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WEIERSTRASS GAP SEQUENCES ON CURVES

ON TORIC SURFACES

Ryo Kawaguchi

Abstract

In this paper, we consider a nonsingular curve C on a nonsingular compact toric

surface S and intersection points of C and T-invariant divisors on S. We provide a

su‰cient condition for a positive integer to be a gap value of C at such points. Under

a suitable assumption, it becomes the necessary and su‰cient condition. We determine

several Weierstrass gap sequences at infinitely near points of a point on a plane curve by

using this method.

1. Introduction

First we define Weierstrass gap sequences and review several previous results
for them. Let C be a complete nonsingular irreducible algebraic curve of genus
g defined over an algebraically closed field of characteristic 0. For a point P on
C, a positive integer j is called a gap value at P if

h0ðC; jPÞ ¼ h0ðC; ð j � 1ÞPÞ:
The set of all gap values is called the Weierstrass gap sequence (or, simply, gap
sequence) of C at P. By the Riemann-Roch theorem, its cardinality is equal to
g. The following classical result is a powerful tool in the study of gap sequences.

Theorem 1.1 (Weierstrass gap theorem). Let C be a complete nonsingular
irreducible algebraic curve of genus gb 1, and P a point on C. Then any gap
value at P is less than 2g.

For example, in the case of a hyperelliptic curve, there are two types of gap
sequences:

Theorem 1.2. Let P a point on a hyperelliptic curve C and FjKC j : C ! P1

the holomorphic map associated to jKC j.
(i) If P is a ramification point of FjKC j, then the gap sequence of C at P is the

set of odd numbers f1; 3; . . . ; 2g� 1g.
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(ii) If FjKC j is unramified at P, then the gap sequence of C at P is
f1; 2; . . . ; gg.

For trigonal curves, Coppens has computed gap sequences at their rami-
fication points.

Theorem 1.3 ([1, 2]). Let C be a trigonal curve and j : C ! P1 the trigonal
morphism. A point P on C is called a total (resp. an ordinary) ramification point
if the ramification index of j at P is three (resp. two).

(i) The gap sequence at a total ramification point of j is one of the following
two types:

f1; 2; 4; . . . ; 3n� 2; 3n� 1; 3nþ 1; 3nþ 4; . . . ; 3ðg� n� 1Þ þ 1g;
f1; 2; 4; . . . ; 3n� 2; 3n� 1; 3nþ 2; 3nþ 5; . . . ; 3ðg� n� 1Þ þ 2g:

(ii) The gap sequence at an ordinary ramification point of j is one of the
following two types:

f1; 2; 3; . . . ; 2n� 1; 2n; 2nþ 1; 2nþ 3; . . . ; 2g� 2n� 1g;
f1; 2; 3; . . . ; 2n� 1; 2n; 2nþ 2; 2nþ 4; . . . ; 2g� 2ng:

Kato and Horiuchi [4] established a criterion for deciding the kinds of
ramification points and their gap sequences. Besides, Kim studied unramified
points and completed the classification of the gap sequences in the trigonal case.

Theorem 1.4 ([5]). Let C and j be as in Theorem 1.3, and denote by g the
genus of C. Assume that gb 5, and define j0 ¼ maxf j A N j jP is specialg. If j
is unramified at a point P on C, then the gap sequence of C at P is of the form
f1; 2; . . . ; gg or

f1; 2; . . . ; n� 1; nþ j0 � gþ 1; nþ j0 � gþ 2; . . . ; j0 þ 1g

for some integer n with ½ð j0 þ 1Þ=2� þ 1a na g, where ½x� is the so-called Gauss’
symbol, that is, the greatest integer not greater than x.

Actually, the notion of gap sequence was extended to singular points by Lax
and Widland [6]. In [3], some methods were given by Gatto to compute gap
sequences at singular points on a plane curve. They allowed to determine gap
sequences at ordinary nodes on quartic curves or at cusps on quintic curves.
Notari [7] has developed a technique to compute the gap sequence at a given
point on a plane curve, either it is smooth or singular. Note that a projective
plane is a typical example of a toric surface.

In general, however, it is not so easy to determine it in its entirety at a given
point. In this paper, we restrict ourselves to a curve C on a toric surface S and
consider intersection points of C and T-invariant divisors on S. Theorem 1.5
provide a su‰cient condition for a positive integer to be a gap value of C at such
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points. Moreover, as we will see in Corollary 1.6, it becomes the necessary and
su‰cient condition under the suitable condition. Namely, in such cases, we can
detect all the gap values (i.e. the gap sequence). In Section 4, we will apply this
technique to three examples. Concretely, we will consider singular plane curves

x6y3 þ x3yþ y� 1 ¼ 0;

x5 þ x2yþ xy6 þ y6 ¼ 0;

xp þ yq þ xrys ¼ 0 ðpb qb 1; rþ sb 1Þ

and the resolutions of their singularities. In these cases, we can determine the
gap sequences at the infinitely near points of singularities.

1.1. Summary of the toric theory and the main theorem
Let S be a nonsingular compact toric surface. The surface S contains an

algebraic torus T as a nonempty Zariski open set. The torus action of T on
itself naturally extends to S. A prime divisor on X is called a T-invariant divisor
if it is invariant with respect to the torus action. We denote them by D1; . . . ;Dd .
Since 6d

i¼1
Di is a simple chain of nonsingular rational curves, we can assume the

following properties:

Di:Dj ¼
1 ð j ¼ i � 1; i þ 1Þ;
0 ðotherwiseÞ;

�

where we formally set D0 ¼ Dd and Ddþ1 ¼ D1.
The intersections of two adjacent divisors are called T-fixed points.
For a compact toric surface S, there is the associated fan DS, which is the

division of R2 consisting of half-lines si starting from the origin called cones
ði ¼ 1; . . . dÞ. Each cone si corresponds to a T-invariant divisor Di. We denote
by ðxi; yiÞ the primitive elements of si, i.e., they are the lattice points on the
cones si closest to the origin. There are essentially two ways to take the fan
associated to S, which depend on whether the value of xi yi�1 � yixi�1 is one or
minus one. In this paper, we adopt the former, that is, assume the equality
xi yi�1 � yixi�1 ¼ 1 for any integer 1a ia d. This means that the cones
s1; . . . ; sd are arranged clockwise (Fig. 1). The Picard group of S is generated
(not necessarily freely) by the classes of D1; . . . ;Dd . Hence, for a divisor D on
S, we can write its linear equivalence class as the sum of D1; . . . ;Dd with integral
coe‰cients. For example, the canonical divisor KS of S is

KS @�
Xd
i¼1

Di;

where the symbol ‘‘@’’ means linear equivalence.
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For a divisor D@
Pd

i¼1 niDi on S, the lattice polytope kD HR2 is defined as

kD ¼ fðz;wÞ A R2 j xizþ yiwa ni for 1a ia dg:

Though kD can change according to how we describe the linear equivalence
class of D, those di¤erences induce only parallel translations of kD. Hence the
shape of the lattice polytope is determined uniquely. For integers n and i with
1a ia d, we define the line liðnÞHR2 by

liðnÞ ¼ fðz;wÞ A R2 j xizþ yiw ¼ ng:

Then kD is the domain surrounded by the lines liðniÞ ði ¼ 1; . . . ; dÞ.
Now, our main result can be stated as follows:

Theorem 1.5. Let S be a nonsingular compact toric surface defined by a fan
composed by d cones, and C@

Pd
i¼1 piDi a nonsingular irreducible nef curve on

S. Assume that C does not pass through any T-fixed point on S. For positive
integers j and i0 with 1a i0 a d, if the line li0ðpi0 � jÞ has more than or equal to
C:Di0 lattice points in the interior of kC , then j is a gap value of C at the
intersection points of C and Di0 .

