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KODAI MATH. J.
33 (2010), 192–210

HIGHER CODIMENSIONAL EUCLIDEAN HELIX SUBMANIFOLDS

Antonio J. Di Scala* and Gabriel Ruiz-Hernández
†

Abstract

A submanifold of Rn whose tangent space makes constant angle with a fixed

direction d is called a helix. Helix submanifolds are related with the eikonal PDE

equation. We give a method to find every solution to the eikonal PDE on a

Riemannian manifold locally. As a consequence we give a local construction of

arbitrary Euclidean helix submanifolds of any dimension and codimension. Also we

characterize the ruled helix submanifolds and in particular we describe those which are

minimal.

1. Introduction

In our work [6] we give a method to construct locally all the helix hyper-
surfaces in the Euclidean space with respect to some constant unitary direction
d. They are always ruled by straight line segments and these segments are the
integral curves of the orthogonal projection of d on TM. In this article we work
with higher codimensional and dimensional immersed helix submanifolds M in
Rn, i.e. submanifolds whose tangent space makes a constant angle with respect to
a constant unitary direction d called a helix direction. We denote the unitary
tangent and normal components of d by T and x, respectively. We called them
tangent and normal helix directions, respectively. The integral curves of T are
classic helices in the ambient with respect to the same direction d, so we call them
helix lines. Some properties of helix submanifolds have been investigated in
other Riemannian ambients, see for example [7], [8], [11]. Some other motiva-
tions for the study of helix submanifolds comes from the physics of interfaces of
liquid crystals (see [12] for details), and that they appear contained in the shadow
boundary of a submanifold (see [11], [10]).

In higher codimension the helix lines are just geodesics of the helix sub-
manifold (Proposition 2.4). When we have the condition ‘?

Tx ¼ 0, they are also
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geodesics in the ambient, where ‘? is the connection induced in TM? (Theorem
4.3). In Theorems 4.4 and 4.6 we explain how to construct and reconstruct
the helix submanifolds whose helix lines are segments of straight lines, we call
them ruled helix submanifolds. These results are local and they are the natural
extension from codimension one to higher codimension. In Theorem 7.1, we
prove that these kind of submanifolds are minimal if and only if its non empty
intersections with hyperplanes orthogonal to d are also minimal in the Euclidean
ambient. So there are many examples of minimal ruled helix submanifold, of
any codimension greater or equal that one, and dimension greater or equal than
two.

In Theorem 3.3, we proved that a Riemannian product submanifold is a
helix if and only if their factors are also helix. In Section 5 we study the
problem of local construction and reconstruction of an arbitrary helix submani-
fold with any dimension and codimension. We solved this by using eikonal
functions f on a Riemannian manifold i.e. k‘f k is constant. In Theorems 5.2
and 5.3, there is a method to find locally any solution of the eikonal PDE in any
Riemannian manifold. By our previous work in [6] we have a concrete method
to construct locally all the helix submanifolds by finding an eikonal function on a
Riemannian manifold.

In Section 6, we classify the class of strong r-helix submanifolds (See
Definition 6.1) which were introduced in our work [6]. There we asked for
the classification of those helix which have r linearly independent (called weak
r-helix) helix directions dj whose normal helix direction xj are parallel with the
normal connection. The latter condition says that ‘?xj ¼ 0, which implies that
‘?
Tj
xj ¼ 0 where Tj is the tangent helix direction of dj. So, these class of helix

has a straight line segment for each direction dj. In Theorem 6.5 we see that
these submanifolds are strong r-helix, i.e. they are helix with respect to any
direction in a r-dimensional subspace of Rn. The first author proved in [5] the
existence of helix submanifolds in Euclidean space which are weak r-helix but
not strong r-helix. The aforementioned classification is explained in Theorem
6.6.

2. Preliminaries

In this article a manifold M is assumed to be Cy and connected.

Definition 2.1. Given a submanifold MHRn and an unitary vector d0 0
in Rn, we say that M is a helix with respect to d if for each q A M the angle
between d and TqM is constant.

Let us recall that a unitary vector d can be decomposed in its tangent and
orthogonal components along the submanifold M, i.e. d ¼ cosðyÞTþ sinðyÞx with
kTk ¼ kxk ¼ 1, where T A TM and x A nðMÞ. The angle between TqM and d
is constant if and only if the tangential component of d has constant length
kcosðyÞTk ¼ cosðyÞ.
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If y ¼ p

2
, M is contained in a hyperplane orthogonal to d. In the case that

y ¼ 0 then M is a Riemannian product with one factor with direction parallel to

d. So, we can assume that 0 < y <
p

2
. Under these conditions we can say that

M is a helix of angle y.
We will call T and x the tangent and normal directions of the helix sub-

manifold M. We can call d the helix direction of M and we will assume d
always to be unitary.

Definition 2.2. Let MHRn be a helix submanifold of angle y0
p

2
w.r. to

the direction d A Rn. We will call the integral curves of the tangent direction T
of the helix M, helix lines of M w.r. to d.

The helix lines are classical helices. Since d and x are orthogonal to M VH
so is T. Then the helix lines are orthogonal to the level sets H VM, where H is

any hyperplane orthogonal to d if y0
p

2
.

Definition 2.3. We say that a helix submanifold M is a ruled helix, if all
the helix lines of M are straight lines.

Recall that if d ¼ cosðyÞTþ sinðyÞx is the decomposition of d in its normal
and tangent components, we say that x is parallel normal in the direction T if

‘?
Tx ¼ 0:

Here ‘? denotes the normal connection of M induced by the standard covariant
derivative of the Euclidean ambient. Let us denote by D the standard covariant
derivative in Rn and by ‘ the induced covariant derivative in M. Since M is
full, i.e. not contained in any hyperplane, we have cosðyÞ0 0. Let Ax and a be
the shape operator and the second fundamental form of MHRn.

