A CRITERION FOR HOLOMORPHIC EXTENSION OF PRINCIPAL BUNDLES

Indranil Biswas

Abstract

Let G be a complex affine algebraic group, and let E_{G} be a holomorphic principal G-bundle on the complement $M \backslash S$, where S is a closed complex analytic subset, of complex codimension at least two, of a connected complex manifold M. We give a criterion for E_{G} to extend to M as a holomorphic principal G-bundle. Two applications of this criterion are given.

1. Introduction

Let M be a connected complex manifold. Let $S \subset M$ be a closed complex analytic subset such that the complex codimension of S is at least two. Define $U:=M \backslash S \subset M$.

We prove the following theorem (see Theorem 3.1):
Theorem 1.1. Let G be a complex affine algebraic group and $E_{G} \rightarrow U$ a holomorphic principal G-bundle. If E_{G} admits a holomorphic connection, then it extends uniquely to M as a holomorphic principal G-bundle.

For vector bundles, Theorem 1.1 was proved by Buchdahl and Harris [3].
Now let G be a complex reductive affine algebraic group. Fix a connected maximal compact subgroup $K \subset G$.

If $E_{G} \rightarrow U$ is a holomorphic principal G-bundle, and $E_{K} \subset E_{G}$ is a C^{∞} reduction of structure group to K, then there is a unique C^{∞} connection ∇^{G} on E_{G} which preserves E_{K} and is compatible with the holomorphic structure of E_{G}. The curvature $\mathscr{K}\left(\nabla^{G}\right)$ of ∇^{G} is a smooth section of $\Omega_{U}^{1,1} \otimes \operatorname{ad}\left(E_{K}\right)$, where $\operatorname{ad}\left(E_{K}\right)$ is the adjoint vector bundle of E_{K}.

Fix a K-invariant inner product on $\operatorname{Lie}(G)$. Fix a Hermitian structure on M. These choices enable us to define L^{p}-norms on the smooth sections of $\Omega_{U}^{1,1} \otimes \operatorname{ad}\left(E_{K}\right)$.

We prove the following (see Theorem 3.2):

[^0]Theorem 1.2. Let E_{G} be a holomorphic principal G-bundle over U and

$$
E_{K} \subset E_{G}
$$

a C^{∞} reduction of structure group of E_{G} to the subgroup $K \subset G$. If the curvature of the natural connection ∇^{G} on E_{G} has finite L^{n}-norm, where n is the complex dimension of M, then E_{G} extends uniquely to a holomorphic principal G-bundle over M.

For vector bundles, Theorem 1.2 was proved by Harris and Tonegawa [4]. In Proposition 2.3 we prove a criterion for a holomorphic principal G-bundle on U to extend to M as a holomorphic principal G-bundle. Both Theorem 1.1 and Theorem 1.2 are proved using this criterion.

2. Criterion for extension

Let G be a complex affine algebraic group. A holomorphic principal G bundle over a complex manifold Y is a holomorphic fiber bundle $\phi: E_{G} \rightarrow Y$ equipped with a holomorphic right action of G

$$
\psi: E_{G} \times G \rightarrow E_{G}
$$

such that

- $\phi \circ \psi=\phi \circ p_{1}$, where p_{1} is the natural projection of $E_{G} \times G$ to E_{G}, and
- the map to the fiber product $p_{1} \times \psi: E_{G} \times G \rightarrow E_{G} \times{ }_{Y} E_{G}$ is a holomorphic isomorphism.
(We recall that $E_{G} \times{ }_{Y} E_{G}$ is the submanifold of $E_{G} \times E_{G}$ consisting of all points $\left(z_{1}, z_{2}\right)$ such that $\phi\left(z_{1}\right)=\phi\left(z_{2}\right)$.)

Fix an algebraic embedding

$$
\begin{equation*}
\rho: G \hookrightarrow \mathrm{GL}(V), \tag{2.1}
\end{equation*}
$$

where V is a finite dimensional complex vector space (since G is an affine algebraic group, a faithful G-module exists).