Here we remark that it is not an essential assumption that C does not pass
through any T-fixed point. Indeed, if there are T-fixed points lying on C, then
by a succession of blowing-ups with those points as centers, we can obtain an
embedding of C in a toric surface which satisfies the assumptions of Theorem 1.5.

As declared in Abstract, under a suitable condition, Theorem 1.5 gives the
necessary and su‰cient condition for j to be a gap value at the intersection
points of C and Di0 . Concretely, the following Corollary holds.

Corollary 1.6. Let S, C and i0 be as in Theorem 1.5. Assume that
C:Di0 ¼ 1 and the line li0ðpi0 � jÞ has at most one lattice point in the interior of
kC for any integer j. Then j is a gap value of C at P ¼ C VDi0 if and only if
li0ðpi0 � jÞ has a lattice point in the interior of kC .

Figure 1
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Indeed, under these assumptions, the gap values at P detected by Theorem
1.5 are in one-to-one correspondence with the set of lattice points contained in
the interior of kC . Since kC has g lattice points in its interior (cf. Corollary
2.2), this means that all the gap values at P are completely found by Theorem
1.5.

2. Fundamentals of toric surfaces

In this section, we collect several fundamental properties of toric surfaces.
For many of them, we refer the readers to [8] without further mention.

Let S be a nonsingular compact toric surface. As in Section 1, for an
integer 1a ia d, we denote by si the cone corresponding to the T-invariant
divisor Di and by ðxi; yiÞ the primitive element of si. The labeling of the T-
invariant divisors and the correspondence of the surface S and the fan DS follow
the ways in Section 1. Let D be a divisor on S. The dimension of the global
section space of D can be read o¤ the lattice points contained in kD:

Theorem 2.1. The equation h0ðS;DÞ ¼aðkD VZ2Þ holds.

Corollary 2.2. The following hold:
(i) If D is a nonzero e¤ective divisor, then h0ðS;�DÞ ¼ 0.
(ii) For a nonsingular irreducible curve C on S, its genus is equal to the

number of lattice points in the interior of kC .

In the case where the complete linear system jDj is base point free, we have
the following two results.

Theorem 2.3. If jDj is base point free, then hiðS;DÞ ¼ 0 for any positive
integer i.

Theorem 2.4. The following are equivalent:
(i) jDj is base point free.
(ii) D:Di b 0 for any T-invariant divisor Di ði ¼ 1; . . . ; dÞ.

The self-intersection numbers of T-invariant divisors are computed by the
following formula.

Theorem 2.5. For any integer 0a ia d and 1a ja d,

xiD
2
i ¼ �xi�1 � xiþ1;

yiD
2
i ¼ �yi�1 � yiþ1:

Proposition 2.6. Let ðz;wÞ, ðz1;w1Þ and ðz2;w2Þ be lattice points such that
z1w2 � w1z2 0 0. Then there is a unique pair of real numbers ða; bÞ such that
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ðz;wÞ ¼ aðz1;w1Þ þ bðz2;w2Þ:

In particular, if z1w2 � w1z2 ¼G1, then a and b are integers.

Proposition 2.7. Let i and j be integers with 0a ia d and 1a ja d. Let
a and b be integers such that

ðxj; yjÞ ¼ aðxi; yiÞ þ bðxiþ1; yiþ1Þ:

Then at least one of a and b is non-positive. Furthermore, if either a or b is equal
to zero, then the other is equal to one or minus one.

Lemma 2.8. Let i and j be distinct integers with 0a ia d and 1a ja
d þ 1. If xi yj � yixj a 0, then

xiþ1 yj � yiþ1xj a 0;

xi yj�1 � yixj�1 a 0:

The equalities hold if and only if j ¼ i þ 1.

Proof. We will show only the first inequality. One can similarly verify the
second one. By Proposition 2.6, we can write

ðxj ; yjÞ ¼ aðxi; yiÞ þ bðxiþ1; yiþ1Þ

with integers a and b. Then we have

0a xj yi � yjxi ¼ bðxiþ1yi � yiþ1xiÞ ¼ b:

Recall that j0 i. In the case of b ¼ 0, by Proposition 2.7, we have ðxj; yjÞ ¼
�ðxi; yiÞ. Hence

xiþ1yj � yiþ1xj ¼ �xiþ1yi þ yiþ1xi ¼ �1:

In the case of bb 1, we have aa 0 by Proposition 2.7. Hence

xiþ1yj � yiþ1xj ¼ aðxiþ1yi � yiþ1xiÞ ¼ aa 0:

If xiþ1yj � yiþ1xj ¼ 0, then we have a ¼ 0. Hence, by Proposition 2.7, we have
b ¼ 1, which means j ¼ i þ 1. r

3. Proof of the main theorem

We keep the notation in Section 2. By renumbering of T-invariant divisors,
we can assume i0 ¼ 1 in Theorem 1.5. We thus consider the case where i0 ¼ 1
henceforth.

In fact, the Picard group of S is freely generated by the classes of T-
invariant divisors except two adjacent divisors (e.g. D2; . . . ;Dd�1). Hence, for a
curve C on S, we can take the linear equivalence class of C as
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C@
Xd
i¼1

piDi ðpi A Z; p1 ¼ pd ¼ 0Þð1Þ

without loss of generality. We thus assume p1 ¼ pd ¼ 0 henceforth. We denote
by Int kC the interior of kC , that is,

Int kC ¼ fðz;wÞ A R2 j xizþ yiw < pi for 1a ia dg:

3.1. Key lemma
The aim of this subsection is to show Lemma 3.9 which is the key to proving

Theorem 1.5. We first see the relation between the coe‰cients of the linear
equivalence class of C and the primitive elements of the cones.

