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WEIERSTRASS GAP SEQUENCES ON CURVES
ON TORIC SURFACES
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Abstract

In this paper, we consider a nonsingular curve C on a nonsingular compact toric
surface S and intersection points of C and T-invariant divisors on S. We provide a
sufficient condition for a positive integer to be a gap value of C at such points. Under
a suitable assumption, it becomes the necessary and sufficient condition. We determine
several Weierstrass gap sequences at infinitely near points of a point on a plane curve by
using this method.

1. Introduction

First we define Weierstrass gap sequences and review several previous results
for them. Let C be a complete nonsingular irreducible algebraic curve of genus
g defined over an algebraically closed field of characteristic 0. For a point P on
C, a positive integer j is called a gap value at P if

h(C, jP) =h’(C,(j — 1)P).

The set of all gap values is called the Weierstrass gap sequence (or, simply, gap
sequence) of C at P. By the Riemann-Roch theorem, its cardinality is equal to
g. The following classical result is a powerful tool in the study of gap sequences.

THEOREM 1.1 (Weierstrass gap theorem). Let C be a complete nonsingular
irreducible algebraic curve of genus g > 1, and P a point on C. Then any gap
value at P is less than 2g.

For example, in the case of a hyperelliptic curve, there are two types of gap
sequences:

TueoreMm 1.2. Let P a point on a hyperelliptic curve C and ® g : C — P!
the holomorphic map associated to |Kc|.
(i) If P is a ramification point of @k, then the gap sequence of C at P is the
set of odd numbers {1,3,...,2g —1}.
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(i) If @k, is unramified at P, then the gap sequence of C at P is
{1,2,...,9}.

For trigonal curves, Coppens has computed gap sequences at their rami-
fication points.

Turorem 1.3 ([1, 2]). Let C be a trigonal curve and ¢ : C — P! the trigonal
morphism. A point P on C is called a total (resp. an ordinary) ramification point
if the ramification index of ¢ at P is three (resp. two).

(i) The gap sequence at a total ramification point of ¢ is one of the following

two types:

{1,2,4,...,3n=2,3n— 1,3n+ 1,3n+4,...,3(g —n—1)+ 1},
{1,2,4,...,3n—=2,3n—1,3n+23n+5,...,3(9g —n— 1)+ 2}.

(i) The gap sequence at an ordinary ramification point of ¢ is one of the
following two types:

{1,2,3,...,2n—1,2n,2n+1,2n+3,...,2g — 2n — 1},
{1,2,3,...,2n—1,2n,2n+2,2n+4,...,2g9 — 2n}.

Kato and Horiuchi [4] established a criterion for deciding the kinds of
ramification points and their gap sequences. Besides, Kim studied unramified
points and completed the classification of the gap sequences in the trigonal case.

THEOREM 1.4 ([5]). Let C and ¢ be as in Theorem 1.3, and denote by g the
genus of C. Assume that g > 5, and define jo = max{j e N|jP is special}. If ¢
is unramified at a point P on C, then the gap sequence of C at P is of the form
{1,2,...,9} or

{(,2,....n—Lin+jo—g+Ln+jo—g+2,...,50+1}

Sor some integer n with [(jo+1)/2]+ 1 <n < g, where [x] is the so-called Gauss’
symbol, that is, the greatest integer not greater than Xx.

Actually, the notion of gap sequence was extended to singular points by Lax
and Widland [6]. In [3], some methods were given by Gatto to compute gap
sequences at singular points on a plane curve. They allowed to determine gap
sequences at ordinary nodes on quartic curves or at cusps on quintic curves.
Notari [7] has developed a technique to compute the gap sequence at a given
point on a plane curve, either it is smooth or singular. Note that a projective
plane is a typical example of a toric surface.

In general, however, it is not so easy to determine it in its entirety at a given
point. In this paper, we restrict ourselves to a curve C on a toric surface S and
consider intersection points of C and T-invariant divisors on S. Theorem 1.5
provide a sufficient condition for a positive integer to be a gap value of C at such
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points. Moreover, as we will see in Corollary 1.6, it becomes the necessary and
sufficient condition under the suitable condition. Namely, in such cases, we can
detect all the gap values (i.e. the gap sequence). In Section 4, we will apply this
technique to three examples. Concretely, we will consider singular plane curves

x6y3+x3y+y—1:O,
x5+x2y+xy6—|—y6=0,
X4yl +xy'=0 (pzg=zlr+s=1)

and the resolutions of their singularities. In these cases, we can determine the
gap sequences at the infinitely near points of singularities.

1.1. Summary of the toric theory and the main theorem

Let S be a nonsingular compact toric surface. The surface S contains an
algebraic torus 7 as a nonempty Zariski open set. The torus action of 7' on
itself naturally extends to S. A prime divisor on X is called a T-invariant divisor
if it is invariant with respect to the torus action. We denote them by Dy,..., D,.
Since Uid:1 D; is a simple chain of nonsingular rational curves, we can assume the
following properties:

1 (j=i-1i+1),
D;.D; = .
/ { 0 (otherwise),

where we formally set Dy = D; and D, = D;.

The intersections of two adjacent divisors are called T-fixed points.

For a compact toric surface S, there is the associated fan Ag, which is the
division of R? consisting of half-lines o; starting from the origin called cones
(i=1,...d). Each cone g; corresponds to a T-invariant divisor D;. We denote
by (x;, y;) the primitive elements of g;, i.e., they are the lattice points on the
cones o; closest to the origin. There are essentially two ways to take the fan
associated to S, which depend on whether the value of x;y; | — y;x;_| is one or
minus one. In this paper, we adopt the former, that is, assume the equality
X;yi-1 — yixi-1 =1 for any integer 1 <i<d. This means that the cones
o1,...,04 are arranged clockwise (Fig. 1). The Picard group of S is generated
(not necessarily freely) by the classes of Dy,...,D,;. Hence, for a divisor D on
S, we can write its linear equivalence class as the sum of Dy, ..., D; with integral
coefficients. For example, the canonical divisor Kg of S is

d
Ks~=Y "D,
i=1

means linear equivalence.