Taking the covariant derivative D with respect to X in both hands of the
equation

d ¼ cosðyÞTþ sinðyÞx
we obtain:

0 ¼ cosðyÞDXTþ sinðyÞDXx:

Introducing the normal component and the tangential one (in M) we get:

cosðyÞð‘XTþ aðX ;TÞÞ þ sinðyÞð�AxðX Þ þ ‘?
XxÞ ¼ 0:

This implies

H ¼ cosðyÞ‘XT� sinðyÞAxðXÞ ¼ 0;

cosðyÞaðX ;TÞ þ sinðyÞ‘?
Xx ¼ 0:

�
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Let us observe that the conditions given by these two formulas are also su‰cient,
i.e. if there exist a constant y, a unitary tangent vector field T on M and a
normal unitary vector field x such that they satisfy these equations, then the
vector field d :¼ cosðyÞTþ sinðyÞx is constant in Rn. Therefore M is a helix
with respect to d.

Assume sinðyÞ0 0. Then the first equation of the system H is AxðXÞ ¼

cotðyÞ‘XT. Notice that if sinðyÞ ¼ 0 then T ¼ d

kdk and in this case M splits
since the constant direction d is tangent to M.

Proposition 2.4. The helix lines of a helix submanifold MHRn are
geodesics in M.

Proof. The equation AxðXÞ ¼ cotðyÞ‘XT implies AxðTÞ ¼ 0. Indeed, for
any vector field X we have

hAxðTÞ;Xi ¼ hAxðXÞ;Ti ¼ cotðyÞh‘XT;Ti ¼ 0;

since T has unit length. So we get that ‘TT ¼ cotðyÞAxðTÞ ¼ 0. r

Remark 2.5. Let us observe that for any helix euclidean submanifold M,
the conditions aðT ;X Þ ¼ 0 and ‘?

Xx ¼ 0 are equivalent for every X A TM. So,
in particular aðT ;TÞ ¼ 0 and ‘?

Tx ¼ 0 are equivalent.

Definition 2.6. The relative nullity space of the second fundamental form a
(of MHRn) is the subset

fX A TM j aðX ;YÞ ¼ 0; for every Y A TMg:

In the special case when x is parallel normal, i.e. ‘?x ¼ 0, we can say more:

Proposition 2.7. Let M be a helix with parallel normal direction. Then the
tangent direction T is in the relative nullity of M.

Proof. This is a direct consequence of the second equation of the system
H. r

3. Product of helices

We will use the next well known result of linear algebra.

Lemma 3.1. Let V HRn be a linear subspace. Let v1; . . . ; vk be any basis
of V. Then the orthogonal projection of Rn onto V is given by p : Rn ! V ,
pðvÞ ¼ AðAtAÞ�1

Atvt, where A is the matrix with the vector vtj as jth-column.
Here v ¼ ðx1; . . . ; xnÞ A Rn.

In particular, if the basis of V is orthonormal, then pðvÞ ¼ AAtvt.
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An easy consequence of this Lemma is the following corollary.

Corollary 3.2. If Mj is a helix submanifold of Rnj , j ¼ 1; 2 w.r. to the
direction unitary dj, then the Riemannian product M ¼ M1 �M2 HRn1 � Rn2 is a
helix submanifold w.r. to the direction d ¼ 1=

ffiffiffi
2

p
ðd1; d2Þ A Rn1þn2 .

Proof. The matrix A (of Lemma 3.1) consist of the 2� 2-matrix blocks A11

and A22 and a zero matrix elsewhere. Each block Ajj is determined by a frame
field (local orthonormal basis) of TMj for j ¼ 1; 2. The projection p : Rn !
TpM1 lTqM2 is given by the orthogonal decomposition, pðd1; d2Þ ¼ A11A

t
11d

t
1 þ

A2A
t
22d

t
2, which has constant length. r

In the next result, we see that the reciprocal of this Corollary 3.2, is valid.

Theorem 3.3. Let M1 HRn1 , M2 HRn2 be two submanifolds. If the prod-
uct M1 �M2 HRn1þn2 is a helix submanifold then both M1 HRn1 , M2 HRn2 are
helix submanifolds.

Proof. We will denote by d ¼ d1 þ d2 A Rn1 � Rn2 ¼ Rn1þn2 the helix direc-
tion of M1 �M2, where d1 A Rn1 and d2 A Rn2 . Let T as before, the unitary
orthogonal projection of d on TðM1 �M2Þ. Let Tj be the unitary orthogonal
projection of dj on TMj, for j ¼ 1; 2. We will use the natural identification
TðM1 �M2Þ ¼ TM1 lTM2. Under this identification, T ¼ T1 þ T2.

First, we will see that T1 does not depend on M2, i.e. T1ðp; yÞ ¼ T1ðp; zÞ,
where p A M1, y; z A M2. This equality should be interpreted in terms of the
identification of each tangent space of M1 �M2 with a linear subspace of Rn1þn2 .

Let us observe that T1ðp; yÞ is the orthogonal projection of d on Tðp;yÞðM1 �
fygÞ and similarly T1ðp; zÞ is the projection of d on Tðp; zÞðM1 � fzgÞ. But
M1 � fyg is a translation of M1 � fzg in Rn1þn2 . Since d is invariant under
translation in Rn1þn2 , Tðp;yÞðM1 � yÞ is a translation of Tð p; zÞðM1 � zÞ. Then
T1ðp; yÞ is a translation of T1ðp; zÞ in Rn1þn2 , i.e. they are equal. In particular
T1 has constant length on fpg �M2. Analogously T2 has constant length on
M1 � fqg for any q A M2.

Now, let p A M1 be any point and let us consider the slice fpg �M2 H
M1 �M2. Then the vector field T2 on fpg �M2 has constant length:

For every y A M2 we have the next equality

hT1ðp; yÞ;T1ðp; yÞiþ hT2ðp; yÞ;T2ðp; yÞi
¼ hT1ðp; yÞ þ T2ðp; yÞ;T1ðp; yÞ þ T2ðp; yÞi ¼ hTðp; yÞ;Tðp; yÞi:

Since M1 �M2 is a helix, this sum hT1ðp; yÞ;T1ðp; yÞiþ hT2ðp; yÞ; T2ðp; yÞi
does not depend on y. Now, to see that T2 has constant length on fpg �M2,
just apply the fact that T1 has constant length on fpg �M2.