A theorem of Chevalley says that there is a finite dimensional complex vector space W, a complex line

$$
\ell \subset W
$$

and an algebraic homomorphism

$$
\begin{equation*}
\eta: \mathrm{GL}(V) \rightarrow \mathrm{GL}(W) \tag{2.2}
\end{equation*}
$$

such that

$$
\begin{equation*}
\rho(G)=\{T \in \operatorname{GL}(V) \mid \eta(T)(\ell)=\ell\}, \tag{2.3}
\end{equation*}
$$

where ρ is the homomorphism in (2.1). (See [5, p. 80, Theorem 11.2].) Fix such a triple (W, ℓ, η).

Let M be a connected complex manifold and

$$
\begin{equation*}
U \subset M \tag{2.4}
\end{equation*}
$$

a dense open subset. Let

$$
\begin{equation*}
\phi: E_{G} \rightarrow U \tag{2.5}
\end{equation*}
$$

be a holomorphic principal G-bundle. Let

$$
\begin{equation*}
E_{V}:=E_{G} \times^{\rho} V \quad\left(\text { respectively, } E_{W}:=E_{G} \times{ }^{\eta \circ \rho} W\right) \tag{2.6}
\end{equation*}
$$

be the holomorphic vector bundle over U associated to E_{G} for the G-module V (respectively, W) (see (2.1) and (2.2)). Therefore, by definition, E_{V} (respectively, $\left.E_{W}\right)$ is the quotient of $E_{G} \times V$ (respectively, $E_{G} \times W$) where two points (z_{1}, v_{1}) and $\left(z_{2}, v_{2}\right)$ of $E_{G} \times V$ (respectively, $\left.E_{G} \times W\right)$ are identified if and only if there is an element $g \in G$ such that $\left(z_{2}, v_{2}\right)=\left(z_{1} g, \rho\left(g^{-1}\right)\left(v_{1}\right)\right)$ (respectively, $\left(z_{2}, v_{2}\right)=$ $\left.\left(z_{1} g,(\eta \circ \rho)\left(g^{-1}\right)\left(v_{1}\right)\right)\right)$.

Let

$$
\begin{equation*}
E_{\ell}:=E_{G} \times{ }^{\eta \circ \rho} \ell \subset E_{W} \tag{2.7}
\end{equation*}
$$

be the holomorphic line subbundle associated to E_{G} for the G-module ℓ in (2.3).
Let

$$
\begin{equation*}
E_{\mathrm{GL}(V)} \rightarrow U \tag{2.8}
\end{equation*}
$$

be the holomorphic principal $\mathrm{GL}(V)$-bundle defined by the holomorphic vector bundle E_{V} in (2.6). So, $E_{\mathrm{GL}(V)}$ parametrizes all linear isomorphisms from V to the fibers of E_{V}. Note that $E_{\mathrm{GL}(V)}$ is a quotient of $E_{G} \times \mathrm{GL}(V)$; the quotient map sends any $(g, A) \in\left(E_{G}\right)_{x} \times \mathrm{GL}(V)$ to the isomorphism $V \rightarrow\left(E_{V}\right)_{x}$ that maps any v to the equivalence class of $(g, A(v))$. This also shows that we have a holomorphic embedding

$$
\begin{equation*}
\imath: E_{G} \rightarrow E_{\mathrm{GL}(V)} \tag{2.9}
\end{equation*}
$$

that sends any $z \in E_{G}$ to the equivalence class of $\left(z, \operatorname{Id}_{V}\right)$.
The homomorphism η in (2.2) makes W a $\mathrm{GL}(V)$-module. Let

$$
\begin{equation*}
E_{W}^{\prime}:=E_{\mathrm{GL}(V)} \times{ }^{\mathrm{GL}(V)} W \rightarrow U \tag{2.10}
\end{equation*}
$$