LX)

where the symbol “~
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FIGURE 1

For a divisor D ~ sz:1 n;D; on S, the lattice polytope [p < R? is defined as
Op ={(z,w) € R’ | xiz+ yow <m; for 1 <i<d}.

Though []p can change according to how we describe the linear equivalence
class of D, those differences induce only parallel translations of [Jp. Hence the
shape of the lattice polytope is determined uniquely. For integers n and i with
1 <i<d, we define the line /;(n) = R*> by

Li(n) = {(z,w) e R?| x;z + yiw = n}.

Then [Jp is the domain surrounded by the lines /;(n;) (i=1,...,d).
Now, our main result can be stated as follows:

THEOREM 1.5. Let S be a nonsingular compact toric surface defined by a fan
composed by d cones, and C ~ Zil piD; a nonsingular irreducible nef curve on
S.  Assume that C does not pass through any T-fixed point on S. For positive
integers j and iy with 1 < iy < d, if the line l,(pi, — j) has more than or equal to
C.D;, lattice points in the interior of [c, then j is a gap value of C at the
intersection points of C and D;,.

Here we remark that it is not an essential assumption that C does not pass
through any T-fixed point. Indeed, if there are T-fixed points lying on C, then
by a succession of blowing-ups with those points as centers, we can obtain an
embedding of C in a toric surface which satisfies the assumptions of Theorem 1.5.

As declared in Abstract, under a suitable condition, Theorem 1.5 gives the
necessary and sufficient condition for j to be a gap value at the intersection
points of C and D;,. Concretely, the following Corollary holds.

COROLLARY 1.6. Let S, C and iy be as in Theorem 1.5. Assume that
C.Dj, =1 and the line I, (p;,, — j) has at most one lattice point in the interior of
Ulc for any integer j. Then j is a gap value of C at P= CN D, if and only if
Liy(pi, — J) has a lattice point in the interior of [c.
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Indeed, under these assumptions, the gap values at P detected by Theorem
1.5 are in one-to-one correspondence with the set of lattice points contained in
the interior of [J¢. Since [J¢ has ¢ lattice points in its interior (cf. Corollary
2.2), this means that all the gap values at P are completely found by Theorem
1.5.

2. Fundamentals of toric surfaces

In this section, we collect several fundamental properties of toric surfaces.
For many of them, we refer the readers to [8] without further mention.

Let S be a nonsingular compact toric surface. As in Section 1, for an
integer 1 <i <d, we denote by o; the cone corresponding to the 7-invariant
divisor D; and by (x;, y;) the primitive element of ¢;. The labeling of the T-
invariant divisors and the correspondence of the surface S and the fan Ag follow
the ways in Section 1. Let D be a divisor on S. The dimension of the global
section space of D can be read off the lattice points contained in []p:

TuEOREM 2.1.  The equation h°(S,D) = #(Cp NZ?*) holds.

COROLLARY 2.2. The following hold:

(i) If D is a nonzero effective divisor, then h°(S,—D) = 0.

(i) For a nonsingular irreducible curve C on S, its genus is equal to the
number of lattice points in the interior of [c.

In the case where the complete linear system |D| is base point free, we have
the following two results.

TueoreM 2.3. If |D| is base point free, then h'(S,D) =0 for any positive
integer i.

THEOREM 2.4. The following are equivalent:
(i) |D| is base point free.
(i) D.D; =0 for any T-invariant divisor D; (i=1,...,d).

The self-intersection numbers of 7-invariant divisors are computed by the
following formula.

THEOREM 2.5. For any integer 0 <i<d and 1 < j<d,
xD? = —Xi_1 — Xit1,
yiD} = —yii1 = yiq1.

PROPOSITION 2.6.  Let (z,w), (z1,w1) and (z2,w2) be lattice points such that
ziwy —wizy 0. Then there is a unique pair of real numbers (o, ) such that
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(z,w) = a(z1, wr) + p(z2, wa).
In particular, if zywy, — wizp = 1, then o and f are integers.

PrOPOSITION 2.7. Let i and j be integers with 0 <i<d and 1 < j<d Let
o and [§ be integers such that

(x5, ;) = oxi, i) + B(Xit1, Yise1)-
Then at least one of o and B is non-positive.  Furthermore, if either o or f is equal
to zero, then the other is equal to one or minus one.
Lemma 2.8. Let i and j be distinct integers with 0 <i<d and 1 <j<

d+1. If xiyj— yix; <0, then

Xi1yj — Yir1X; < 0,

Xiyji—1 — yixji-1 < 0.
The equalities hold if and only if j=1i+ 1.

Proof. We will show only the first inequality. One can similarly verify the
second one. By Proposition 2.6, we can write

(x5, 37) = a(xi, yi) + B(Xig1, Yit1)
with integers o« and . Then we have
0 <Xy — yixi = B(Xi1yi — Yi1xi) = f.
Recall that j #i. In the case of f =0, by Proposition 2.7, we have (x;,y;) =
—(xi, yi). Hence
Xip 1Y — Yip1Xj = —Xip1Vi + yiprxp = —1.

In the case of f > 1, we have a« <0 by Proposition 2.7. Hence

Xip1Vj = Yir1Xj = 0(Xip1yi — Yiy1Xi) = o < 0.

If xi11y; — yir1x; = 0, then we have o = 0. Hence, by Proposition 2.7, we have
f =1, which means j=1i+ 1. O

3. Proof of the main theorem

We keep the notation in Section 2. By renumbering of T-invariant divisors,
we can assume iy = 1 in Theorem 1.5. We thus consider the case where iy = 1
henceforth.