Lemma 3.1. Assume that jCj is base point free. Then, for any integer
2a ka d � 1,

pk ¼
Xk�1

i¼1

ðxkyi � ykxiÞC:Di b 0:

Proof. Recall Theorem 2.5 and that p1 ¼ pd ¼ 0. An easy computation
shows the equality

Xk�1

i¼1

ðxkyi � ykxiÞC:Di

¼ xk
Xk�1

i¼1

yiðpi�1 þ piD
2
i þ piþ1Þ � yk

Xk�1

i¼1

xiðpi�1 þ piD
2
i þ piþ1Þ

¼ xk
Xk�1

i¼1

ðyi pi�1 � ðyi�1 þ yiþ1Þpi þ yi piþ1Þ

� yk
Xk�1

i¼1

ðxi pi�1 � ðxi�1 þ xiþ1Þpi þ xi piþ1Þ

¼ xkðy1 pd � yd p1 � yk pk�1 þ yk�1 pkÞ � ykðx1 pd � xd p1 � xk pk�1 þ xk�1 pkÞ

¼ ðxkyk�1 � ykxk�1Þpk ¼ pk:

Next we shall show that pk is non-negative. Note that Theorem 2.4 implies
that C:Di b 0 for any integer 1a ia d. If xky1 � ykx1 b 0, then by Lemma
2.8, we have xkyi � ykxi b 1 for any integer 2a ia k � 1. This means that
pk b 0.
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Assume that xky1 � ykx1 a�1. An easy computation gives the equation

Xd
i¼1

xiC:Di ¼
Xd
i¼1

yiC:Di ¼ 0:

Namely, we have

pk ¼ �xk
Xd
i¼kþ1

yiC:Di þ yk
Xd
i¼kþ1

xiC:Di ¼
Xd
i¼kþ1

ðxi yk � yixkÞC:Di:ð2Þ

On the other hand, Lemma 2.8 implies that xkyi � ykxi a�1 for any integer
k þ 1a ia d. Hence the inequality pk b 0 follows from (2). r

In the remaining part of this subsection, let C be a nonsingular irreducible
nef curve of genus g on S, and assume C:D1 b 1. Since C is nef, jCj is base
point free by Theorem 2.4. Let j be a positive integer such that l1ð�jÞV
Int kC VZ2 0j, and we denote by ðz0;w0Þ the lattice point in l1ð�jÞV Int kC

closest to the line ldðpdÞ. All the remaining lemmas in this subsection are closely
related to the notion of lattice polytope. Hence, for a better understanding, we
will argue together with the following example.

Example 3.2. Let S be a toric surface defined by the fan in Fig. 1, and

C0 @ 2D2 þ 6D3 þ 10D4 þ 5D5 þ 7D6 þ 16D7 þ 10D8 þ 4D9 þ 3D10

a nonsingular irreducible nef curve on S. Then the lattice polytope kC0
is

drawn as in Fig. 2.

We next define a certain e¤ective divisor I , which plays an central role in the
proof of Theorem 1.5.

Figure 2
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Definition 3.3. We define

a ¼ minfib 2 j xiðz0 � y1Þ þ yiðw0 þ x1Þb 0g;
b ¼ maxfia d j xiz0 þ yiw0 b 0g;

qi ¼
xiðy1 � z0Þ � yiðx1 þ w0Þ ð1a ia a� 1Þ;
�xiz0 � yiw0 ðbþ 1a ia dÞ;
0 ðotherwiseÞ;

8<
:

I ¼
Xd
i¼1

qiDi:

Note that ba d � 1. Indeed, by the definition of ðz0;w0Þ, the inequality
xdz0 � ydw0 a pd � 1 ¼ �1 holds. For instance, in the case of Example 3.2, for
an integer j ¼ 8, we have a ¼ 5, b ¼ 10 and

I ¼ 8D1 þ 4D2 þ 4D3 þ 4D4 þ 2D11 þ 5D12:

The line l1ð�8Þ and kI are as in Fig. 3. Note that the origin has changed.

Lemma 3.4. For any integer bþ 1a ka d, the inequality

xky1 � ykx1 a�1

holds. Moreover, if ab 3, then xmy1 � ymx1 b 1 for any integer 2ama a� 1.

Proof. Since x1z0 þ y1w0 ¼ �j0 0, we can write

ðxb; ybÞ ¼ a1ðx1; y1Þ þ b1ðw0;�z0Þ;
ðxbþ1; ybþ1Þ ¼ a2ðx1; y1Þ þ b2ðw0;�z0Þ

with some real numbers. By the definition of b, we have

xbz0 þ ybw0 ¼ a1ðx1z0 þ y1w0Þ ¼ �ja1 b 0;

xbþ1z0 þ ybþ1w0 ¼ a2ðx1z0 þ y1w0Þ ¼ �ja2 < 0:

Figure 3
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Hence we have a1 a 0 and a2 > 0. Now, we suppose that xbþ1y1 � ybþ1x1 b 0.
Then Lemma 2.8 implies that xby1 � ybx1 b 0. Hence we have

xby1 � ybx1 ¼ b1ðx1z0 þ y1w0Þ ¼ �jb1 b 0;

xbþ1y1 � ybþ1x1 ¼ b2ðx1z0 þ y1w0Þ ¼ �jb2 b 0;

which imply b1 a 0 and b2 a 0. Then, by computing, we have

xbybþ1 � ybþxbþ1 ¼ jða1b2 � b1a2Þb 0:

This contradicts the fact that xbþ1yb � ybþ1xb ¼ 1. We thus obtain that
xbþ1y1 � ybþ1x1 a�1. Then by Lemma 2.8, xky1 � ykx1 b 1 for any integer
bþ 1a ka d. Similarly, one can show the second inequality by considering the
descriptions of ðxa�1; ya�1Þ and ðxa; yaÞ as the sum of ðx1; y1Þ and
ðx1 þ w0; y1 � z0Þ with real coe‰cients. r

Note that the inequality aa bþ 1 follows immediately from Lemma 3.4.
Indeed, if ab bþ 2, then we have

xa�1y1 � ya�1x1 a�1ð3Þ
by Lemma 3.4. However, this contradicts the second statement in Lemma 3.4
in the case where ab 3. It goes without saying that (3) is a contradiction in the
case where a ¼ 2 also.

Lemma 3.5. The complete linear system jI j is base point free.