be the holomorphic vector bundle associated to the principal $\mathrm{GL}(V)$-bundle $E_{\mathrm{GL}(V)}$ in (2.8) for the $\mathrm{GL}(V)$-module W. So, by definition, E_{W}^{\prime} is the quotient of $E_{\mathrm{GL}(V)} \times W$ where two points $\left(z_{1}, w_{1}\right)$ and $\left(z_{2}, w_{2}\right)$ are identified if there is an element $A \in \mathrm{GL}(V)$ such that $\left(z_{2}, w_{2}\right)=\left(z_{1} g, \eta\left(A^{-1}\right)\left(w_{1}\right)\right)$.

Since E_{V} and E_{W} are associated to the principal G-bundle E_{G} for the G modules V and W respectively, we conclude that there is a natural holomorphic isomorphism

$$
\begin{equation*}
E_{W}^{\prime} \xrightarrow{\sim} E_{W} \tag{2.11}
\end{equation*}
$$

where E_{W}^{\prime} and E_{W} are constructed in (2.10) and (2.6) respectively. The isomorphism in (2.11) sends the equivalence class of $(z, A, w) \in E_{G} \times \mathrm{GL}(V) \times W$
to the equivalence class of $(z, \eta(A)(w))$ (recall that $E_{\mathrm{GL}(V)}$ is a quotient of $E_{G} \times \mathrm{GL}(V)$, while E_{W}^{\prime} and E_{W} are quotients of $E_{\mathrm{GL}(V)} \times W$ and $E_{G} \times W$ respectively).

Assumption 2.1. Assume that the following two conditions hold:
(1) the holomorphic vector bundles E_{V} and E_{W} in (2.6) extend as holomorphic vector bundles \bar{E}_{V} and \bar{E}_{W} respectively to M, and
(2) the holomorphic line subbundle E_{ℓ} in (2.7) extends to M as a holomorphic line subbundle of \bar{E}_{W}.

Let $\bar{E}_{\mathrm{GL}(V)} \rightarrow M$ be the holomorphic principal $\mathrm{GL}(V)$-bundle defined by the holomorphic vector bundle \bar{E}_{V} in Assumption 2.1(1). So, $\bar{E}_{\mathrm{GL}(V)}$ parametrizes all linear isomorphisms from V to the fibers of \bar{E}_{V}. Let

$$
\begin{equation*}
\bar{E}_{W}^{\prime}:=\bar{E}_{\mathrm{GL}(V)} \times{ }^{\mathrm{GL}(V)} W \rightarrow M \tag{2.12}
\end{equation*}
$$

be the holomorphic vector bundle associated to the principal $\mathrm{GL}(V)$-bundle $\bar{E}_{\mathrm{GL}(V)}$ for the $\mathrm{GL}(V)$-module W in (2.2).

Assumption 2.2. Assume that the isomorphism in (2.11) on U extends to a holomorphic isomorphism of vector bundles over M

$$
\begin{equation*}
\theta: \bar{E}_{W}^{\prime} \xrightarrow{\sim} \bar{E}_{W}, \tag{2.13}
\end{equation*}
$$

where \bar{E}_{W}^{\prime} is constructed in (2.12), and \bar{E}_{W} is the extension in Assumption 2.1(1).
Proposition 2.3. The holomorphic principal G-bundle $E_{G} \rightarrow U$ extends to a holomorphic principal G-bundle over M.