In fact, the Picard group of S is freely generated by the classes of T-
invariant divisors except two adjacent divisors (e.g. Da,...,D4_1). Hence, for a
curve C on S, we can take the linear equivalence class of C as
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d
C~> pDi (pieZ,pi=pi=0)
i=1

= pa = 0 henceforth. We denote

(1)

without loss of generality. We thus assume p;
by Int [J¢ the interior of [J¢, that is,

Int ¢ = {(z,w) e R? | x;z 4 y;w < p; for 1 <i<d}.

3.1. Key lemma
The aim of this subsection is to show Lemma 3.9 which is the key to proving

Theorem 1.5. We first see the relation between the coefficients of the linear
equivalence class of C and the primitive elements of the cones.

Lemma 3.1. Assume that |C| is base point free. Then, for any integer

2<k<d-1,
k-1
Pk = Z(kai — yexi))C.D; > 0.

f
Proof. Recall Theorem 2.5 and that p; = p; =0. An easy computation
shows the equality

k—1
(xkyi — yixi)C.D;

i=1

k-1

k—1
=%k > yilpict + piD} + pist) = e D Xi(pi1 + piD} + pi1)
i=1

i=1

k—
Z Yibi-t = (Vi1 + Yir1)Pi + Yibiv1)

k=1
— Jk Z(xipi—l — (Xi1 + Xi1) pi + Xipiv1)

= Xk(V1Pa — YaP1 — YiPk-1+ Yi-1Pk) — Yk(X1pa — Xap1 — XiPk—1 + Xi—1Dk)

= (XkVk—1 — ViXk—1)Pk = Pk-

Note that Theorem 2.4 implies
yrx1 = 0, then by Lemma
This means that

Next we shall show that p; is non-negative.

that C.D; > 0 for any integer 1 <i<d. If xzy —
2.8, we have x;y; — yxx; > 1 for any integer 2 <i <k — 1.

pr = 0.
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Assume that x;y; — yrx; < —1. An easy computation gives the equation

d d
ZX,‘C.D,‘ = ZleDl =0.
i=1 i=1

Namely, we have

d d d
2 p=—x Y yCDi+y >, xCDi= Y (xiyx — yixx)C.D;.
i=k+1 i=k+1 i=k+1

On the other hand, Lemma 2.8 implies that x;y; — yxx; < —1 for any integer
k+1<i<d Hence the inequality p; >0 follows from (2). O

In the remaining part of this subsection, let C be a nonsingular irreducible
nef curve of genus g on S, and assume C.D; > 1. Since C is nef, |C| is base
point free by Theorem 2.4. Let j be a positive integer such that /;(—j)N
Int (JcNZ* # 0, and we denote by (zo,wp) the lattice point in /;(—j) NInt (¢
closest to the line /;(py). All the remaining lemmas in this subsection are closely
related to the notion of lattice polytope. Hence, for a better understanding, we
will argue together with the following example.

Example 3.2. Let S be a toric surface defined by the fan in Fig. 1, and
Co ~ 2Dy +6D3+ 10Dy + 5Ds + TDg + 16D7 + 10Dg + 4Dy + 3Dy

a nonsingular irreducible nef curve on S. Then the lattice polytope [, is
drawn as in Fig. 2.

We next define a certain effective divisor /, which plays an central role in the
proof of Theorem 1.5.

FIGURE 2
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FIGURE 3

DEeriNITION 3.3. We define
a=min{i > 2|x;(zo — y1) + yi(wo + x1) = 0},
b =max{i < d|x;zo + yiwo = 0},

xi(y1 —z0) — yilxi +wp) (I1<i<a-—1),
qi = 4 —XiZ0 — Yiwo (b+1<i<d),
0 (otherwise),

d
I = Z QiDi~
i=1

Note that b <d — 1. Indeed, by the definition of (zo,wp), the inequality
X420 — Yawo < pas — 1 = —1 holds. For instance, in the case of Example 3.2, for
an integer j =8, we have a =15, b =10 and

I =8Dy+4Dy +4D3+ 4Dy + 2Dy + 5Dq5.
The line /,(—8) and []; are as in Fig. 3. Note that the origin has changed.

LemMMA 3.4. For any integer b+ 1 < k < d, the inequality
Xy — yixn < —1

holds.  Moreover, if a > 3, then x,y1 — ymx1 = 1 for any integer 2 <m < a— 1.

Proof.  Since xjzo + yiwo = —j # 0, we can write
(X6, ¥b) = a1 (x1, y1) + By (wo, —20),
(Xp+15 Yp41) = 02(x1, y1) + Ba(wo, —20)
with some real numbers. By the definition of b, we have
Xpzo + ypwo = o1 (X120 + y1wo) = —jour =0,

Xp+120 + Yor1Wo = oa(X120 + y1wo) = —jor < 0.
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Hence we have a; <0 and o, > 0. Now, we suppose that x;.;y; — yprix; = 0.
Then Lemma 2.8 implies that x,y; — ypx; > 0. Hence we have

Xp¥1 — ypx1 = By(x120 + y1wo) = —jf; =0,
Xp1V1 = Yor1X1 = Bo(x120 + yiwo) = —jf, 2 0,
which imply f; <0 and f, <0. Then, by computing, we have
XpYbr1 = VoXor1 = j(oafy — Bro2) = 0.