Proof. By Theorem 2.4, it is su‰cient to verify I :Di b 0 for each integer
1a ia d. Recall Theorem 2.5. Then we have

I :D1 ¼ qd þ q1D
2
1 þ d2

¼ �xdz0 � ydw0 � x1z0D
2
1 � y1w0D

2
1 þ x2 y1 � y2x1 � x2z0 � y2w0 ¼ 1:

For integers 2a k1 a a� 2,

I :Dk1 ¼ ðxk1�1 þ xk1D
2
k1
þ xk1þ1Þðy1 � z0Þ � ðyk1�1 þ yk1D

2
k1
þ yk1þ1Þðx1 þ w0Þ ¼ 0:

For integers bþ 2a k2 a d,

I :Dk2 ¼ �ðxk2�1 þ xk2D
2
k2
þ xk2þ1Þz0 � ðyk2�1 þ yk2D

2
k2
þ yk2þ1Þw0 ¼ 0:

Moreover, it is obvious that I :Dk3 ¼ 0 for any integer aþ 1a k3 a b� 1.
Let us check the remaining divisors Da�1, Da, Db and Dbþ1. Recall Lemma

3.4. Then we have

I :Da�1 ¼
xaðz0 � y1Þ þ yaðw0 þ x1Þb 0 ðaa bÞ;
�xbþ1y1 þ ybþ1x1 b 1 ða ¼ bþ 1Þ;

�
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I :Da ¼
�xa�1ðz0 � y1Þ � ya�1ðw0 þ x1Þb 1 ðaa b� 1Þ;
�xa�1ðz0 � y1Þ � ya�1ðw0 þ x1Þ � xbþ1z0 � ybþ1w0 b 2 ða ¼ bÞ;
xa�1y1 � ya�1x1 b 1 ða ¼ bþ 1Þ:

8<
:

Similarly, we have

I :Db ¼
�xbþ1z0 � ybþ1w0 b 1 ðaa b� 1Þ;
�xa�1ðz0 � y1Þ � ya�1ðw0 þ x1Þ � xbþ1z0 � ybþ1w0 b 2 ða ¼ bÞ;
�xbþ1y1 þ ybþ1x1 b 1 ða ¼ bþ 1Þ;

8<
:

I :Dbþ1 ¼
xbz0 þ ybw0 b 0 ðaa bÞ;
xa�1y1 � ya�1x1 b 1 ða ¼ bþ 1Þ:

�
r

Very roughly speaking, Theorem 1.5 is verified by comparing the cohomol-
ogy dimension h0ðC; I jCÞ with h0ðC; ðI �D1ÞjCÞ. In fact, however, it is not
enough for the proof to deal with only I . We need to introduce the following
auxiliary divisor X and consider the divisor obtained by subtracting it from I .
We define

X ¼
Xa�1

i¼2

Di þ
Xd
i¼bþ1

Di;

LiðnÞ ¼ fðz;wÞ A Z2 j xizþ yiwa ng

for integers n and i with 1a ia d.

Lemma 3.6. The vanishing h1ðS; I � XÞ ¼ 0 holds.

Proof. Consider the cohomology long exact sequence

0 ! H 0ðS; I � XÞ ! H 0ðS; IÞ ! H 0ðX ; I jX Þ

! H 1ðS; I � XÞ ! H 1ðS; IÞ ! H 1ðX ; I jX Þ ! H 2ðS; I � X Þ ! � � � :

Lemma 3.5 and Theorem 2.3 imply that h1ðS; IÞ ¼ 0. Besides, h2ðS; I � XÞ ¼
h0ðS;KS þ X � IÞ ¼ 0 holds by Serre duality and Corollary 2.2. Hence Riemann-
Roch theorem yields the equality

h0ðX ; I jX Þ ¼ deg I jX þ 1� 1

2
X :ðKS þ XÞ � 1 ¼ I :X � 1

2
X :ðKS þ XÞ:

We thus have

h1ðS; I � XÞ ¼ h0ðS; I � X Þ � h0ðS; IÞ þ I :X � 1

2
X :ðKS þ XÞ:ð4Þ

Since I :Di ¼ 0 for any integer i with 2a ia a� 2 or bþ 2a ia d, we have
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I :X ¼ I :Da�1 þ I :Dbþ1 ðab 3Þ;
I :Dbþ1 ða ¼ 2Þ:

�
ð5Þ

Moreover, by computing, we have

X :ðKS þ XÞ ¼ �4 ð3a aa bÞ;
�2 ðotherwiseÞ:

�
ð6Þ

In order to compute the value of h0ðS; IÞ � h0ðS; I � XÞ, we first verify the
following inclusions:

L1ðq1ÞVLa�1ðqa�1ÞH 7
a�1

i¼2

LiðqiÞ if ab 3;

L1ðq1ÞVLbþ1ðqbþ1ÞH 7
d

i¼bþ1

LiðqiÞ:
ð7Þ

Assume ab 3 and let ðz1;w1Þ be a lattice point contained in L1ðq1ÞVLa�1ðqa�1Þ.
We write

ðz1;w1Þ ¼ ðy1 � z0;�x1 � w0Þ þ a1ðy1;�x1Þ þ b1ðya�1;�xa�1Þ

with real numbers a1 and b1. Then the inequalities

x1z1 þ y1w1 ¼ q1 þ b1ðx1ya�1 � y1xa�1Þa q1;

xa�1z1 þ ya�1w1 ¼ qa�1 þ a1ðxa�1y1 � ya�1x1Þa qa�1

implies a1 a 0 and b1 b 0, respectively. Let k1 be an integer with 2a k1 a a� 1.
Then Lemma 3.4 and Lemma 2.8 imply that xk1y1 � yk1x1 b 1 and xa�1yk1 �
ya�1xk1 b 0. We thus have

xk1z1 þ yk1w1 ¼ qk1 þ a1ðxk1y1 � yk1x1Þ þ b1ðxk1ya�1 � yk1xa�1Þa qk1 :

Hence we obtain the first inclusion of (7). Similarly, for a point ðz2;w2Þ con-
tained in L1ðq1ÞVLbþ1ðqbþ1Þ, we write

ðz2;w2Þ ¼ ð�z0;�w0Þ þ a2ðy1;�x1Þ þ b2ðybþ1;�xbþ1Þ

and can show a2 b 0, b2 a 0 and the second inclusion of (7).
The same argument can be adapted to show

L1ðq1ÞVLa�1ðqa�1 � 1ÞH 7
a�1

i¼2

Liðqi � 1Þ if ab 3;

L1ðq1ÞVLbþ1ðqbþ1 � 1ÞH 7
d

i¼bþ1

Liðqi � 1Þ:
ð8Þ

Recall the notation liðnÞ defined in Section 1. Then by (7) and (8), if ab 3, we
have
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h0ðS; IÞ � h0ðS; I � XÞ

¼a 7
d

i¼1

LiðqiÞ
 !

�a L1ðq1ÞV 7
a�1

i¼2

Liðqi � 1ÞV 7
b

i¼a

LiðqiÞV 7
d

i¼bþ1

Liðqi � 1Þ
 !

¼a L1ðq1ÞV 7
bþ1

i¼a�1

LiðqiÞ
 !

�a L1ðq1ÞVLa�1ðqa�1 � 1ÞV 7
b

i¼a

LiðqiÞVLbþ1ðqbþ1 � 1Þ
 !