Proof. Let $\bar{E}_{\mathrm{GL}(W)} \rightarrow M$ be the holomorphic principal $\mathrm{GL}(W)$-bundle defined by the holomorphic vector bundle \bar{E}_{W}. So, $\bar{E}_{\mathrm{GL}(W)}$ parametrizes all linear isomorphisms from W to the fibers of \bar{E}_{W}. Using the isomorphism θ in (2.13), a holomorphic map of fiber bundles

$$
\begin{equation*}
\varphi: \bar{E}_{\mathrm{GL}(V)} \rightarrow \bar{E}_{\mathrm{GL}(W)} \tag{2.14}
\end{equation*}
$$

can be constructed as follows. Recall that for any $x \in M$, an element of the fiber $\left(\bar{E}_{\mathrm{GL}(V)}\right)_{x}$ is a linear isomorphism $V \rightarrow\left(\bar{E}_{V}\right)_{x}$. Given any linear isomorphism

$$
\alpha: V \rightarrow\left(\bar{E}_{V}\right)_{x},
$$

we have an isomorphism $\tilde{\alpha}: W \rightarrow\left(\bar{E}_{W}^{\prime}\right)_{x}$ that sends any w to the equivalence class of (α, w). The map φ in (2.14) sends α to the element of $\left(\bar{E}_{\mathrm{GL}(W)}\right)_{x}$ corresponding to the isomorphism

$$
\theta(x) \circ \tilde{\alpha}: W \rightarrow\left(\bar{E}_{W}\right)_{x} .
$$

For any $z \in \bar{E}_{\mathrm{GL}(V)}$ and $A \in \mathrm{GL}(V)$, clearly, $\varphi(z A)=\varphi(z) \eta(A)$, where η is the homomorphism in (2.2).

Let

$$
\begin{equation*}
P:=\{A \in \mathrm{GL}(W) \mid A(\ell)=\ell\} \subset \mathrm{GL}(W) \tag{2.15}
\end{equation*}
$$

be the maximal parabolic subgroup, where ℓ is the line in (2.3). Let

$$
\bar{E}_{\ell} \subset \bar{E}_{\mathrm{GL}(W)}
$$

be the holomorphic line subbundle over M obtained by extending the holomorphic line subbundle E_{ℓ} in (2.7) (see Assumption 2.1(2)). This line subbundle \bar{E}_{ℓ} gives a reduction of structure group of the holomorphic principal GL(W)-bundle $\bar{E}_{\mathrm{GL}(W)}$

$$
\begin{equation*}
\bar{E}_{P} \subset \bar{E}_{\mathrm{GL}(W)} \tag{2.16}
\end{equation*}
$$

to the subgroup P defined in (2.15). This reduction is uniquely determined by the condition that for any point $x \in M$, the submanifold

$$
\left(\bar{E}_{P}\right)_{x} \subset\left(\bar{E}_{\mathrm{GL}(W)}\right)_{x}
$$

is the space of all linear isomorphisms $A: W \rightarrow\left(\bar{E}_{W}\right)_{x}$ such that $A(\ell)=\left(\bar{E}_{\ell}\right)_{x}$.
Finally, define

$$
\begin{equation*}
\bar{E}_{G}:=\left\{z \in \bar{E}_{\mathrm{GL}(V)} \mid \varphi(z) \in \bar{E}_{P}\right\} \tag{2.17}
\end{equation*}
$$

where φ and \bar{E}_{P} are constructed in (2.14) and (2.16) respectively. Let

$$
\gamma: \bar{E}_{G} \rightarrow M
$$

be the restriction of the natural projection of $\bar{E}_{\mathrm{GL}(V)}$ to M. For any $x \in U$, it is straight forward to check that $\gamma^{-1}(x)$ is identified with the fiber $\left(E_{G}\right)_{x} \subset$ $\left(E_{\mathrm{GL}(V)}\right)_{x}$; the fiber $\left(E_{G}\right)_{x}$ is identified as a submanifold of $\left(E_{\mathrm{GL}(V)}\right)_{x}$ using l in (2.9). For the action of the group $\mathrm{GL}(V)$ on $\bar{E}_{\mathrm{GL}(V)}$, the subgroup G clearly preserves $\bar{E}_{G} \subset \bar{E}_{\mathrm{GL}(V)}$, and

$$
\gamma: \bar{E}_{G} \rightarrow M
$$

is a holomorphic principal G-bundle. This completes the proof of the proposition.