This contradicts the fact that x,.1yp — ypr1Xp = 1. We thus obtain that
Xpr1V1 — Vor1X1 < —1. Then by Lemma 2.8, xzy; — yxx; =1 for any integer
b+ 1<k <d. Similarly, one can show the second inequality by considering the
descriptions  of  (x,-1,y,-1) and (x4, p,) as the sum of (x;,y;) and
(x1 + wo, y1 — zo) with real coefficients. O

Note that the inequality ¢ < b+ 1 follows immediately from Lemma 3.4.
Indeed, if a > b+ 2, then we have

(3) Xa—1Y1 — Ya1X1 < —1

by Lemma 3.4. However, this contradicts the second statement in Lemma 3.4
in the case where @ > 3. It goes without saying that (3) is a contradiction in the
case where a = 2 also.

LemmA 3.5. The complete linear system |I| is base point free.

Proof. By Theorem 2.4, it is sufficient to verify 7.D; > 0 for each integer
1 <i<d. Recall Theorem 2.5. Then we have

1.Dy = qq+ ¢\ D} + d>
= —X420 — Yawo — X120D} — yiwoD} 4+ X231 — yax1 — X220 — yawo = 1.
For integers 2 < k) <a — 2,
1.Dy = (Xk,—1 + X, D, + Xt 1) (01 = 20) = (V=1 + i D, + Y1) (x1 + wo) = 0.
For integers b+2 <k, <d,
1.Dy, = —(Xpp1 + X0, DR, + Xip1)20 — (V-1 + Vi Dit, + Yio1)wo = 0.

Moreover, it is obvious that /.D;, =0 for any integer a+1 < ks <b — 1.
Let us check the remaining divisors D, |, D,, Dy and Dj,;. Recall Lemma
3.4. Then we have

D . {xa(zo =)+ Yawo+x1) =0 (a<b),
et —Xp+1 1 + Vpy1x1 > 1 (a=b+1),
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—xa,l(zo—yl)—ya,l(wo—i-xl)2 1 (aSb—l),
I.D, =< —x4-1(20 — y1) — Ya—1(Wo + X1) — Xpr120 — Ypr1wo =2 (a=b),
Xa—1 Y1 — YVa—1X1 = 1 (a=b+1).

Similarly, we have

—Xp+120 — Yor1Wo = 1 (a<b-1),
I.Dy ={ —x41(20 — y1) — Ya1(Wo + X1) — Xp1120 — Vpr1wo =2 (a = b),
—Xp1 Y1+ Vpr1x1 = 1 (a=b+1),
>0 <b
I.Dy,) = {beO TV = (a<b), -
Xg1V1 — Vac1x1 =1 (a=b+1).

Very roughly speaking, Theorem 1.5 is verified by comparing the cohomol-
ogy dimension Ah°(C,I|-) with h°(C,(I — Dy)|c). In fact, however, it is not
enough for the proof to deal with only /. We need to introduce the following
auxiliary divisor X and consider the divisor obtained by subtracting it from 1.
We define

a—1 d
X=Y Di+ )Y D
=2 i=b+1

Li(n) = {(z,w) e Z*? | xiz 4+ yiw < n}
for integers n and i with 1 <i<d.
Lemma 3.6.  The vanishing h'(S,I — X) =0 holds.
Proof. Consider the cohomology long exact sequence
0— HO(Sa[_X) - HO(SaI) _>H0(X71|X)
— HY(S, 1 - X) — H'(S,I) — H'(X,I|y) = H*(S,] —X) — ---.
Lemma 3.5 and Theorem 2.3 imply that 4!(S,I) =0. Besides, h*(S,I — X) =

h°(S,Ks + X — I) = 0 holds by Serre duality and Corollary 2.2. Hence Riemann-
Roch theorem yields the equality

1 1
WX, I|y) =degI|y+1— EX.(KS +X)-1=1X— EX.(KS + X).
We thus have

(4) WS, T —X)=h"(S,]—X)—h"(S,I)+1.X — %X.(KS +X).

Since 1.D; =0 for any integer i with 2<i<a—2 or b+2 <i<d, we have
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I X — {I.Dal +I1.Dpy1 (a=3),

(5) 1.Db+1 (a = 2).

Moreover, by computing, we have

) X.(Ks + X) = -4 (3<acx<h),
S ~ -2 (otherwise).
In order to compute the value of 4h°(S,1) — h°(S,I — X), we first verify the

following inclusions:

a—1
Li(q1) N Lo—1(qa—1) = () Li(g:) if a >3,
i=2
(7) .,

Li(q1) N Lpsi(gp1) = () Li(q:).
i—bt1

Assume a > 3 and let (z;,w) be a lattice point contained in L;(g;) N L,—1(qa—1)-
We write

(z1,w1) = (31 — 2o, —x1 — wo) + a1 (¥1, —x1) + B1 (Va=1, —Xa—1)

with real numbers «; and f;. Then the inequalities

x1z1 + yiwr = q1 + Br(X1Ya-1 — y1Xa1) < 41,

Xa-121 + Ya1W1 = qa—1 + 0 (Xa 1V1 — Ya-1X1) < qa1
implies oy < 0 and 8, > 0, respectively. Let k; be an integer with 2 < k; <a — 1.
Then Lemma 3.4 and Lemma 2.8 imply that xi,y; — v, x1 =1 and x, 1y, —
Ya—1Xk, = 0. We thus have

Xty 21+ YW1 = iy + 01 (Xt Y1 — Y X1) + Br(X Va1 — Vi Xa-1) < Gry -

Hence we obtain the first inclusion of (7). Similarly, for a point (zp,w;) con-
tained in Li(q1) N Lpy1(gp1), we write