¼a L1ðq1ÞV 7
bþ1

i¼a�1

LiðqiÞn La�1ðqa�1 � 1ÞVLbþ1ðqbþ1 � 1Þð Þ
 !

¼a

 
L1ðq1ÞV 7

bþ1

i¼a�1

LiðqiÞnLa�1ðqa�1 � 1Þ
 !

U L1ðq1ÞV 7
bþ1

i¼a�1

LiðqiÞnLbþ1ðqbþ1 � 1Þ
 !!

¼a

 
L1ðq1ÞV la�1ðqa�1ÞV 7

bþ1

i¼a

LiðqiÞ
 !

U L1ðq1ÞV 7
b

i¼a�1

LiðqiÞV lbþ1ðqbþ1Þ
 !!

:

Similarly, if a ¼ 2, one can obtain

h0ðS; IÞ � h0ðS; I � X Þ ¼a 7
b

i¼1

LiðqiÞV lbþ1ðqbþ1Þ
 !

:

We define

M ¼ L1ðq1ÞV la�1ðqa�1ÞV 7
bþ1

i¼a

LiðqiÞ;

N ¼ L1ðq1ÞV 7
b

i¼a�1

LiðqiÞV lbþ1ðqbþ1Þ:

Then we have

h0ðS; IÞ � h0ðS; I � XÞ ¼ aðM UNÞ ¼aM þaN �aðM VNÞ ðab 3Þ;
aN ða ¼ 2Þ:

�

Here let us see the case of Example 3.2. As we saw after Definition 3.3, in
this example, we have a ¼ 5 and b ¼ 10 for j ¼ 8. Hence M and N are the sets

75weierstrass gap sequences on curves on toric surfaces



of lattice points contained in l4ð4ÞVA and l11ð2ÞVB, respectively (see Fig. 4),
where A ¼ L1ð8ÞV711

i¼5
LiðqiÞ and B ¼ L1ð8ÞV710

i¼4
LiðqiÞ.

We shall examine aM. Let ðu; vÞ be a lattice point contained in M. Since
both ðu; vÞ and ðy1 � z0;�x1 � w0Þ are contained in la�1ðqa�1Þ, we can write

ðu; vÞ ¼ ðy1 � z0;�x1 � w0Þ þ gðya�1;�xa�1Þ

with some integer g. We obtain gb 0 by Lemma 3.4 and the inequality

x1uþ y1v ¼ q1 þ gðx1ya�1 � y1xa�1Þa q1:

Since ðu; vÞ is contained in LaðqaÞ, we have

qa b xauþ yav ¼ xaðy1 � z0Þ � yaðx1 þ w0Þ þ g

¼ �I :Da�1 þ g ðaa bÞ;
�I :Da�1 þ qa þ g ða ¼ bþ 1Þ:

�

Recall that qa ¼ 0 in the case where aa b. We thus have ga I :Da�1.
Conversely, we shall show that for any integer 0a g0 a I :Da�1, the lattice

point

ðu 0; v 0Þ ¼ ðy1 � z0;�x1 � w0Þ þ g0ðya�1;�xa�1Þ

is contained in M. Since ðu 0; v 0Þ is clearly contained in L1ðq1ÞV la�1ðqa�1Þ, it
is su‰cient to verify that ðu 0; v 0Þ is contained in 7bþ1

i¼a
LiðqiÞ. We remark the

equality

I :Da�1ðxa�1; ya�1Þð9Þ

¼ ðqa�2 þ qa�1D
2
a�1 þ qaÞðxa�1; ya�1Þ

¼ ð�xaðy1 � z0Þ þ yaðx1 þ w0Þ þ qaÞðxa�1; ya�1Þ
¼ ð�w0 � x1; z0 � y1Þ þ ðxa�1ðz0 � y1Þ

þ ya�1ðw0 þ x1ÞÞðxa; yaÞ þ qaðxa�1; ya�1Þ:

We first show that ðu 0; v 0Þ is contained in Lbþ1ðqbþ1Þ.

Figure 4
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(i) If xbþ1ya�1 � ybþ1xa�1 a 0, then xbþ1y1 � ybþ1x1 a 0 by Lemma 2.8.
We thus have

xbþ1u
0 þ ybþ1v

0 ¼ xbþ1y1 � ybþ1x1 � xbþ1z0 � ybþ1w0 þ g0ðxbþ1ya�1 � ybþ1xa�1Þ
a�xbþ1z0 � ybþ1w0 ¼ qbþ1:

(ii) If xbþ1ya�1 � ybþ1xa�1 b 1, then xbþ1ya � ybþ1xa b 0 by Lemma 2.8.
Moreover, by the equation (9), we have

I :Da�1ðxbþ1ya�1 � ybþ1xa�1Þ
¼ xbþ1ðz0 � y1Þ þ ybþ1ðw0 þ x1Þ

þ ðxa�1ðz0 � y1Þ þ ya�1ðw0 þ x1ÞÞðxbþ1ya � ybþ1xaÞ
þ qaðxbþ1ya�1 � ybþ1xa�1Þ

a xbþ1ðz0 � y1Þ þ ybþ1ðw0 þ x1Þ þ qaðxbþ1ya�1 � ybþ1xa�1Þ:

Hence we have

xbþ1u
0 þ ybþ1v

0 ¼ xbþ1ðy1 � z0Þ þ ybþ1ð�x1 � w0Þ þ g0ðxbþ1ya�1 � ybþ1xa�1Þ
a xbþ1ðy1 � z0Þ þ ybþ1ð�x1 � w0Þ þ I :Da�1ðxbþ1ya�1 � ybþ1xa�1Þ
a qaðxbþ1ya�1 � ybþ1xa�1Þ:

If aa b, then qa ¼ 0 and we have xbþ1u
0 þ ybþ1v

0 a 0 < qbþ1. If a ¼ bþ 1, then
we have

qaðxbþ1ya�1 � ybþ1xa�1Þ ¼ qbþ1ðxbþ1yb � ybþ1xbÞ ¼ qbþ1:

Hence we can conclude that ðu 0; v 0Þ is contained in Lbþ1ðqbþ1Þ.
If a ¼ bþ 1, then the above argument is enough to show that ðu 0; v 0Þ is

contained in M. On the other hand, in the case where aa b, we have to
check that ðu 0; v 0Þ is contained in 7b

i¼a
LiðqiÞ also. Let m be an integer with

aama b. Note that qm ¼ 0 in this case.
(i) If xmya�1 � ymxa�1 b 0, then we have xmya � ymxa b 0 by Lemma 2.8.

