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REMARKS ON COMPLETE NON-COMPACT GRADIENT RICCI
EXPANDING SOLITONS

L1 MA AND DEzHONG CHEN

Abstract
In this paper, we study gradient Ricci expanding solitons (X,g) satisfying
Re = cg + D*f,

where Rc is the Ricci curvature, ¢ < 0 is a constant, and D?f is the Hessian of the
potential function f on X. We show that for a gradient expanding soliton (X,g) with
non-negative Ricci curvature, the scalar curvature R has at most one maximum point on
X, which is the only minimum point of the potential function f. Furthermore, R >0
on X unless (X,g) is Ricci flat. We also show that there is exponentially decay for
scalar curvature on a complete non-compact expanding soliton with its Ricci curvature
being e-pinched.

1. Introduction

In this paper, we continue our study on Ricci solitons [8], which are special
solutions generated by one parameter family of diffeomorphisms to Ricci flow
introduced by R. Hamilton in 1982 [7]. Ricci flow enjoys a remarkable property
to improve Riemannian metrics on 3-manifolds (see [5] and [10]). It is an
interesting and challenging subject to better understand the special solutions such
as Ricci solitons to Ricci flow.

We assume in this paper that (X, g) is a gradient expanding soliton. Here is
the definition of the gradient expanding soliton.

DErFINITION 1. We call a Riemannian manifold (X, g) a gradient expanding
soliton (in short, just call it an expanding soliton) if there is a smooth solution f
on a Riemannian manifold (X,g) such that for some constant ¢ < 0, it holds the
equation

(1) Re =g+ D,
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on X, where D?f is the Hessian matrix of the function f and Rc is the Ricci
tensor of the metric g. We call the function f the potential function for the
soliton (X,g). If ¢ >01in (1), (X,g) is called a shrinking soliton; if ¢ =0, (X, g)
is called a steady soliton.

In the study of Ricci flow, we often meet the following definition.

DeriNiTION 2. The Ricci curvature of a Riemannian manifold (X,g) is
called e-pinched if there is some ¢ > 0 such that the scalar curvature R > 0 on X
and

Rc > ¢Ryg
on X.

Throughout this paper, we shall assume that the Riemannian manifold (X, g)
is a complete non-compact Riemannian manifold of dimension n > 3. We
denote by R the scalar curvature of the metric g.

Our main result is the following

MAIN THEOREM. Assume that the Ricci curvature of the gradient expanding
soliton (X,g) is non-negative. Then the scalar curvature R has at least one
maximum point on X, which is the only assumed minimum point of the potential
function f. Furthermore, R >0 on X unless (X,g) is Ricci flat.

The proof of this Theorem will be proved in section 3.
In section four, we will prove the following result

THEOREM 3.  Assume that (X,g) is a gradient expanding soliton with its Ricci
curvature being e-pinched. Then its scalar curvature has the decay

R(s) < R(0)e™~ .
as the distance function s from a fixed point going to infinity, i.e., s =d(x,0) —

0.

We remark that a similar but weaker decay result has been announced by
L. Ni in Proposition 3.1 in [9]. We know the result for a while, and a reason for
the delay of this present is that we try to prove non-existence of this kind of
expanding solitons. However, it is still an open problem.

Throughout C will denote various uniform constants in different places.

2. Preliminary

We recall first some basic properties about Ricci solitons [7].
Taking the trace of both sides of (1), we have

(2) R =nc+ Af.
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Take a point x e X. In local normal coordinates (x) of the Riemannian
manifold (X,g) at a point x, we write the metric g as (g;). The corresponding
Riemannian curvature tensor and Ricci tensor are denoted by Rm = (R;x;) and
Rc = (Ry) respectively. Hence,

Rij=g klRikjl
and

R=g"Ry.
We write the covariant derivative of a smooth function f by Df = (f;), and
denote the Hessian matrix of the function f by D?f = (f;), where D the co-
variant derivative of g on X. The higher order covariant derivatives are denoted

by fik, etc. Similarly, we use the Tj; x to denote the covariant derivative of the
tensor (73). We write 7/ = g™*Ty. Then the Ricci soliton equation is

Taking covariant derivative, we get
Sk = Rij k-

So we have
Sk — fig = Rij .k — Rk, ;.
By the Ricci formula we have that
ik = fig = Rl fi-

Hence we obtain that

Rk — Rix.j = Rl fi.
Recall that the contracted Bianchi identity is

1

Rijj =5 Ri.

