1 hj;+1)wij-
k
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Therefore, w, =0. Then M is locally a Riemannian product V) x V, with
dim V| =dim V> =m. The curvatures of V] and V, are

(4.4)
Rubm’ = 5(1(?5176! 5ad5bc + hn+1hn+1 h;ljlhwrl
= 1 + cn+1 + v 1+H 5(4661701 - adébc) for 1< a7b,c,d =m,
Rene = (1 + (a1 — V1 + H2)?) (0,000 — OpOy), for m+1<rs,t,w<n.

Thus ¥ and V5 are two spaces with constant curvatures 2(1 + H?) + 2H/'1 + H?

and 2(1 + H?) — 2HV/1 + H? respectively. The compactness of M allows us to
complete the proof. O

THEOREM 4.3. Let M be a compact hypersurface with constant mean cur-
vature in S"'. Assume that n(=2m+1) is odd. If

_ n 2n® -2n+1_, H 2
6(u) < + H” — 2n—1)"H? +4n(n — 1),
R e R Tl e A UG (1)

1
then M is the totally umbilical sphere S"| ——].
d v (\/ 1+ H 2)

Proof. Tt follows from Lemma 3.3 that L(x) = max,c yy, 6(u) is a constant
function on M. Assume that

~ n 2n> —2n+1_, H 2
L(x) = + H — 2n—1)"H? +4n(n —1).
0= S V@ (1)
As in the proof of Lemma 4.1, we have (AT),;;; =0 on M. From (3.12) we
have
W = H 4 [H+ \/ 20— 1)2H? + dn(n— 1)]/2(n - 1),
for a=1,.
(4.5) prl = H+\/2n 12H2 + 4n(n—1)]/2(n - 1),
for r—m—|—l m,
hiil = —H.

Since h"t! is a constant, from (2.1) and (3.4) we have
S hptlor==2>"hi o, =0.
k i

Therefore

(4.6) Wb =0, k=1,....n

nnk
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Moreover, as in the proof of Theorem 4.2, we have han =0,fori,j=1,...,2m,
k=1,...,n. Hence, hl']’,jl =0, fori,j,k=1,...,n. Thus, it is easy to see from
(2.1) that

(4.7 Wgr = Wgn = Wy = 0.

Then we have

0=dw,
2m
= - § Wap N Wpp — § Was A Wgy — Wy 1 AN Oyl n T Wg Ay
s=m+1

= (Mo et 4+ Dewg A w.
Similarly we obtain (h”*'A"! 4+ 1)w, Aw, = 0. Then we have
{1 _|_hn+lhn+1 _ 0

nn

1 + hn+1hn+1 =0.

nn

(4.8)

This implies 4! = A", Hence, we have

—H +] H+\/ 1)?H? + 4n(n — 1)]/2(n — 1)

—[H A+ @n— 1)2H2 + dn(n - 1)]/2(n— 1).

Thus, (2n—1)>H2+4n(n—1)=H? ie., 4n(n—1)(1+ H?) =0, which is a
contradiction. Therefore,

n 2n* —2n+1 H >
+ - 2n—1)"H? +4n(n -1
n—1 2(n-1) 2(n—1)2\/( ) (n=1)

for any ue UM. 1t follows from Lemma 4.1 that M is an totally umbilical
sphere. O

THEOREM 4.4. Let M be an n-dimensional compact submanifold with parallel
mean curvature in S"™2. If H+#0 and

3n+1

olu) <1+ H?

, for any ue UM,

1
then M is the totally umbilical sphere S" | ——].
d r (\/ 1 +H2>

Proof. 1t follows from Lemma 4.1. O

THEOREM 4.5. Let M be an n-dimensional compact submanifold with parallel
mean curvature in S"P, where p >3, or p=2 and H=0. If

~ I Tm+1_,
H M
(u) < 3+ . , for any ue UM,
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then M is either the totally umbilical sphere S”( ), one of the embeddings

1
V14 H?

$ips 1 =1,2,3,4, or the minimal immersion ¢{p.

1 Tn+1
Proof. 1In the case where &(u) < §+ 2;

1
from Lemma 4.1 that M is the totally umbilical sphere S” (—)
1 Tn+1 V14 H?

In the case L(x)=max,cuy, 6(u) = §+ i H?, as in the proof of

Lemma 4.1, we obtain (AT),;;; =0 on M. By Lemma 3.2, we see that n(= 2m)

H?, for any ue€ UM, it follows

. - 1
is even and H =0, thus max,cyy, 6(4) = max,cuum, o(u) = 3 By the same

argument as in [4], one see that the isometric immersion is a T-isotropic
minimal immersion with parallel second fundamental tensor. Using Sakamoto’s

classification [8] of all \/T_-lsotroplc minimal immersions into a unit sphere with

parallel second fundamental form, we conclude that M is one of ¢, ,, i =1,2,3,4,
or ¢y ,. This proves Theorem 4.5. O

Proof of Main Theorem. 1t follows from Theorems 4.2, 4.3, 4.4 and
4.5. O
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