Then by the equation (9), we have

xmu
0 þ ymv

0 ¼ ðg0 � I :Da�1Þðxmya�1 � ymxa�1Þ
þ ðxa�1ðz0 � y1Þ þ ya�1ðw0 þ x1ÞÞðxmya � ym yaÞ

a 0 ¼ qm:

(ii) If xmya�1 � ymxa�1 a�1, then Lemma 2.8 yields the inequalities xmy1 �
ymx1 a�1, xby1 � ybx1 a�1 and xmyb � ymxb a 0. Thus we can write

ðxm; ymÞ ¼ dðx1; y1Þ þ eðxb; ybÞ

with real numbers da 0 and e > 0. Recall that ðz0;w0Þ lies on l1ð�jÞ. Then we
have
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xmz0 þ ymw0 ¼ dðx1z0 þ y1w0Þ þ eðxbz0 þ ybw0Þb 0;

xmu
0 þ ymv

0 ¼ xmy1 � ymx1 � xmz0 � ymw0 þ g0ðxmya�1 � ymxa�1Þ < 0 ¼ qm:

Hence we have that ðu 0; v 0Þ is contained in 7b

i¼a
LiðqiÞ.

In sum, we can conclude that

M ¼ fðy1 � z0;�x1 � w0Þ þ gðya�1;�xa�1Þ j 0a ga I :Da�1g:

A similar argument can be adapted to show that

N ¼ fð�z0;�w0Þ � zðybþ1;�xbþ1Þ j 0a za I :Dbþ1g:

Next we examine M VN under the assumption that ab 3. By the definition
of M and N, the intersection M VN is included in la�1ðqa�1ÞV lbþ1ðqbþ1Þ.

(i) In the case where xa�1ybþ1 � ya�1xbþ1 ¼ 0, we have ðxbþ1; ybþ1Þ ¼
�ðxa�1; ya�1Þ. Let ðu1; v1Þ be a lattice point on la�1ðqa�1Þ. Then, by Lemma
3.4, we have

xbþ1u1 þ ybþ1v1 ¼ �xa�1u1 � ya�1v1 ¼�qa�1 ¼ x1ya�1 � y1xa�1 þ xa�1z0 þ ya�1w0

a xa�1z0 þ ya�1w0 � 1 ¼ �xbþ1z0 � ybþ1w0 � 1 ¼ qbþ1 � 1:

Hence ðu1; v1Þ does not lie on lbþ1ðqbþ1Þ. This means M VN ¼ j.
Assume xa�1ybþ1 � ya�1xbþ1 0 0. In this case, the intersection la�1ðqa�1ÞV

lbþ1ðqbþ1Þ clearly consists of only one lattice point. We denote it by ðu0; v0Þ.
(ii) Consider the case where xa�1ybþ1 � ya�1xbþ1 b 1. Since both ðu0; v0Þ

and ð�z0;�w0Þ lie on lbþ1ðqbþ1Þ, one can write

ðu0; v0Þ ¼ ð�z0;�w0Þ þ hðybþ1;�xbþ1Þ

with some integer h. Then the inequality

�xa�1z0 � ya�1w0 þ hðxa�1ybþ1 � ya�1xbþ1Þ
¼ xa�1u0 þ ya�1v0 ¼ qa�1 ¼ xa�1ðy1 � z0Þ � ya�1ðx1 þ w0Þ
b�xa�1z0 � ya�1w0 þ 1

implies hb 1. Hence we have

x1u0 þ y1v0 ¼ q1 þ hðx1ybþ1 � y1xbþ1Þb q1 þ 1:

This means that ðu0; v0Þ is not contained in L1ðq1Þ, that is, M VN ¼ j.
(iii) Consider the case where xa�1ybþ1 � ya�1xbþ1 a�1. We write

ðu0; v0Þ ¼ yðya�1;�xa�1Þ þ iðybþ1;�xbþ1Þ

with real numbers y and i. Since ðu0; v0Þ is contained in la�1ðqa�1ÞV lbþ1ðqbþ1Þ,
we have y > 0 and i < 0.

(iii)-(a) If aa b, then qb ¼ 0. Since Lemma 2.8 implies that xa�1yb �
ya�1xb a�1, we have
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xbu0 þ ybv0 ¼ yðxbya�1 � ybxa�1Þ � ib y� i > 0 ¼ qb:

This means that ðu0; v0Þ is not contained in LbðqbÞ, that is, M VN ¼ j.
(iii)-(b) If a ¼ bþ 1, then M VN ¼ L1ðq1ÞV la�1ðqa�1ÞV lbþ1ðqbþ1Þ. Since

q1 ¼ �x1z0 � y1w0 ¼ jb 1, we have

x1u0 þ y1v0 ¼ yðx1ya�1 � y1xa�1Þ þ iðx1ybþ1 � y1xbþ1Þa�yþ i < 0a q1 � 1:

Hence, in this case, ðu0; v0Þ is contained in L1ðq1Þ and we have M VN ¼ fðu0; v0Þg.
Here we note that aa b in the case of (i) and (ii). Indeed, if a ¼ bþ 1, then

xa�1ybþ1 � ya�1xbþ1 ¼ �1. Therefore, we can conclude that

aðM VNÞ ¼ 0 ð3a aa bÞ;
1 ð3a a ¼ bþ 1Þ:

�

In sum, we have

h0ðS; IÞ � h0ðS; I � XÞ ¼
I :Da�1 þ I :Dbþ1 þ 2 ð3a aa bÞ;
I :Da�1 þ I :Dbþ1 þ 1 ð3a a ¼ bþ 1Þ;
I :Dbþ1 þ 1 ða ¼ 2Þ:

8<
:ð10Þ

Therefore, combining (4), (5), (6) and (10), we can obtain h1ðS; I � XÞ ¼ 0.
r

In order to compute the di¤erence between the dimensions of global section
spaces of ðI � XÞjC and ðI � X �D1ÞjC , we examine their cohomologies of higher
order in Lemma 3.8 below.

Lemma 3.7. If aðl1ð�jÞV Int kC VZ2ÞbC:D1, then ab 3.

Proof. We put c ¼ C:D1. Let ðz;wÞ be a lattice point contained in l1ð�jÞV
Int kC . Then we can write

ðz;wÞ ¼ ðz0;w0Þ þ aðy1;�x1Þ
with some integer a. Since ðz0;w0Þ is the lattice point in l1ð�jÞV Int kC closest to
ldð0Þ, we have ab 0. Hence, by assumption, the point ðz0;w0Þ þ ðc� 1Þðy1;�x1Þ
have to be contained in Int kC . We thus have

x2ðz0 þ ðc� 1Þy1Þ þ y2ðw0 � ðc� 1Þx1Þ ¼ x2ðz0 � y1Þ þ y2ðw0 þ x1Þ þ c < p2 ¼ c;

where the last equality follows from Lemma 3.1. Hence we have x2ðz0 � y1Þþ
y2ðw0 þ x1Þ < 0, which means ab 3. r

Lemma 3.8. If aðl1ð�jÞV Int kC VZ2ÞbC:D1, then

h0ðS;KS þ C � I þ X þD1Þ ¼ h0ðS;KS þ C � I þ X Þ þ C:D1:

Proof. We put c ¼ C:D1. Recall that p1 ¼ 0 and q1 ¼ j. Then by The-
orem 2.1, we have

79weierstrass gap sequences on curves on toric surfaces



h0ðS;KS þ C � I þ X þD1Þ � h0ðS;KS þ C � I þ X Þ

¼a L1ð�jÞ 7
a�1

i¼2

Liðpi � qiÞV 7
b

i¼a

Liðpi � 1ÞV 7
d

i¼bþ1

Liðpi � qiÞ
 !