Upon taking the trace of the previous equation we get that

SR+ RYfi =0
ie.,
(3) Ry = —2R[f.
Then at x,
Di(IDf> + R+ 2¢f) = 2f;(fx — R + 2¢gj) = 0.
So,
(4) IDfI> + R+2cf = M,

where M is a constant.
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In the remaining part of this section, we assume that there is for some
constant C > 0 such that 0 < Re < C on the expanding soliton (X,g). Then we
have |D*/| < C on X. Assume f >0 and that o is a critical point of the
potential function f. Then using the Taylor’s expansion, we have

f(x) < Cd*(x,0).

We now study the behavior of the potential function along a minimizing
geodesic curve on the expanding soliton. A similar work has been done by G.
Perelman [10] (see also [6]) where he tries to give some uniform bounds on
potential function f on a shrinking soliton. Fix a point o€ X. Take any
minimizing geodesic curve y(s) connecting x and the fixed point p, where s is the
arc-length parameter. Write by r = d(x,0) and X =9'(s). Assume that r > 2.
Let {Y;} (i=1,...n—1) be an orthonormal parallel vector fields along y. Let
Y be an orthogonal vector field along the curve y vanishing at end points. Then
the second variational formula [11] (see also [1]) tells us that

Jr(| Y|? = <(R(X,Y)Y,X))ds > 0.
0

Take Y to be sY; on [0,1],=Y; on [l,r —ry] where 1 <ry<r, and —

Adding over i gives that "o

r _ 1 r
J Rc(X,X)SCO(r0)+n —J (
0 7'0 r—ro

Y..

r—ro

2
) Re(X, X) ds,
ro

which implies that for some constant C > 0,

(5) JO Re(X,X) < C.

Note that

r 2 r r
<J Re(X, Y1) ds> SVJ |Re(X, Yl)\zdsssZJ |Re(X, Y;)|? ds.
0 0 7 Jo

Thinking of Rc as self-adjoint linear operator on 7X and taking a point-wise
orthonormal frame {e;} as eigenvectors of Rc = (P 4;), we have that

R=)
J
and for X =3 Xje,
2
D IRe(X, V)| = <X, RAX) =Y X} < RRe(X, X).
i J
Then,

r 2 r
(J Re(X, Y1) ds> < CSJ Re(X,X) < C%.
0 0
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Hence, for any unit vector field Y along y, orthogonal to X, we have

Jr Re(X,Y)ds < C(y/s+1).
0

Using (1) we have

%:RC(X,X) —c= —c,
and
AONGO) _ gy v,
Then we have

df(c]i)s(S)) > df(zl}s(S)) (0) —es>—cs+ C

and for s > 2,
(6) (X)) < [(X)((0)] + J; [Re(X, Y)| ds < C/s.

Therefore, we can conclude that at large distance from o the potential function f
has its gradient making small angle with the gradient of the distance function
from o.

3. Proof of Main Theorem

We now give the proof of Main Theorem: Assume that Rc >0 on X.
Then for any constant ¢ < 0 we have Rc —cg >0 on X. By (1) we know that

D*f =Rc—cg>—cg>0, onX.

Then the potential function f is locally strictly convex. Since (X,g) is a com-
plete non-compact Riemannian manifold, we have that f has at most one critical
point, i.e., the point where Vf = 0. Using D*f > 0, we know that if p € X is the
critical point of f, then it is a non-degenerate minimum point of f.
Note that along any minimizing geodesic curve y(s) connecting x and the
fixed point p, where s is the arc-length parameter, we have
, 5odyl dyl
7 \ o= | fi———d
) L O = | S
s dj/i dyj
= | (R — cgi) "2 d
JO( y Cg]) dS dS S
N dyi d})j
ot JO Vds ds

>—cs>0

ds
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This implies that f(y(s)) is growing at infinity at least the quadratic rate —c of
the distance function. Then f has at least a minimum point in X.

Assume that o is the only critical point of f. Then by adding a constant,
we can assume that and f(0) =0 and f >0 on X — {o}. Using (4), we know
that

M = |Df]*(0) + R(0) + 2¢f (0) = R(0).