3. Some applications

3.1. Holomorphic connections and extensions. Let M be a connected complex manifold. Let

$$
\begin{equation*}
S \subset M \tag{3.1}
\end{equation*}
$$

be a closed complex analytic subset such that the complex codimension of S is at least two. Define

$$
\begin{equation*}
U:=M \backslash S . \tag{3.2}
\end{equation*}
$$

Let G be as before. See [2] for holomorphic connections on holomorphic principal G-bundles.

Theorem 3.1. Let $E_{G} \rightarrow U$ be a holomorphic principal G-bundle equipped with a holomorphic connection ∇. Then E_{G} extends uniquely to a holomorphic principal G-bundle over M.

Proof. Fix ρ and η as in (2.1) and (2.2) respectively. Define the vector bundles E_{V} and E_{W} as in (2.6). The holomorphic connection ∇ induces a holomorphic connection on any fiber bundle associated to E_{G}. Let ∇^{V} and ∇^{W} be the holomorphic connections on E_{V} and E_{W} respectively induced by ∇. The vector bundles E_{V} and E_{W} extends uniquely to holomorphic vector bundles on M (see [3, p. 38, Corollary 2.4]). Let \bar{E}_{V} (respectively, \bar{E}_{W}) be the holomorphic vector bundle on M obtained by extending E_{V} (respectively, E_{W}).

Consider the holomorphic line subbundle $E_{\ell} \subset E_{W}$ in (2.7). Since ℓ is a submodule of the G-module W, the induced holomorphic connection ∇^{W} on E_{W} preserves the line subbundle E_{ℓ}. Consequently, E_{ℓ} extends uniquely to a holomorphic line subbundle \bar{E}_{ℓ} of \bar{E}_{W}. Therefore, Assumption (2.1) is satisfied.

From the uniqueness of the extensions \bar{E}_{V} and \bar{E}_{W} it follows that the isomorphism in (2.11) extends as in (2.13) to a holomorphic isomorphism of vector bundles over M. Hence, Assumption (2.2) is also satisfied.

Therefore, from Proposition 2.3 we conclude that E_{G} extends to a holomorphic principal G-bundle over M. That this extension is unique follows from the uniqueness of the extensions of E_{V}, E_{W} and E_{ℓ}.
3.2. Bound on curvature. Let G be a reductive linear algebraic group defined over C. Fix a maximal compact connected subgroup

$$
\begin{equation*}
K \subset G . \tag{3.3}
\end{equation*}
$$

Let \mathfrak{g} be the Lie algebra of G. The group G has the adjoint action on \mathfrak{g}. Fix a positive Hermitian form h on \mathfrak{g} fixed by the adjoint action of K.

Let $E_{G} \rightarrow Y$ be a holomorphic principal G-bundle over a complex manifold Y. Let

$$
E_{K} \subset E_{G}
$$

be a C^{∞} reduction of structure group of E_{G} to the subgroup K in (3.3). Then there is a unique connection ∇^{K} of the principal K-bundle E_{K} such that the connection ∇^{G} on E_{G} induced by ∇^{K} is compatible with the holomorphic structure of E_{G}; see [1, p. 220, Definition 3.1].

Let $\operatorname{ad}\left(E_{G}\right):=E_{G} \times{ }^{G} \mathfrak{g}$ be the adjoint vector bundle of E_{G}, in other words, $\operatorname{ad}\left(E_{G}\right)$ is the holomorphic vector bundle over Y associated to E_{G} for the adjoint action of G on \mathfrak{g}. Let

$$
\operatorname{ad}\left(E_{K}\right):=E_{K} \times{ }^{K} \operatorname{Lie}(K) \subset \operatorname{ad}\left(E_{G}\right)
$$