(z2,w2) = (=20, =wo) + 02 (¥1, =x1) + Bo (b1, —Xp11)

and can show oy >0, f, <0 and the second inclusion of (7).
The same argument can be adapted to show

a—1
Ll(ql) mLufl(Qa—l — 1) c m Li(q,- — 1) if a> 3,
i=2
(8)

d
Li(gi)NLpt1(qps1 — 1) < ﬂ Li(q; —1).
i=b+1

Recall the notation /;(n) defined in Section 1. Then by (7) and (8), if @ > 3, we
have
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KO(S, 1) — h°(S,T - X)

a—1 b d
- #( (q)) _#<L1(ql)ﬂ (i :
: N i=b+1
b+1
= #(Ll(m) n N Li(qf))

b
—#<L1(q1)ﬂLa 1(ga—1 —1)N

O i(qi) N Lpy1(qpe1 — 1))
=# <L1<QI) N Abﬁl Li(qi)\(La-1(qa—1 — 1) N Ly 1(gp+1 — 1)))

75

D&

=a—1

b+1
=# (Ll (@)N () Li(g:)\La-1(qa- 1—1)>

i=a—1

U <L1 q1)N bﬁl (i) \Lp41(qp+1 — 1)))
i=a—1

=# <L1(Q1) Nly-1(ga-1) N bﬁl Li(%‘))

b
Ul Li(g)N () Li(g: ﬂlb+1(6lb+1)>>
i=a—1

Similarly, if @ =2, one can obtain

b
h%&n—W%&I—X>=#<ﬂmemanHn)
i=1
We define
b+1
M =Li(q1)Nly—1(ga—1) N ﬂ Li(g;
b
N=Li(g)N () Li(g:) Nlps1(gps1)-
i=a—1

Then we have

#(MUN) =#M + #N —#(MNN) (a=3),

hO(S, 1) = h°(S,I - X) =

s =it -x0 = {7 )
Here let us see the case of Example 3.2. As we saw after Definition 3.3, in

this example, we have a = 5 and b = 10 for j =8

Hence M and N are the sets
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111(2)

FIGURE 4

of lattice pomts contamed in 4(4)NA and 111( )ﬂB respectlvely (see Fig. 4),
where 4 = L;(8 ﬂﬂ i/(g:) and B = L(8 ﬂﬂ L

We shall examine #M Let (u,v) be a lattice pomt contained in M. Since
both (u,v) and (y; — zp, —x; — wp) are contained in /,_1(g,—1), we can write

(u,v) = (y1 = 20, —X1 — wo) + P(Va-1, —Xa-1)
with some integer y. We obtain y > 0 by Lemma 3.4 and the inequality

xX1u+ y1o0 = q1 + y(X1ya-1 — M1Xa-1) < q1.
Since (u,v) is contained in L,(g,), we have
Ga = Xqll + YU = Xq(¥1 — 20) — Ya(x1 +wo) + v

_{—I.Da1-‘rj/ (a <b),
- IDpi+qa+y (a=b+1).

Recall that ¢, =0 in the case where ¢ <b. We thus have y <I1.D, ;.
Conversely, we shall show that for any integer 0 <y < I1.D, i, the lattice
point

(uﬂv’) = (yl — 20, —X1 — Wo) + V/(ya—b _xa—l)

is contained in M. Since (u’,v’) is clearly contained in Li(q;)N/l—1(qa-1), it
is sufficient to verify that (u’,v’) is contained in ﬂﬁa Li(q:). We remark the
equality

) I.Dy 1(Xa—1, Ya-1)
= (qu—2+ qa-1D}_| + qa)(Xa-1, Va-1)
= (=xa()1 = 20) + ya(x1 +wo) + ga)(Xa-1, Ya-1)
= (=wo — x1,20 — ¥1) + (Xa-1(z0 — 1)
+ Ya-1(wo + x1))(Xas Ya) + qa(Xa-1, Ya-1)-

We first show that (u’,v’) is contained in Lpy1(qpi1)-
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(1) If Xpr1Ya—1 — Yor1Xa—1 <0, then xpp1y1 — ypy1x1 <0 by Lemma 2.8.
We thus have

! / /
Xpp1t 4 Y10 = Xpp1 Y1 — Yor1X1 — Xp1120 — Vo41Wo + ¥ (Xp+1Va—1 — Vo41Xa—1)
< —=Xpt120 — Vb+1W0 = qb+1-

(i) If Xpr1Yam1 — Yor1Xa—1 =1, then Xxpy1Ys — Ypr1X, =0 by Lemma 2.8.
Moreover, by the equation (9), we have

I.Dy 1 (Xps1Ya—1 — Ybi1Xa1)
= Xp+1(20 — Y1) + Vo1 (wo + x1)
+ (Xa=1(20 = ¥1) + Ya-1(wo + x1)) (Xp+1Va — Ybr1Xa)
+ qu(Xp1Vas1 — Ybr1Xa_1)
< xp1(20 = y1) + yor1(wo + X1) + Ga(Xp11Va-1 = Yor1Xa-1)-
Hence we have
Xpp1tt' + ypy10” = Xpe1(y1 = 20) + Ypa1(=x1 = wo) + ¥ (Xp11Vac1 — Vbi1Xa-1)
< Xpr1 (V1 = 20) + Vo1 (=x1 = wo) + L.Dy1(Xps1Ya-1 — Yb+1Xa-1)
< qu(Xp11Ya"1 — Yb1Xa—1).

If a < b, then g, = 0 and we have xp 1’ + ypi 10’ <0< gpy1. Ifa=b+1, then
we have

Ga(Xp1Ya1 = Yoi1Xa—1) = qo1(Xp41V6 — Vbi1Xp) = Qi1

Hence we can conclude that (u/,v’) is contained in Lpy1(qps1)-

If a=5b+1, then the above argument is enough to show that (u',v’) is
contained in M. On the other hand, in the case where a« < b, we have to
check that (u',v’) is contained in ﬂf:u L;(q;) also. Let m be an integer with
a<m<b. Note that ¢,, =0 in this case.