We deduce that for p A M1 the slice fpg �M2 is a helix with respect to the
direction 0þ d2 A f0glTM2. Therefore, M2 is a helix with respect to d2. In
the similar way, M1 is a helix with respect to d1. r
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4. Construction of helices

4.1. Helix curves of Rn

When dim M ¼ 1, we can describe all the classic helix curves (i.e. the tangent
vector of the curve makes constant angle with respect to a fixed direction) gHRn

with respect to d ¼ ð0; . . . ; 0; 1Þ as follows. Let a : I HR ! Rn�1, then gðtÞ ¼
ðaðtÞ; atþ bÞ, where a; b A R are constants. The parameter t of g should be its
arc-length, so, the curve a satisfies ka 0k2 ¼ 1� a2 and jaja 1.

Let us describe also the Euclidean helices of dimension one in terms of the
Serret-Frenet formulas. Let MHRn be an immersed 1-dimensional submanifold
(a regular curve). Let T be an unitary tangent vector field on M ( p A M,
TðpÞ A TpM with kTk ¼ 1).

It is well known ([13] pages 30–33) that there exists an orthonormal basis

fT ; x2 ¼ DTT=kDTTk; x3; . . . ; xng

of TRn
jM ¼ TMlTM? such that DTT ¼ k1x2, DTx2 ¼ �k1T þ k2x3; . . . ;DTxn�1

¼ �kn�2xn�2 þ kn�1xn, DTxn ¼ �kn�1xn�1. Where D is the standard connection
of Rn and we are assuming that k1 ¼ kDTTk0 0, kj 0 0 for j ¼ 2; . . . ; n (This is
without loss of generality). This is equivalent to say that M is full, i.e. it is not
contained in a hyperplane of the ambient Rn (See Spivak Vol. 4, [13] page 38, for
details). These equations are called Serret-Frenet formulas and we can call the
frame, a Serret-Frenet frame.

We are going to describe the necessary and su‰cient conditions for M to be
a helix.

Let h3 :¼
k1

k2
, h4 :¼

1

k3

k1

k2

� �0
(Let us observe that h 0

3 ¼ k3h4) and

hm :¼ 1

km�1
ðh 0

m�1 þ km�2hm�2Þ; for 5ama n:

Theorem 4.1. Let M 1 HRn be a full curve. The following conditions are
equivalent:

(i) M 1 HRn is a helix,
(ii) hn 0 0 and h23 þ h24 þ � � � þ h2n is a nonzero constant c2 with c > 0.

Proof. Assume that condition (ii) holds. We can define y :¼ tan�1ðcÞ
which is a constant in the interval ð0; p=2Þ. Let x :¼ cotðyÞðh3x3 þ � � �þ
hnxnÞ, therefore kxk2 ¼ cot2ðyÞðh23 þ h24 þ � � � þ h2nÞ ¼ cot2ðyÞc2 ¼ cot2ðyÞ tan2ðyÞ
¼ 1. Consider the vector field Z :¼ cosðyÞT þ sinðyÞx ¼ cosðyÞðT þ h3x3
þ � � � þ hnxnÞ. We will verify that Z is constant along M, i.e. DTZ ¼ 0.
Observe that kZk ¼ 1 and hT ;Zi is the constant cosðyÞ (this means that the
angle between TM and Z is constant). We know from Section 2, that M is a
helix if and only if cosðyÞ‘XT � sinðyÞAxðXÞ ¼ 0, cosðyÞaðX ;TÞ þ sinðyÞ‘?

Xx ¼
0. Since dim M ¼ 1, ‘TT ¼ 0 and thus DTT ¼ aðT ;TÞ.
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So a 1-dimensional immersed submanifold MHRn is a helix with respect to
the direction Z ¼ cosðyÞT þ sinðyÞx if and only if

DTT ¼ �tanðyÞ‘?
Tx:ð1Þ

The next step, is to check that our vector fields T and x satisfy this equa-
tion DTT þ tanðyÞ‘?

Tx ¼ 0. Using the relation h‘?
Txj; xii ¼ hDTxj; xii and the

Serret-Frenet’s formulas we deduce that

‘?
Tx2 ¼ k2x3; ‘?

Txj ¼ �kj�1xj�1 þ kjxjþ1; ‘?
Txn ¼ �kn�1xn�1;

where 3a ja n� 1. It will be important the above recursive formula
km�1hm ¼ h 0

m�1 þ km�2hm�2 where 5ama n. It is convenient the next equiva-
lent equation: h 0

m ¼ kmhmþ1 � km�1hm�1 where 4ama n� 1 together with
h 0
3 ¼ k3h4. We need an expression for h 0

n: since the expression in (ii) is constant,
hnh

0
n ¼ �h3h

0
3 � h4h

0
4 � � � � � hn�1h

0
n�1. From the previous formula we obtain

that h3h
0
3 ¼ k3h3h4 and hmh

0
m ¼ kmhmhmþ1 � km�1hm�1hm for 4ama n� 1.

An algebraic calculus shows that hnh
0
n ¼ �kn�1hn�1hn. Since hn 0 0, we get

the relation h 0
n ¼ �kn�1hn�1.

Then

tanðyÞ‘?
Tx ¼ h 0

3x3 þ h3‘
?
Tx3 þ

Xn�1

m¼4

ðh 0
mxm þ hm‘

?
TxmÞ þ h 0

nxn þ hn‘
?
Txn:

Let us calculate the latter summation in two parts. First one:

Xn�1

m¼4

ðh 0
mxm þ hm‘

?
TxmÞ

¼
Xn�1

m¼4

ððkmhmþ1 � km�1hm�1Þxm þ hmð�km�1xm�1 þ kmxmþ1ÞÞ

¼ ðk4h5 � k3h3Þx4 þ ðkn�1hn � kn�2hn�2Þxn�1

þ
Xn�2

m¼5

ððkmhmþ1 � km�1hm�1Þxm � h4k3x3 � h5k4x4

�
Xn�2

m¼5

hmþ1kmxm þ
Xn�2

m¼5

hm�1km�1xm þ hn�2kn�2xn�1 þ hn�1kn�1xn

¼ �h4k3x3 � k3h3x4 þ kn�1hnxn�1 þ hn�1kn�1xn

and we get

Xn�1

m¼4

ðh 0
mxm þ hm‘

?
TxmÞ ¼ �h4k3x3 � k3h3x4 þ kn�1hnxn�1 þ hn�1kn�1xn:

198 antonio j. di scala and gabriel ruiz-hernández



Let us observe that we arranged the index in the second and third summation
from 5 to n� 2. Second part:

h 0
3x3 þ h3‘

?
Tx3 þ h 0

nxn þ hn‘
?
Txn

¼ k3h4x3 � h3k2x2 þ h3k3x4 � kn�1hn�1xn � hnkn�1xn�1:

So, by the combination of these two parts, we have that tanðyÞ‘?
Tx ¼ �h3k2x2 ¼

�k1x2. The latter equality shows that DTT ¼ k1x2 ¼ �ðh 0
3x3 þ h3‘

?
Tx3 þ � � � þ

h 0
nxn þ hn‘

?
TxnÞ ¼ �tanðyÞ‘?

Tx (Let us observe that DTZ ¼ 0, which proves that
Z is constant).

This is the equality (1), which proves that M is a helix with respect to the
direction

Z ¼ cosðyÞðT þ h3x3 þ � � � þ hnxnÞ:
This proves (ii) ! (i).

To show (i) ! (ii) assume that M 1 is a helix with respect to a constant
direction d. Then hd;Ti ¼ cosðyÞ is constant and we have that d ¼ cosðyÞT þ
sinðyÞx ¼ cosðyÞT þ hd; x2ix2 þ � � � þ hd; xnixn. So

hd; x2i
2 þ � � � þ hd; xni

2

is a constant. So, we need to find the relation between hd; xji and the
curvatures k1; k2; . . . ; kn:

0 ¼ Thd;Ti ¼ hd;DTTi ¼ hd; x2ik2, then hd; x2i ¼ 0. Now we can take
the derivative again, 0 ¼ Thd; x2i ¼ hd;DTx2i ¼ �cosðyÞk1 þ hd; x3ik2. There-

fore, hd; x3i ¼ k1

k2
cosðyÞ. Taking the derivative of hd; x4i and hd; x5i, we obtain

that hd; x4i ¼ 1

k3

k1

k2

� �0
cosðyÞ, hd; x5i ¼ 1

k4

"
1

k3

k1

k2

� �0� �0
cosðyÞ þ k1k3

k2
cosðyÞ

#
.

With this process we get the next recursive formula: for 5ama n, hd; xmi
¼ hm cosðyÞ, where hm is as before,

hd; x2i
2 þ � � � þ hd; xni

2 ¼ cosðyÞðh23 þ h24 þ � � � þ h2nÞ
is constant.

If hn ¼ 0 then cosðyÞhn ¼ hd; xni ¼ 0. Thus, 0 ¼ hd;DTxni ¼ �kn�1hd; xni
¼ �kn�1 cosðyÞhn�1. We deduce that hn�1 ¼ 0. Continuing this process, we get
that hj ¼ 0 for j ¼ n; n� 1; . . . ; 4. Therefore, cosðyÞh4 ¼ hd; x4i ¼ 0. Then 0 ¼
hd;DTx4i ¼ �k3hd; x3i ¼ �k3 cosðyÞh3, which proves that h3 ¼ 0. Let us recall
that h3 ¼ k1=k2, thus we have a contradiction because all the curvatures are
nowhere zero since M 1 was assumed to be full. r

For example, a full M is a helix in R3 if and only
k1

k2
is a nonzero

constant. In R4 the conditions are

k1

k2

� �2
þ 1

k3

k1

k2

� �0� �2
is constant and

1

k3

k1

k2

� �0
0 0:
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Remark 4.2. For n ¼ 3, that is to say, for curves in the Euclidean space R3

Theorem 4.1 is a classical result stated by M. A. Lancret, a pupil of Monge, in
1802 and first proved by B. de Saint Venant in 1845 (see [14] for details).

To finish with curves, let us notice that condition (ii) in Theorem 4.1 is really
necessary since there exist full curves of R4 such that

k1

k2

� �2
þ 1

k3

k1

k2

� �0� �2
is constant

and

1

k3

k1

k2

� �0
¼ 0

which are not helix. Indeed, such curves are constructed by using the existence

theorem with k1, k2, k3 such that
k1

k2
is a non zero constant and k3 is an arbitrary

but not zero function.

4.2. Construction and reconstruction of any ruled helix

Theorem 4.3. Let MHRn be a full submanifold which is a helix with
respect to the direction d. Let x be the normal component of d, i.e. d ¼ cosðyÞTþ
sinðyÞx. Then M is a ruled helix if and only if x is ‘?

Tx ¼ 0.

Proof. Assume that ‘?
Tx ¼ 0. Then the second equation of the system H

implies aðT;TÞ ¼ 0 since M is full. Then DTT ¼ ‘TTþ aðT;TÞ ¼ 0 by Prop-
osition 2.4. So we get that the helix lines are straight lines of Rn.

If M is a ruled helix, by definition its helix lines are (segments of ) straight
lines in the ambient Rn, then 0 ¼ DTd ¼ cosðyÞDTT þ sinðyÞDTx ¼ sinðyÞDTx.
So the Weingarten formula implies that 0 ¼ DTx ¼ �AxðTÞ þ ‘?

Tx. In partic-
ular, ‘?

Tx ¼ 0. r

Now, we will see a method to construct locally all the ruled helix submanifolds
MHRn of codimension n� k.

First, we begin with a immersed submanifold Lk�1 HRn�1 and an unitary
normal vector field h of LHRn�1. Without loss of generality we can assume
that d is the vector ð0; . . . ; 0; 1Þ A Rn. We can immerse L in Rn in a canonical
way. That is, LHRn�1 � f0gHRn ¼ Rn�1 � R.

Now, we define the vector field TðxÞ :¼ sinðyÞhðxÞ þ cosðyÞd, where x A L
(recall that h is normal to L). So T is a vector field defined along the sub-
manifold L.