Using (3) we know that o is also the critical point of R.
Let xe X — {o}. Taking a minimizing geodesic curve p(s) connecting x
and the fixed point o, where s is the arc-length parameter, we again have by using

(7)
V' (s)) > —es > 0.

This implies that the integral curves of Vf in X — {0} emanating from the point
o to infinity. Take a integral curve ¢(f) Vf in X — {o}. Then by (3) we have

(8) 9 R(o(0) = Rifi = ~2Re(¥/.¥f) <0.

Hence R(x) < R(0) for all xe X — {o}. So, o is a maximum point of R.
By this we conclude that

ASSERTION 4. Assume that the Ricci curvature of the gradient expanding
soliton (X,g) is non-negative positive. Then the scalar curvature R has at most
one maximum point of R, which is the only critical point of the potential function

f.

If R(o)=0, then R=0 on X. Hence Rc=0 on X, that is to say that
(X,g) is Ricci flat. So we have R(o) >0. By the local strong maximum
principle, we must have R > 0 on the whole space X.

This finishes the proof of Main Theorem.

In the remaining part of this section, we consider the behavior of f at
infinity. Since

Df1(x)* +2¢f (x) = R(0) — R(x) = 0,
we get that
\Df|> = —2¢f =2]c|f.

IDﬁlz\/@,

at where f #0. Therefore, we have

VI =15

Then we have
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and

along any minimizing geodesic curve p(s) connecting x and the fixed point o,
where s is the arc-length parameter.
Note that using (2) we have

IDf*(s) = —2¢f (x) + R(0) — R(x) < —2¢f (x) + R(0) < Cs* + R(0).
Hence, for s> 1,
9) Cys < |Df|(s) < Css.

4. ¢ pinched solitons

We give a proof of Theorem 3 below. We try to make the proof more
transparent and self-contained.

Proof of Theorem 3. Recall that the Ricci curvature of the non-shrinking
soliton (X,g) is e-pinched, i.e., for some ¢ > 0 we have that R >0 on X and

Rc > ¢Ryg

on X. Then using the maximum principle, we know that either R =0 on X or
R>0. If R=0 on X, then by the pinching condition we know that (X,g) is
Ricci flat.

Assume that R >0 on X. Then as before, the potential function f is
locally strictly convex. Since (X,g) is a complete non-compact Riemannian
manifold, we have that f has at most one critical point, i.e., the point where
Vf =0. Assume that we have a critical point for f, saying that it is o € X.
Then using (3), we know it is also a critical point of R. Using (8), we know that
is the maximum point for R. In particular, we know that R is a bounded
function on X, saying that D > 0 is the upper bound.

Using (3) and the e-pinched condition, we have that

—R|Vf|* < (VR,Vf> = —2Re(Vf,Vf) < —eR|Vf|*.
Taking a minimizing geodesic curve y(s) connecting x and a fixed point o,
where s is the arc-length parameter, we have

o

(10) L 6Dl = | Sy o ds

0
s dyi dyj
= R —cgii) — ——
JO( i (’gj) ds ds ds

S odyl dy/

:—cs+J R
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This implies that there is a constant C, such that

s

: 1
VE Y (s)) = —cs—i—JOeR ds > —cs—&—L Rds> —cs+C > G

for s> 1.
Using (5) and the pinching condition, we have that

JA R ds < C6.
0

Using the pinching condition again, (10) also implies that

V09 (8)) < —es+ Jo Rds < —cs+ D.

Therefore, the angle between Vf and the gradient of the distance function from o
is almost fixed.

Then, using (3) and the e-pinched condition, we have for some constant
C3 >0,

(R™1), = =R (VR y'(s)> = 2R *Re(Vf, ' (s)).

S

Using (6) and (9), we obtain that

Re(Vf,7'(s)) = [VfIRe(y',7") + 0(Vs)

> eR|Vf| +0(v/s) = R(Cs — C),

we have
(R, = 2R (Cs - C).

This implies that

(logR), < C—Cs
and

R(s) < R(o)ecs’csz.
This implies that R — 0 exponentially as s — +oc0. This completes the proof of

Theorem 3.
Theorem 3 tells us that for such (X,g) we have

A = limsup Rs®> = 0.

§—00

Added in proof. Some of our results has been cited in Prop. 7.3 in the recent
paper of Brendle and Schoen: Sphere theorems in geometry, arxiv:0904.2604v2.
We refer to this paper for recent deep results of S. Brendle and R. Schoen.
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