() If Xuya—1 — YmXa—1 = 0, then we have x,y, — ymXx, =0 by Lemma 2.8.
Then by the equation (9), we have

xmu/ + J’mU' = (V’ - I-Dafl)(xmyafl - ymxafl)
+ (Xa-1(20 = ¥1) + Ya-1(Wo + x1)) (XmYa — YmVa)
<0=gmn.

(i) If Xpmya—1 — YmXqa—1 < —1, then Lemma 2.8 yields the inequalities x,, y1 —
ymx1 < =1, xpy1 — ypx1 < —1 and x,, 5 — ymxp <0. Thus we can write

(xma ym) = 5()(1, yl) =+ S(Xb, yb)

with real numbers 6 < 0 and ¢ > 0. Recall that (zg, wp) lies on /;(—j). Then we
have
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XmZ0 + YmWo = 0(x120 + y1wo) + &(xpz0 + ypwo) = 0,
xmu, + mel = Xm)Y1 — YmX1 — XmZ0 — YmWo + V'(mea—l - ymxa—l) < 0= qm-

Hence we have that (u’,v’) is contained in ﬂf:u Li(q;).
In sum, we can conclude that

M = {(y1 —z0,—x1 — wo) + Y(Va—1, —Xa-1) |0 <y < I.Dy_1}.
A similar argument can be adapted to show that
N = {(=z0,—wo) = {(¥p+1, =Xp+1) |0 < L < 1.Dpy1 }.

Next we examine M N N under the assumption that @ > 3. By the definition
of M and N, the intersection M NN is included in Z,—1(qs—1) N lps1(gps1)-

(i) In the case where X, 1Vpi1 — Va—1Xp41 =0, we have (Xpi1, ypi1) =
—(Xg-1,Ya—1)- Let (uj,v1) be a lattice point on /,—1(¢,—1). Then, by Lemma
3.4, we have
Xp+1UL + Yp+101 = —Xg—1U] — Va—1V1 = —qaq—1 = X1Va—1 — Y1Xa—1 + Xa—120 + YVa—1W0

< Xg-120 + Yao1wo — 1 = —=Xp1120 — Ypriwo — 1 = qpy1 — 1.

Hence (uy,v;) does not lie on /y,1(gpy1). This means M NN = 0.
Assume x,_1Vp+1 — Ya—1Xp4+1 7 0. In this case, the intersection /,_;(g,—1)N
Ip+1(gp41) clearly consists of only one lattice point. We denote it by (ug,vo).
(i) Consider the case where x,_1ypi1 — ya—1Xp41 = 1. Since both (ug,vo)
and (—zop, —wy) lie on [y 1(gp4+1), One can write

(uo,v0) = (=20, —wo) + 1(Vps1, —Xpr1)

with some integer #. Then the inequality

—Xg-120 = Ya—1W0 + N(Xa—1Yb+1 = Ya—1Xb11)
= Xg-1U0 + Ya—100 = a1 = Xa-1(¥1 — 20) — Ya—1(x1 + o)
> —X4-120 — Ya—1wo + 1
implies # > 1. Hence we have

Xiuo + yivo = q1 +n(X1Yp11 — YiXp1) = q1 + 1.

This means that (ug,vy) is not contained in L;(q1), that is, MNN = 0.
(iii) Consider the case where x,_iypi1 — Ya—1Xp+1 < —1. We write

(uo,v0) = O(ya—1,—Xa—1) + 1(Vps1, —Xps1)

with real numbers 6 and :. Since (ug,v9) is contained in /,—1(qs—1) Nlp+1(qpi1),
we have 0 >0 and 1 < 0.

(iii)-(a) If a <b, then ¢, =0. Since Lemma 2.8 implies that x, jyp—
Ya—1Xp < —1, we have
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Xptto + Ypvo = O(XpYa—1 — YpXa—1) —1=0—1>0 = g.

This means that (ug,vy) is not contained in Ly(g,), that is, MNN = 0.
(iii)-(b) If a=b+1, then MNN = Li(q1) Nla=1(qa—1) N lp+1(gp+1). Since
q1 = —Xx1z0 — yiwo = j = 1, we have
xiup + y1vo = O(xX1Ya-1 — y1Xa-1) +1(X1Vp41 — V1Xpy1) < —0+1<0 < q1 — 1.

Hence, in this case, (1o, vo) is contained in L;(g;) and we have M NN = {(uo,v0)}.
Here we note that ¢ < b in the case of (i) and (ii). Indeed, if a = b+ 1, then

Xq_1Vpse1 — Ya_1Xp+1 = —1. Therefore, we can conclude that
0 3<acxhb),
#HMON) :{1 Ez ga:b)+ .

In sum, we have

I.Dy1+1.Dp1+2 (3<a<h),
(10) KOS, 1) =S, I —X) =S I.D,y +1.Dy;  +1 (3<a=bh+1),

I1.Dpy +1 (a=2).
Therefore, combining (4), (5), (6) and (10), we can obtain /#!(S,I— X)=0.

O

In order to compute the difference between the dimensions of global section
spaces of (I — X)|. and (I — X — Dy)|., we examine their cohomologies of higher
order in Lemma 3.8 below.

Lemma 3.7. If #(Lh(—j)NInt e NZ?) > C.Dy, then a > 3.
Proof: We put c = C.D;. Let (z,w) be a lattice point contained in /;(—j) N
Int (Jc. Then we can write
(z,w) = (zo, wo) + a(y1, —x1)

with some integer o.  Since (zo, wp) is the lattice point in /;(—j) N Int [J¢ closest to
14(0), we have o > 0. Hence, by assumption, the point (zg, wo) + (¢ — 1)(y1, —x1)
have to be contained in Int [J.. We thus have

x2(z0 + (¢ = 1) y1) + y2(wo — (¢ = 1)x1) = x2(20 — ¥1) + ya(wo + x1) +¢ < pr = ¢,

where the last equality follows from Lemma 3.1. Hence we have x»(zp — y1) +
y2(wo + x1) < 0, which means a > 3. O

Lemma 3.8. If #(h(—j)NInt (¢ NZ?) = C.Dy, then
(S, Ks+C—1+ X+ Dy)=h"(S,Ks+C—I1+X)+ C.D;.