Finally, we are ready to describe the immersion of M in Rn.
The immersion f ¼: L� R ! Rn is as follows:

f ðx; sÞ :¼ xþ sTðpÞ:
For �e < s < e enough small, f is an immersion.
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Theorem 4.4. The immersed submanifold M ¼ f ðL� ð�e; eÞÞ is a helix of
angle y with respect to d.

Proof. As a first case, we will verify that the immersion is a helix at the
points f ðx; 0Þ. Let Y1; . . . ;Yk�1 be a frame field of L at x. Then Y1; . . . ;
Yk�1;T is a frame field of f ðMÞ at f ðx; 0Þ. This determine a matrix A ¼
ðY t

1 � � �Y t
k�1T

tÞ, so by Lemma 3.1, the orthogonal projection of d into Tðx;0ÞM is
pðdÞ ¼ AAtðd tÞ ¼ Að0; cosðyÞÞ t ¼ cosðyÞT t.

Now, let s A ð�e; eÞ.
A‰rmation: T is orthogonal to Tðx; sÞM. Let Y A TxL any vector field

generated by the frame field Yj’s of L as before at x A L. Let us denote by D the
standard covariant derivative of Rn, by ‘? the normal connection and by A the
shape operator of LHRn. So we can calculate the derivative of the immersion
f at ðx; sÞ as follows:

f�ðY Þ ¼ DYf ¼ Y þ sDYT ¼ Y þ s‘?
YT � ATðY Þ:

Since kTk ¼ 1, T A T?L and ATðYÞ A TL,

hT ; f�ðYÞi ¼ shT ;‘?
YTi ¼ 0:

Let us observe that if we extend the vector field of L, h, into M by translation,
then

hh; f�ðY Þi ¼ shh;‘?
YTi ¼ s sinðyÞhh;‘?

Yhi ¼ 0:

Let observe that Ls :¼ f f ðy; sÞ A M j y A Lg ¼ M VH, where H is a orthogonal
hyperplane to d. So, we have again the same conditions as in the first case of
this proof: the tangent direction T is orthogonal to Ls ¼ f ðL� fsgÞ and is valid
the decomposition Tðy; sÞ :¼ sinðyÞhðy; sÞ þ cosðyÞd, where Tðy; sÞ ¼ TðyÞ, hðy; sÞ
¼ hðyÞ. This means that we extend the vector fields T , h (along L) into vector
fields along M by translation along the lines generated by the original T . There-
fore, hðx; sÞ and Tðx; sÞ are orthogonal to Ls. r

Remark 4.5. A di¤erent proof of Theorem 4.4 can be given by showing
directly that the vector field d � hd;TiT ¼ d � cosðyÞT is normal to M.

Let M be a helix obtained by the construction above. If the normal
component x of M is not parallel with respect to the normal connection of L,
then it is not necessarily parallel with respect to the normal connection of M.
This is interesting because they are the first examples with such property.

Now we will see that any helix submanifold of angle y0
p

2
, such that their

helix lines (See Definition 2.2) are straight lines, has a local structure as the
construction of the last theorem.

Let us denote by Hp;d the orthogonal hyperplane to the direction d through

the point p A Rn. The normalized projection of d onto Hp;d is just
pðdÞ

kpðdÞk ,where p is the orthogonal projection onto Hp;d .
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Theorem 4.6. Let M be a ruled helix submanifold of angle y0
p

2
with

respect to d ¼ ð0; . . . ; 0; 1Þ. Then M is locally as in the latter construction, using
as h the normalized projection of T onto Hp;d .

Proof. If y ¼ 0, M is locally the cylinder M � R and we are done. So we
can assume that y0 0. Let T and x be the (unitary) tangent and normal
direction of M. So, d ¼ cosðyÞT þ sinðyÞx. Let p ¼ ða1; . . . ; anÞ A MHRn and
let s :¼ an A R. Finally, let us denote by Ls the submanifold M VH, where
H ¼ Hp;d . We define the unitary vector field h : M ! Rn by h ¼ sinðyÞT �
cosðyÞx. Let us observe that hsinðyÞh;T � sinðyÞhi ¼ 0, hsinðyÞh; di ¼ 0.
Moreover, we have to that hjLs

: Ls ! Rn is orthogonal to Ls. But this is clear
because h can be a linear combination of T and d (x is a combination of T and
d), which are orthogonal to H VM. These properties proves that sinðyÞh is the
orthogonal projection of T onto Hp;d . So, h is just the normalized projection
of T .

Since hh; di ¼ 0, we can conclude that in fact hjLs
: Ls ! Rn�1 � f0gH

Rn. So Ls is a k � 1-dimensional submanifold of H ¼ Rn�1 � fsgHRn and
hjLs

: Ls ! T?Ls HH is smooth unitary normal vector field. Here k ¼ dim M.
Finally, let us observe that T ¼ sinðyÞhþ cosðyÞd, as in the construction.

r

Let d, T and x the helix direction, tangent and normal directions respectively
of M.

Corollary 4.7. If ‘?
Tx ¼ 0, the helix submanifold M can be locally con-

structed as in Theorem 4.4.

Proof. By Theorem 4.3, M is a ruled helix. Then apply Theorem 4.6.
r

5. Non ruled helix

In the previous sections we obtained some general properties of an arbitrary
helix submanifold in Euclidean space: Let M be any helix submanifold in
Rn, with respect to the unitary helix direction d and whose tangent and normal
helix directions are T and x respectively. Let us consider the next two basic
properties,

� the helix lines of M are orthogonal to H VM (See the observation after
Definition 2.2),

� the helix lines are geodesics of M (Proposition 2.4).
So, an arbitrary helix submanifold looks like a hypersurface H VM in M with
orthogonal classical general helices curves, in Rn, through it (the helix lines of M
which are geodesics of M).
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In this section we will describe the precise way to glue the helix lines to the
hypersurface H VM of M orthogonal to d. This will be possible with the help
of eikonal functions which will be constructed by using Fermi coordinates. In
particular, we will know how to construct examples of non ruled helix sub-
manifolds.