�a L1ð�j � 1Þ 7
a�1

i¼2

Liðpi � qiÞV 7
b

i¼a

Liðpi � 1ÞV 7
d

i¼bþ1

Liðpi � qiÞ
 !

¼a l1ð�jÞ 7
a�1

i¼2

Liðpi � qiÞV 7
b

i¼a

Liðpi � 1ÞV 7
d

i¼bþ1

Liðpi � qiÞ
 !

:

We define

K ¼ l1ð�jÞ 7
a�1

i¼2

Liðpi � qiÞV 7
b

i¼a

Liðpi � 1ÞV 7
d

i¼bþ1

Liðpi � qiÞ:

Then our purpose is to show that aK ¼ c. Let ðu; vÞ be a lattice point
contained in K . Since ðz0;w0Þ and ðu; vÞ lie on l1ð�q1Þ, we can write

ðu; vÞ ¼ ðz0;w0Þ þ aðy1;�x1Þ

with some integer a. Since pd ¼ 0, ðu; vÞ is contained in Ldð�qdÞ. Hence we
have

xduþ ydv ¼ �qd þ aðxdy1 � ydx1Þa�qd ;

which implies ab 0. On the other hand, since ab 3 by Lemma 3.7, ðu; vÞ is
contained in L2ðp2 � q2Þ. Hence we have

x2uþ y2v ¼ x2z0 þ y2w0 þ aa p2 � q2 ¼ cþ x2z0 þ y2w0 � 1;

that is, aa c� 1.
Conversely, let us verify that, for an integer a 0 with 0a a 0 a c� 1, the point

ðu 0; v 0Þ ¼ ðz0;w0Þ þ a 0ðy1;�x1Þ

is contained in K . Let k1 be an integer with 2a k1 a a� 1. By Lemma 3.4
and Lemma 2.8, we have xk1ym � yk1xm b 1 for integers 1ama k1 � 1. Hence
we have pk1 b ðxk1y1 � yk1x1Þc by Lemma 3.1 and

xk1u
0 þ yk1v

0 ¼ xk1ðz0 � y1Þ þ yk1ðw0 þ x1Þ þ ða 0 þ 1Þðxk1y1 � yk1x1Þ
a�qk1 þ cðxk1y1 � yk1x1Þa pk1 � qk1 :

For integers bþ 1a k2 a d, we have

xk2u
0 þ yk2v

0 ¼ xk2z0 þ yk2w0 þ a 0ðxk2y1 � yk2x1Þa�qk2 a pk2 � qk2 :
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Finally, we shall check that ðu 0; v 0Þ is contained in 7b

i¼a
Liðpi � 1Þ. Since ðz0;w0Þ

is the lattice point in l1ð�jÞV Int kC closest to ldð0Þ, we have that ðz0;w0Þþ
bðy1;�x1Þ is not contained in Int kC if ba�1. On the other hand, by the
assumption of the lemma, l1ð�jÞ has at least c lattice points in Int kC . We thus
have that ðu 0; v 0Þ is contained in 7b

i¼a
Liðpi � 1Þ for integers 0a a 0 a c� 1. In

sum, we can conclude that ðu 0; v 0Þ is contained in K for integers 0a a 0 a c� 1.
It follows that aK ¼ c. r

By using Lemma 3.6 and 3.8 in cohomology long exact sequences, we obtain
the following equality:

Lemma 3.9. If aðl1ð�jÞV Int kC VZ2ÞbC:D1, then

h0ðC; ðI � X ÞjCÞ ¼ h0ðC; ðI � X �D1ÞjCÞ:

Proof. It is su‰cient to verify the inequality h0ðC; ðI � XÞjCÞa
h0ðC; ðI � X �D1ÞjCÞ. By Lemma 3.6, we have the cohomology long exact
sequence

0 ! H 1ðC; ðI � XÞjCÞ ! H 2ðS; I � X � CÞ ! H 2ðS; I � XÞ ! � � � :
By Serre duality and Corollary 2.2, we have

h2ðS; I � X � CÞ ¼ h0ðS;KS þ C � I þ X Þ;

h2ðS; I � XÞ ¼ h0 S;�I �D1 �
Xb
i¼a

Di

 !
¼ 0:

Hence, by Riemann-Roch theorem, we have

h0ðC; ðI � XÞjCÞ ¼ h1ðC; ðI � XÞjCÞ þ degðI � X ÞjC þ 1� g

¼ h0ðS;KS þ C � I þ XÞ þ ðI � XÞ:C þ 1� g:

On the other hand, the cohomology long exact sequence

� � � ! H 1ðC; ðI � X �D1ÞjCÞ ! H 2ðS; I � X �D1 � CÞ

! H 2ðS; I � X �D1Þ ! � � �

and the vanishings h2ðS; I � X �D1Þ ¼ h0ðS;�I �
Pb

i¼a DiÞ ¼ 0 lead the in-
equality

h1ðC; ðI � X �D1ÞjCÞb h0ðS;KS þ C � I þ X þD1Þ:

Hence, by Riemann-Roch theorem and Lemma 3.8, we have

h0ðC; ðI � X �D1ÞjCÞb h0ðS;KS þ C � I þ X þD1Þ þ ðI � X �D1Þ:C þ 1� g

¼ h0ðC; ðI � XÞjCÞ: r
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3.2. Proof of the main theorem
We are now in a position to prove the main theorem.

Proof of Theorem 1.5. As mentioned at the beginning of the Section 3,
we can assume i0 ¼ 1. We first consider the case where g ¼ 0. In this case, the
gap sequence at P is empty. Indeed, the equation h0ðC; jPÞ ¼ j � 1 holds for
any positive integer j. On the other hand, by Corollary 2.2, there are no lattice
points in the interior of kC . Hence the statement is obviously true.