be the adjoint vector bundle of E_{K}. The K-invariant Hermitian form h on \mathfrak{g} defines a Hermitian structure on $\operatorname{ad}\left(E_{G}\right)$. The curvature $\mathscr{K}\left(\nabla^{G}\right)$ of the connection ∇^{G} is a C^{∞} section of $\Omega_{Y}^{1,1} \otimes \operatorname{ad}\left(E_{K}\right)$ over U. If we fix a Hermitian structure on Y, then combining it together with the above Hermitian structure on $\operatorname{ad}\left(E_{G}\right)$ we can define p-norm, $p>0$, on the smooth sections of $\Omega_{Y}^{1,1} \otimes \operatorname{ad}\left(E_{G}\right)$ (see [4, p. 30]).

Let M be a connected complex manifold of complex dimension n. As in (3.1), let S be a closed complex analytic subset of complex codimension at least two. Define U as in (3.2).

Theorem 3.2. Let E_{G} be a holomorphic principal G-bundle over U and

$$
E_{K} \subset E_{G}
$$

a C^{∞} reduction of structure group of E_{G} to the subgroup $K \subset G$. Assume that the curvature of the natural connection ∇^{G} has finite L^{n}-norm. Then E_{G} extends uniquely to a holomorphic principal G-bundle over M.

Proof. Consider the G-modules V and W in (2.1) and (2.2) respectively. Fix K-invariant Hermitian structures h_{V} and h_{W} on V and W respectively. Since h_{V} (respectively, h_{W}) is K-invariant, it induces a Hermitian structure on the associated vector bundle E_{V} (respectively, E_{W}) in (2.6).

Consider the unique connection ∇^{G} on E_{G} associated to the reduction $E_{K} \subset E_{G}$. Let ∇^{V} and ∇^{W} be the holomorphic connections on E_{V} and E_{W} respectively induced by ∇^{G}. Note that ∇^{V} (respectively, ∇^{W}) coincides with the unique Hermitian connection on the holomorphic vector bundle E_{V} (respectively, $\left.E_{W}\right)$.

Since the curvature of the connection ∇^{G} has a finite L^{n}-norm, it follows immediately that the curvatures of the induced connections ∇^{V} and ∇^{W} are also of finite L^{n}-norm. Therefore, E_{V} (respectively, E_{W}) extends uniquely to a holomorphic vector bundle \bar{E}_{V} (respectively, \bar{E}_{W}) over M (see [4, p. 29, Theorem 1]).

The line subbundle $E_{\ell} \subset E_{W}$ in (2.7) is preserved by the connection ∇^{W}. Therefore, E_{ℓ} extends uniquely to a holomorphic line subbundle of \bar{E}_{W}. Hence the theorem follows from Proposition 2.3.

References

[1] B. Anchouche and I. Biswas, Einstein-Hermitian connections on polystable principal bundles over a compact Kähler manifold, Amer. Jour. Math. 123 (2001), 207-228.
[2] M. F. Atiyah, Complex analytic connections in fibre bundles, Trans. Amer. Math. Soc. $\mathbf{8 5}$ (1957), 181-207.
[3] N. P. Buchdahl and A. Harris, Holomorphic connections and extensions of complex vector bundles, Math. Nachr. 204 (1999), 29-39.
[4] A. Harris and Y. Tonegawa, Analytic continuation of vector bundles with L^{p}-curvature, Int. Jour. Math. 11 (2000), 29-40.
[5] J. E. Humphreys, Linear algebraic groups, Graduate texts in mathematics 21, SpringerVerlag, New York, Heidelberg, Berlin, 1987.

Indranil Biswas
School of Mathematics
Tata Institute of Fundamental Research
Homi Bhabha Road
Bombay 400005
India
E-mail: indranil@math.tifr.res.in

[^0]: 2000 Mathematics Subject Classification. 32L05, 32D15.
 Key words and phrases. Holomorphic principal bundle, holomorphic extension, connection. Received January 6, 2010.