Definition 5.1. Let ðN; gÞ be a Riemannian manifold. Let f : N ! R be
a function and let ‘f be its gradient i.e. df ðX Þ ¼ gð‘f ;XÞ. We say that f is
eikonal if k‘f k is constant.

Theorem 5.2 (A). Let ðN; gÞ be a n-dimensional connected Riemannian mani-
fold. Let LHN be an isometrically immersed submanifold of codimension one.
Then around any point of p there exist an open neighbourhood U and a non-
constant eikonal function f on U.

Proof. Let p A N and let U HN be a normal neighbourhood of N around
p such that on V :¼ U VL, a neighbourhood of L around p, the map
expjTV? : TV? ! U HN is a di¤eomorphism.

Let us consider Fermi coordinates on U :
Let Z : V ! TV? be an unitary local normal field on V . We define

Fðt; x1; . . . ; xn�1Þ ¼ expðtZðx1; . . . ; xn�1ÞÞ. Now we can define a function
f : U ! R by f ðexpðtZðx1; . . . ; xn�1ÞÞÞ ¼ t which is a submersion. Since f is
nonconstant and N is connected, using Proposition 2 of [9] we can deduce that f
is Eikonal. r

Theorem 5.3 (B). Let ðN; gÞ be a n-dimensional connected Riemannian
manifold and let f a nonconstant Eikonal function on ðN; gÞ. Then for every
point of x A N, there exist an open neighbourhood U around x and a hypersurface
LHN isometrically immersed submanifold of U , such that fjU is given by the
Fermi coordinates around a neighbourhood of L.

Proof. In Proposition 2 of [9], A. E. Fischer proved that f is a Riemannian
submersion. So, if s0 :¼ f ðxÞ then L :¼ f �1ðs0Þ is a hypersurface in N. We
give any level hypersurface Ls :¼ f �1ðsÞ the induced Riemannian metric of N.
We choose the open neighbourhood U in N around x so that expjTV? : TV? !
U HN is a di¤eomorphism, where V :¼ U VL. Now we will prove that for
s small, Ls VU is orthogonal to every geodesic orthogonal to LVU . Let us
observe that the integral curves of ‘f are geodesics of M and they are orthogonal
to the level sets Ls. It follows that the level sets are equidistant. So, f looks
like the distance between level sets. Therefore, L and the geodesics (integral
curves) defined by ‘f are enough to construct Fermi coordinates of N. r

Let us recall the next result, see our previous work [6].

Lemma 5.4. Let M be a di¤erentiable manifold. Then M can be immersed
as an helix submanifold with angle y0 0 w.r. to a direction d of some Euclidean
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space if and only if M admits a Riemannian metric g and an eikonal function
f : M ! R w.r. to g such that:

cosðyÞ ¼ �1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ k‘f k2

q
Half of this last result is based on the next Theorem, also from [6].

Theorem 5.5. Let i : M ! Rn be a submanifold and let f : M ! R be an
eikonal function, where M has the induced metric by Rn, i.e. the metric of the
image iðMÞHRn. Then fðMÞ is a helix, where f : M ! Rn � R is the immersion
given by

fðpÞ :¼ ðiðpÞ; f ðpÞÞ:
The direction is d ¼ ð0; 1Þ and the angle y between d and nðMÞ (normal space) is
determined by the equality

cosðyÞ ¼ �1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ k‘f k2

q :

Example 5.6. Here we construct a non ruled helix. Let N 2 be the fol-
lowing surface in R3:

N 2 ¼ fðx; yÞ A R2 j ðx; y; yðx2 þ y2ÞÞg:
Let us take L as the curve L :¼ fð0; y; y3Þ : y A RgHN 2. By using the con-
structions of Theorems 5.2 and 5.3 to these N and L, we get a helix surface in R4

with only one straight line segment helix line. Because N itself contains only one
straight line: fðx; 0; 0Þ : x A Rg. Thus, N 2 HR4 is a non ruled helix submani-
fold.

Remark 5.7. We can also construct ruled helix of codimension k in Rn:
Take as M the Euclidean space Rn�k and as L any immersed hypersurface in
M. So, the geodesics of M which are orthogonal to L are straight line segments.

Example 5.8. Here is another example of a non ruled helix. First we will
construct an eikonal function in the upper half-space model of the hyperbolic
space Hm ¼ fðx1; . . . ; xmÞ A Rm j xm > 0g. Let qj :¼ qxj the canonical vector
fields of Rm restricted to Hm. Then the Riemannian metric in Hm at the point

y ¼ ðy1; . . . ; ymÞ is determined by gðqi; qjÞ ¼
1

y2m
. So, the basis ymq1; . . . ; ymqm is

a orthonormal basis of TyH
n. We need also the distance between two points

x; y A Hn. It is given by

dðx; yÞ ¼ cosh�1 1þ jx� yj
2xmym

� �
:
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For example the function f ðyÞ ¼ ln ym is eikonal on Hm. In this case the
solution can be constructed by taking global Fermi coordinates of Hm around the
hypersurface L ¼ fðx1; . . . ; xmÞ j xm ¼ 1g, which is a horosphere. In order to find
such Fermi coordinates, it is necessary to find the distance from any point y A Hm

to L: it is given by ln ym. Let us observe that L is isometric to the standard
m� 1-dimensional euclidean space. The level sets of this function are parallel
horospheres (with the same infinity point). The horospheres are flat with respect
to the induced metric.