Proof. We put ¢ = C.D;. Recall that py =0 and ¢; = j. Then by The-
orem 2.1, we have
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(S, Ks+C—IT+X+Dy)—h’S,Ks+C—1+X)

a—1 b d
=# (LI(J') () Li(pi = i) N O Li(pi—=1)N () Li(pi - 61:‘))
a—1 b d
—# (Ll(J —1) Q Li(pi —q)) N O Li(pi—1)N ;QILI‘(P:' - 61:‘))

a—1 b d
= #(11(1') () Li(pi = q:) N O Li(pi— )N () Li(pi— qi))-

We define
a—1 b d
K =5L(=j) () Li(pi —q) N (Y Li(pi— DN () Li(pi — q1)-
=2 i=a i=b+1

Then our purpose is to show that #K =c¢. Let (u,v) be a lattice point
contained in K. Since (zo,wo) and (u,v) lie on /;(—q;), we can write

(u,v) = (20, wo) + a(y1, —x1)

with some integer «. Since p; =0, (u,v) is contained in L;(—¢g,). Hence we
have

Xt + Yav = —qq + a(Xqy1 — yax1) < —qa,

which implies « > 0. On the other hand, since ¢ > 3 by Lemma 3.7, (u,v) is
contained in Ly(p» — ¢2). Hence we have

Xou + Y0 = X2zo + yawo + o < pr — g2 = ¢+ X220 + yawo — 1,

that is, o < ¢ — 1.
Conversely, let us verify that, for an integer o’ with 0 < o’ < ¢ — 1, the point

(M/, U/) = (207 WO) + OC/(J/I, _xl)

is contained in K. Let k; be an integer with 2 <k} <a—1. By Lemma 3.4
and Lemma 2.8, we have x,y — Vi, X = 1 for integers 1 <m < k; —1. Hence
we have py, = (xx,¥1 — YK, x1)c by Lemma 3.1 and

Xt + Y 0" = Xk, (20 = 1)+ Y (wo 4 x1) + (o + 1) (v y1 = yigx1)
< =g, + (X1 — Vi X1) < Py — Gy -

For integers b+ 1 < k, < d, we have

! li li
X' + Yip ' = Xk 20 + Yiswo + o' (X1 — Vi X1) < —qiy < Ply — G-
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Finally, we shall check that (u/,v") is contained in ﬂf’:a Li(p; —1). Since (zo,wo)
is the lattice point in /;(—j) NInt (¢ closest to ;(0), we have that (zg,wo) +
B(y1,—x1) is not contained in Int [J¢ if f < —1. On the other hand, by the
assumption of the lemma, /;(—j) has at least ¢ lattice points in Int [J¢c. We thus
have that (u’,v’) is contained in ﬂib:u Li(p;i—1) for integers 0 <o’ <c—1. In
sum, we can conclude that (#’,v") i1s contained in K for integers 0 <o’ <c¢— 1.
It follows that #K = c. U

By using Lemma 3.6 and 3.8 in cohomology long exact sequences, we obtain
the following equality:

Lemma 3.9. If #(L(—j)NInt O¢cNZ?) > C.Dy, then
h(C,(I = X)|¢) = h°(C,(I = X = Di)|¢).
Proof. Tt is sufficient to verify the inequality A°(C,(I - X)|-) <

h°(C,(I — X — Dy)|c). By Lemma 3.6, we have the cohomology long exact
sequence

0— HY(C,(I-X)|g) = H*S,]1-X~C) — H*(S,]—X) — ---.
By Serre duality and Corollary 2.2, we have
WS, I —X —C)=h"S,Ks+C—1I+X),
b
(S, 1 - X) h°<S, —I — Dy ZD,») =0.
Hence, by Riemann-Roch theorem, we have
W(C,(I—-X)|c)=h'"(C,(I - X)|o)+deg(I —X)|o+1—¢g
=h(S,Ks+C—-T+X)+(I—X).C+1—g.
On the other hand, the cohomology long exact sequence
- — HY(C,(I - X —Dy)|o) = H*S,1-X —D; - C)
— H*(S,]—X—-D)) — ---

and the vanishings h2(S,1 — X — D) = h%(S,—I =7 D)) =0 lead the in-
equality

W(C,(I =X —Dy)|c) =h"(S,Ks + C— I+ X + D).
Hence, by Riemann-Roch theorem and Lemma 3.8, we have
W(C,(I-X—=Dy)|c)=h"(S,Ks +C—I+X+D)+I—-X-D;).C+1—¢g
=h’(C, (I - X)|¢)- O
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3.2. Proof of the main theorem
We are now in a position to prove the main theorem.

Proof of Theorem 1.5. As mentioned at the beginning of the Section 3,
we can assume iy = 1. We first consider the case where g = 0. In this case, the
gap sequence at P is empty. Indeed, the equation A°(C, jP) = j — 1 holds for
any positive integer j. On the other hand, by Corollary 2.2, there are no lattice
points in the interior of [Jc. Hence the statement is obviously true.