We assume that gb 1 and put D1jC ¼ fP1; . . . ;Pcg. Lemma 3.9 implies
that

h0ðC; ðI � X ÞjCÞ ¼ h0ðC; ðI � X ÞjC � P1Þ:

Namely, P1 is the base point of jðI � XÞjC j. Note that q1 ¼ j. We define

I 0 ¼ I � jD1 � X ¼
Xa�1

i¼2

ðqi � 1ÞDi þ
Xb
i¼a

qiDi þ
Xd
i¼bþ1

ðqi � 1ÞDi:

It is clear that I 0 is e¤ective by Definition 3.3. Besides, since P1 lies on neither
D2 nor Dd by assumption, I 0jC does not contain P1. Therefore, P1 is also the
base point of

jðI � X ÞjC � I 0jC � jP2 � � � � � jPcj ¼ j jP1j;

that is, h0ðC; jP1Þ ¼ h0ðC; ð j � 1ÞP1Þ. A similar argument goes through for the
points P2; . . . ;Pc. r

4. Examples

In this section, we shall apply Corollary 1.6 to concrete examples in practice.
Our aim is to compute the gap sequences at the infinitely near points of a
(possibly singular) point on a plane curve. Let Q be a point on plane curve C 0,
and consider the resolution of singularities of C 0 by a succession of blowing-ups.
Then, for some cases, we can determine the gap sequences of the nonsingular
model of C 0 at the infinitely near points of Q by Corollary 1.6.

For a toric surface, a composite of a finite succession of blowing-ups
with T-fixed points as centers is called a toric morphism. Recall that P2

is a toric surface. Let P2ðX0 : X1 : X2Þ be the projective plane. We denote
x ¼ X1=X0, y ¼ X2=X0 the local coordinates on the a‰ne open subset U0 ¼
fðX0 : X1 : X2Þ A P2 jX0 0 0g.

Example 4.1. Let C 0 be an irreducible plane curve defined by the local
equation

x6y3 þ x3yþ y� 1 ¼ 0:

One can obtain a toric morphism j : S ! P2 such that S is a nonsingular
compact toric surface and the proper transform C :¼ j�1

� ðC 0Þ is a nonsingular nef
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curve of genus 3 on S. The fan DS defining the surface S is as in Fig. 5. If we
place kC as in Fig. 5, then the linear equivalence class of C is written as

C@D2 þ 2D3 þ 3D4 þ 3D5 þ 6D6 þ 3D7 þ 3D8 þD9:

Consider the point Q ¼ ð0; 1Þ on C 0 VU0. The point Q has only one infinitely
near point P on C, which is in fact the intersection point C VD1. The cone s1
corresponding to D1 has the primitive element ð�1; 0Þ. Hence, by Corollary 1.6,
the gap sequence of C at P is

f j A N j the line X ¼ j has lattice points in Int kCg ¼ f1; 2; 4g:

Example 4.2. Let C 0 be an irreducible plane curve defined by the local
equation

x5 þ x2yþ xy6 þ y6 ¼ 0;

and j : S ! P2 a toric morphism such that C :¼ j�1
� ðC 0Þ is a nonsingular nef

curve of genus 8 on S. The fan DS is as in Fig. 6. If we place kC as in Fig. 6,
then the linear equivalence class of C is written as

Figure 5

Figure 6
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C@�5D1 � 4D2 � 3D3 � 5D4 � 12D5 � 6D6

þ 6D8 þ 7D9 þ 15D10 þ 10D11 þ 5D12:

Consider the origin Q ¼ ð0; 0Þ on C 0 VU0. Then the infinitely near points of Q
on C are P1 ¼ C VD1 and P2 ¼ C VD5. The primitive elements of s1 and s5
are ð�1;�3Þ and ð�5;�2Þ, respectively.

It is obvious that the lines X þ 3Y ¼ k and 5X þ 2Y ¼ l have at most one
lattice point in the interior of kC for any integer k and l. Hence, by Corollary
1.6, the gap sequences of C at P1 and P2 are

f j A N j the line X þ 3Y ¼ j þ 5 has a lattice point in Int kCg
¼ f1; 2; 3; 4; 6; 8; 9; 11g;

f j A N j the line 5X þ 2Y ¼ j þ 12 has a lattice point in Int kCg
¼ f1; 2; 3; 4; 5; 6; 7; 9g;

respectively.

Before proceeding to the next example, we define the following function.

Definition 4.3. For a positive integer m and a non-negative integer n, we
define a function f as

f ðm; nÞ ¼ gcdðm; nÞ ðnb 1Þ;
m ðn ¼ 0Þ:

�

Example 4.4. Let C 0 be an irreducible plane curve defined by the local
equation of the form

xp þ yq þ xrys ¼ 0;

where pb qb 1 and rþ sb 1. One can obtain a toric morphism j : S ! P2

such that C :¼ j�1
� ðC 0Þ is nonsingular and nef. We write the linear equivalence

class of C as C@
Pd

i¼1 piDi. The genus of C can be computed by the formula

g ¼

1

2
ðjpq� rq� spj � f ðp; p� qÞ ðpq� rq� sp0 0Þ;

� f ðp� r; sÞ � f ðq� s; rÞÞ þ 1

0 ðpq� rq� sp ¼ 0Þ:

8>><
>>:

Besides, in this case, the lattice polytope kC becomes a triangle and we can
place it such that its vertices are ðp; 0Þ, ð0; qÞ and ðr; sÞ. Then, by Corollary 1.6,
we can compute the gap sequence of C at the infinitely near points of the origin
Q ¼ ð0; 0Þ in the following cases:

(i) pq� rq� sp ¼ 0,
(ii) pq� rq� sp < 0 and f ðp; p� qÞ ¼ 1,
(iii) pq� rq� sp > 0 and f ðp� r; sÞ ¼ f ðq� s; rÞ ¼ 1.
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The case (i) does not require Corollary 1.6. Since g ¼ 0, the gap sequence is
empty at every point on C.

In the case (ii), the fan DS is as in Fig. 7. The point Q has one infinitely
near point P on C, which is the intersection point C VDk. The primitive element
of sk is ð�q;�pÞ and pk ¼ �pq. Hence, by Corollary 1.6, the gap sequence of
C at P is

f j A N j the line qX þ pY ¼ pqþ j has a lattice point in Int kCg:

In the case (iii), the fan DS and the lattice polytope kC are as in Fig. 8.
The infinitely near points of Q on C are P1 ¼ C VDk1 and P2 ¼ C VDk2 . The
primitive elements of sk1 and sk2 are ð�s; r� pÞ and ðs� q;�rÞ, respectively.
Moreover, pk1 ¼ �sp and pk2 ¼ �rq hold. Hence, by Corollary 1.6, the gap
sequences of C at P1 and P2 are

f j A N j the line sX þ ðp� rÞY ¼ spþ j has a lattice point in Int kCg;
f j A N j the line ðq� sÞX þ rY ¼ rqþ j has a lattice point in Int kCg;

respectively.

Figure 7

Figure 8
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