But let us find another eikonal function, where L will be isometric to an
m� 1-dimensional upper half-space hyperbolic space. More exactly, let us con-
sider L ¼ fx A Hm j x1 ¼ 0g, which is a totally geodesic hypersurface. Let y ¼
ðy1; . . . ; ymÞ A Hm, then the geodesic orthogonal to L through y intersects L at
the point p ¼ ð0; y2; . . . ; ym�1; y

2
1 þ y2mÞ. So the distance between this point p

and y is given by

f ðy1; . . . ; ymÞ ¼ cosh�1 ðy21 þ y2mÞ
1=2

ym

 !
:

Let us verify that this function f : Hm ! R is eikonal. A direct calculus
shows that

q1 f ¼ 1

ðy21 þ y2mÞ
1=2

and qm f ¼ x

ymðy21 þ y2mÞ
1=2

:

The gradient of f at the point y in the upper half-space model of the hyperbolic
space is ‘f ¼ ðymq1 f Þymq1 þ ðymqm f Þymqm. So

k‘f k2 ¼ ðymq1 f Þ2 þ ðymqm f Þ2 ¼ 1:

The level set f �1ðaÞHHm, with the induced metric, is isometric to a ðm� 1Þ-
dimensional hyperbolic space Hm�1 (up to multiplication by a constant of the
standard metric of Hm�1). These level sets, f �1ðaÞ, are called equidistant hyper-
surfaces (See Spivak [13], page 22).

Let i : Hm ! Rn be an isometric immersion of the upper half-space model
of the hyperbolic space into Rn with the standard metric (for some n). Let us
consider the immersion f : Hm ! Rnþ1, fðxÞ ¼ ðiðxÞ; f ðxÞÞ. Then by Theorem
5.5, the immersed M ¼ fðHmÞ is a helix submanifold with the induced metric and
the helix direction is d :¼ enþ1 ¼ ð0; . . . ; 0; 1Þ. Let us observe that the set levels
f �1ðaÞHHm of f are isometrically immersed in M. In others words, if H is an
orthogonal hyperplane to d in Rnþ1, then the intersection H VM is isometric to
the set levels f �1ðaÞHHm for every a A R. So, the helix M intersects any such
hyperplane H in a submanifold isometric (up to a constant) to a ðm� 1Þ-
dimensional hyperbolic space. The helix so constructed can not be ruled. This
is so since an isometric immersion i : Hm ! Rn of the hyperbolic space can not
be ruled. Indeed, a ruled immersion i : Hm ! Rn of the hyperbolic space pro-
duce a Jacobi vector field Y along the rule whose length jY j contradicts a
Theorem of Rauch [2, p. 86, Theorem II.6.4].
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5.1. Constant angle surfaces in S2 � R
As an application of the above Theorem 5.5, and Theorem 3.4 of [6] we get

the following theorem of [8].

Theorem 5.9 (Dillen et al, [8]). A surface M immersed in S2 � R is a
constant angle surface if and only if the immersion F : M ! S2 � R is (up to
isometries of S2 � R) locally given by

Fðu; vÞ ¼ ðcosðu cosðyÞÞ f ðvÞ þ sinðu cosðyÞÞ f ðvÞ � f 0ðvÞ; u sinðyÞÞ;
f : I ! S2 is a unit speed curve in S2 and y A ½0; p� is the constant angle.

Explanation. By definition (see [8, pag. 91]) a constant angle surface MH
S2 � RHR3 � R is a helix with respect to d ¼ ð0; 0; 0; 1Þ.

Notice that the map i : M ! S2 HR3 locally given by

iðu; vÞ ¼ cosðu cosðyÞÞ f ðvÞ þ sinðu cosðyÞÞ f ðvÞ � f 0ðvÞ

is an immersion. Then the coordinate u regarded as a function u : M ! R is an
eikonal function with respect to the metric induced by i. Actually, u is con-
structed as in Theorems 5.2 and 5.3 by using the unit speed curve f : I ! S2 as
the submanifold of codimension one i.e. as the zero level set of u. r

It is interesting to notice that equation (28) in [8, pag. 93] show that the

above helix M 2 HR4 is ruled if and only if y ¼ p

2
and in this case the helix is a

Riemannian product of a curve in S2 and R.

6. Helix with parallel normal direction

Let us recall that if MHRn is a helix of angle y with respect to the unitary
direction d, then the normal direction of M is the unitary direction x : M !
TM?, where sinðyÞx is the orthogonal projection of d onto TM?.

We say that M is a helix with parallel normal direction if ‘?x ¼ 0, where
‘? is the normal connection of the isometric immersion MHRn.

6.1. Strong r-helix submanifolds
It can happens that a given submanifold MHRn is a helix w.r. to two or

more independent directions. For an hypersurface M notice that if M is an
helix w.r. to d and d 0 then M is also a helix w.r. to any direction in the linear
span of d and d 0. This gives a motivation for the following definition.

Definition 6.1. A submanifold MHRn is a weak r-helix if there exist r
linearly independent directions d1; . . . ; dr, such that M is a helix with respect to
every dj. We say that is a strong r-helix if there exist a linear subspace HHRn

of dimension r ¼ dimðHÞ such that M is a helix w.r. to any direction d A H.
The subspace H will be called the subspace of helix directions.
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Remark 6.2. A characterization of a strong r-helix in terms of the
orthogonal projections pp : R

n ! TpM.
The submanifold MHRn is a strong r-helix if and only if there exist a r-

dimensional lineal subspace HHRn, such that: For all v A H, kppðvÞk does not
depends of p A M.

Remark 6.3. Notice that if a submanifold MHRn, of any codimension, is
a weak helix w.r. to the directions d1 and d2 then M is not necessarily a strong
2-helix.

Let now M be a weak r-helix with respect to the linearly independent direc-
tions ðd1; d2; . . . ; drÞ. We can decompose each vector dj in its tangent and
normal components:

dj ¼ cosðyjÞTjðpÞ þ sinðyjÞxj ;
where each yj is constant. Taking derivative with respect to X A TM we obtain
(See Lemma 2.7):

0 ¼ cosðyjÞ‘XTjðpÞ � sinðyjÞAxj ðX Þ andð2Þ

0 ¼ cosðyjÞaðX ;TjðpÞÞ þ sinðyjÞ‘?
Xxj:ð3Þ

Definition 6.4. The second normal space of MHRn consist of the normal
vectors, x A nðMÞ, such that the shape operator in its direction is zero, i.e. Ax ¼ 0.

We will consider the following problem raised in [6]:

Problem. Classify weak r-helices so that the normal components, xj, of the
directions dj satisfy:

‘?xj ¼ 0;

i.e. every xj is parallel with respect to the normal connection.