We assume that g > 1 and put Di|.={P1,...,P.;}. Lemma 3.9 implies
that

h(C,(I = X)l¢) = h°(C.(I = X)|c = P1).
Namely, P; is the base point of |(/ — X)|-|. Note that ¢; = j. We define

I'=I—jD—X = Z D+Zq,D+Z

i=b+1

It is clear that I’ is effective by Definition 3.3. Besides, since P; lies on neither
D, nor D, by assumption, I'|- does not contain P;. Therefore, P; is also the
base point of

(I = X)[c = I'lc = jPr— -+ = jPc| = |jP1],
that is, h1°(C, jP;) = h°(C,(j — 1)P;). A similar argument goes through for the
points Py,..., P,. O
4. Examples

In this section, we shall apply Corollary 1.6 to concrete examples in practice.
Our aim is to compute the gap sequences at the infinitely near points of a
(possibly singular) point on a plane curve. Let Q be a point on plane curve C’,
and consider the resolution of singularities of C’ by a succession of blowing-ups.
Then, for some cases, we can determine the gap sequences of the nonsingular
model of C’ at the infinitely near points of Q by Corollary 1.6.

For a toric surface, a composite of a finite succession of blowing-ups
with T-fixed points as centers is called a foric morphism. Recall that P?
is a toric surface. Let PZ(XO : X1 :Xy) be the projective plane. We denote
x=X1/Xo, y=X>/Xp the local coordinates on the affine open subset Uy =
{(X() : X1 : Xz) EP2|X0 #* 0}

Example 4.1. Let C’' be an irreducible plane curve defined by the local
equation
6.3 3 _
Xy +xy+y—1=0.

One can obtain a toric morphism ¢:S — P? such that S is a nonsingular
compact toric surface and the proper transform C := ¢ !(C’) is a nonsingular nef
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curve of genus 3 on S. The fan Ag defining the surface S is as in Fig. 5. If we
place [J¢ as in Fig. 5, then the linear equivalence class of C is written as

C~Dy+2D3+3D4+3Ds + 6Dg + 3D7 + 3Dg + Dg.

Consider the point Q = (0,1) on C’'NUy. The point Q has only one infinitely
near point P on C, which is in fact the intersection point CN D;. The cone g
corresponding to D has the primitive element (—1,0). Hence, by Corollary 1.6,
the gap sequence of C at P is

{j eN|the line X = has lattice points in Int [J¢c} = {1,2,4}.
Example 4.2. Let C' be an irreducible plane curve defined by the local
equation
x5+x2y+xy6+y6:07

and ¢ : S — P? a toric morphism such that C := ¢:'(C") is a nonsingular nef
curve of genus 8 on S. The fan Ag is as in Fig. 6. If we place []¢ as in Fig. 6,
then the linear equivalence class of C is written as

AS Y.

'\

\
_== \Ce

/ T~
< 0201013 " ) X

Wi

A\\\

FIGURE 6
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C~ —5Dy—4D, —3D3 — 5D4 — 12D5 — 6 D¢
+ 6Dg + 7Dg + 15Dy + 10Dy + 5D15.
Consider the origin Q = (0,0) on C'NUy. Then the infinitely near points of Q
on C are Py =CND; and P, = CNDs. The primitive elements of o, and o5
are (—1,—3) and (—5,-2), respectively.
It is obvious that the lines X +3Y =k and 5X +2Y =/ have at most one

lattice point in the interior of [J¢ for any integer k and /. Hence, by Corollary
1.6, the gap sequences of C at P, and P, are

{jeN]|the line X +3Y = j+ 5 has a lattice point in Int [J¢}
=1{1,2,3,4,6,8,9,11},

{jeN|the line 5X +2Y = j+ 12 has a lattice point in Int [J¢}
={1,2,3,4,5,6,7,9},

respectively.
Before proceeding to the next example, we define the following function.

DermiTiON 4.3.  For a positive integer m and a non-negative integer n, we
define a function f as

F(mn) = {gcd(m,n) (n>1),

m (n=0).

Example 4.4. Let C’' be an irreducible plane curve defined by the local
equation of the form

X’ + y? 4+ x"y* =0,

where p>¢g=>1 and r+s>1. One can obtain a toric morphism ¢ : S — P?
such that C := ¢ (C’ ) is nonsingular and nef. We write the linear equivalence
class of C as C ~ Zl  piDi.  The genus of C can be computed by the formula

(lpg —rq—spl— f(p,p —q) (pq—rq—sp #0),

9= —flp—r.8) = flg—s71)+1
0 (pg—rq—sp=0).

Besides, in this case, the lattice polytope []¢ becomes a triangle and we can
place it such that its vertices are (p,0), (0,¢) and (r,s). Then, by Corollary 1.6,
we can compute the gap sequence of C at the infinitely near points of the origin
0 =(0,0) in the following cases:

(i) pg—rqg—sp=0,

(i) pg—rqg—sp<0and f(p,p—q) =1,

(iii) pg—rq—sp>0 and f(p—r,5)=f(q—s,1r)=1.

N =
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The case (i) does not require Corollary 1.6. Since g = 0, the gap sequence is
empty at every point on C.

In the case (ii), the fan Ag is as in Fig. 7. The point Q has one infinitely
near point P on C, which is the intersection point CN Dy. The primitive element
of oy is (—g,—p) and pr = —pgq. Hence, by Corollary 1.6, the gap sequence of
C at P is

{jeN|the line ¢X + pY = pg+ j has a lattice point in Int [J¢}.

In the case (iii), the fan Ag and the lattice polytope [J¢ are as in Fig. 8.
The infinitely near points of Q on C are Py = CN Dy, and P, = CNDy,. The
primitive elements of oy, and oy, are (—s,r —p) and (s —¢q,—r), respectively.
Moreover, pi, = —sp and pi, = —rq hold. Hence, by Corollary 1.6, the gap
sequences of C at P; and P, are

{jeN]|the line sX + (p —r)Y =sp+ j has a lattice point in Int (¢},

{jeN|the line (¢ —s)X +rY =rg+ j has a lattice point in Int (¢},

respectively.
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