Lemma 6.5. Let M be a weak r-helix with respect to the directions dj , j ¼
1; . . . ; r. If the normal component xj of dj is normal parallel then M is a strong
r-helix with respect to the subspace generated by d1; . . . ; dr.

Proof. Since ‘?xj ¼ 0, the functions hxj ; xki are constants. The first
author proved (Proposition 2.4 in [5]), that if such functions are constant,
then M is a strong r-helix. r

Theorem 6.6. Let M be a weak r-helix with respect to the directions dj , j ¼
1; . . . ; r. Let us assume that the normal component xj of dj is normal parallel.
Then M is locally immersed at x A M as yþ s1T1 þ � � � þ srTr, where Tj is the
normalized projection of dj onto TM, y A M V ð7

j
Hx;dj Þ and sj A ð�ej; ejÞHR.

Proof. By Lemma 6.5, M is a strong helix submanifold. It means that
M is a helix with respect to any direction in the vector space generated by
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d1; . . . ; dr. Moreover, by Theorem 4.3, each helix line with respect to any helix
direction is a straight line segment in the ambient.

Let us consider any x A M and the direction d ¼ a1d1 þ � � � þ ardr, with
jdj ¼ 1. The orthogonal projection T of d on TM is given by: T ¼ a1T1

þ � � � þ arTr. So, if s is small, M contains the straight line segment defined by
xþ sT ¼ xþ sa1T1 þ � � � þ sarTr. This implies that M contains a relative open
piece of an a‰ne subspace of dimension r, which is generated by the Tj’s.
Finally, let us observe that x A M V ð7

j
Hx;dj Þ and y A M V ð7

j
Hx;dj Þ if and only

if M V ð7
j
Hy;dj Þ ¼ M V ð7

j
Hx;dj Þ.

So we can parametrize M with the data given by M V ð7
j
Hx;dj Þ and the Tj’s

as this Theorem implies. In fact, we can parametrize M with the alternative
data M V ð7

j
Hx;dj Þ, dj’s and the hj’s, where each hj is the orthogonal projection

of Tj in the hyperplane Hx, dj. With these conditions Tj is a linear combination
of dj and hj . r

7. Minimal ruled helices

Now, we are going to characterize minimal ruled helix submanifolds of
arbitrary dimension and codimension of Euclidean spaces.

Let M as before, i.e. a helix submanifold w.r. to d and with angle y, such
that the helix lines are straight lines.

Given p A M, Hp will denote the hyperplane through p and orthogonal to

d. As before we can assume that y0 0;
p

2

� �
otherwise we are done. Hence, d

is transversal and nonorthogonal to M. So, L :¼ Hp VM is a submanifold.

Theorem 7.1. A ruled helix submanifold M is minimal if and only if L :¼
Hp VM is also minimal in Rn, for every p A M.

Proof. Let T and x be the tangent and normal helix directions of M. The
Weingarten’s formula for LHRn implies that DXZ ¼ �AZ

L ðX Þ þ ‘L?
XZ, for

every tangent vector field X on L and Z A TL?. Here, AZ
L is the shape

operator of L (as submanifold of Rn) in the direction Z. The corresponding
formula for MHRn is DXZ ¼ �AZðX Þ þ ‘?

XZ, for every tangent vector field X
on L and Z A TM?.

We deduce from these formulas that for every X A TL and Z A TM?,

hAZðXÞ;Xi ¼ �hDXZ;Xi ¼ hAZ
L ðXÞ;Xi:ð4Þ

Let k ¼ dim M and let X1;X2; . . . ;Xk ¼ T be a local orthonormal basis of
M around p, where X1;X2; . . . ;Xk�1 is a local orthonormal basis of L ¼ Hp VM.

For every Z A TM?, we have the relation.

Xk�1

j¼1

haðXj;XjÞ;Zi ¼
Xk�1

j¼1

hAZðXjÞ;Xji ¼
Xk�1

j¼1

hAZ
L ðXjÞ;Xji ¼

Xk�1

j¼1

haLðXj;XjÞ;Zi;
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where a, aL are the second fundamental forms of MHRn and LHRn respec-
tively.

So, we have, for every Z A TM?, the relation.

Xk�1

j¼1

haLðXj;XjÞ;Zi ¼
Xk�1

j¼1

haðXj;XjÞ;Zi:ð5Þ

Let us observe that TL? ¼ TM? lhTi.
Also, we have the relation

Xk�1

j¼1

haLðXj;XjÞ;Ti ¼ c
Xk�1

j¼1

haðXj;XjÞ; xi;ð6Þ

where c0 0 is a constant. It follows from the next calculus:
Since d ¼ cosðyÞT þ sinðyÞx and aL A TL? VTHp (Hp is a hyperplane), we

obtain

haLðXj;XjÞ;Ti ¼ chaLðXj ;XjÞ; xi ¼ chAx
LðXjÞ;Xji:

Now applying (4), we get

haLðXj;XjÞ;Ti ¼ chAxðXjÞ;Xji ¼ chaðXj;XjÞ; xi:
Now, if M is minimal and since aðT ;TÞ ¼ 0, the right hand side of (5) and (6)
are equal to zero. Which implies that L is minimal in Rn.

Finally, in the case that L is minimal in Rn, it is enough to use that the left
hand side of (5) is zero to deduce that M is minimal. r

Let Hp as before, where p is any point of a helix submanifold M.
The next result completes the result that given a helix submanifold M, if we

assume any two conditions in fM ruled; M minimal; Lp minimal in Rng, then
we can deduce the third condition.

Proposition 7.2. Let M be a minimal helix submanifold such that, for every
p A M, L :¼ Hp VM is minimal in Rn. Then M is a ruled helix.

Proof. Let us observe that the equality (5) holds for every immersed
hypersurface L in any Euclidean submanifold M. In particular it is true for
L :¼ Hp VM. Since M and Lp are minimal in Rn, then

Xk�1

j¼1

aðXj ;XjÞ þ aðT ;TÞ ¼ 0;
Xk�1

j¼1

aLðXj;XjÞ ¼ 0:

Using (5), we conclude that aðT ;TÞ ¼ 0. Which is equivalent for M to be a
ruled helix. r
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